""" ======================================================================= Plot the decision surface of decision trees trained on the iris dataset ======================================================================= Plot the decision surface of a decision tree trained on pairs of features of the iris dataset. See :ref:`decision tree ` for more information on the estimator. For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples. We also show the tree structure of a model built on all of the features. """ # %% # First load the copy of the Iris dataset shipped with scikit-learn: from sklearn.datasets import load_iris iris = load_iris() # %% # Display the decision functions of trees trained on all pairs of features. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris from sklearn.inspection import DecisionBoundaryDisplay from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 plot_colors = "ryb" plot_step = 0.02 for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]): # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Train clf = DecisionTreeClassifier().fit(X, y) # Plot the decision boundary ax = plt.subplot(2, 3, pairidx + 1) plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5) DecisionBoundaryDisplay.from_estimator( clf, X, cmap=plt.cm.RdYlBu, response_method="predict", ax=ax, xlabel=iris.feature_names[pair[0]], ylabel=iris.feature_names[pair[1]], ) # Plot the training points for i, color in zip(range(n_classes), plot_colors): idx = np.where(y == i) plt.scatter( X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], edgecolor="black", s=15, ) plt.suptitle("Decision surface of decision trees trained on pairs of features") plt.legend(loc="lower right", borderpad=0, handletextpad=0) _ = plt.axis("tight") # %% # Display the structure of a single decision tree trained on all the features # together. from sklearn.tree import plot_tree plt.figure() clf = DecisionTreeClassifier().fit(iris.data, iris.target) plot_tree(clf, filled=True) plt.title("Decision tree trained on all the iris features") plt.show()