1410 lines
64 KiB
ReStructuredText
1410 lines
64 KiB
ReStructuredText
.. include:: _contributors.rst
|
||
|
||
.. currentmodule:: sklearn
|
||
|
||
.. _release_notes_1_1:
|
||
|
||
===========
|
||
Version 1.1
|
||
===========
|
||
|
||
For a short description of the main highlights of the release, please refer to
|
||
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_1_0.py`.
|
||
|
||
.. include:: changelog_legend.inc
|
||
|
||
.. _changes_1_1_3:
|
||
|
||
Version 1.1.3
|
||
=============
|
||
|
||
**October 2022**
|
||
|
||
This bugfix release only includes fixes for compatibility with the latest
|
||
SciPy release >= 1.9.2. Notable changes include:
|
||
|
||
- |Fix| Include `msvcp140.dll` in the scikit-learn wheels since it has been
|
||
removed in the latest SciPy wheels.
|
||
:pr:`24631` by :user:`Chiara Marmo <cmarmo>`.
|
||
|
||
- |Enhancement| Create wheels for Python 3.11.
|
||
:pr:`24446` by :user:`Chiara Marmo <cmarmo>`.
|
||
|
||
Other bug fixes will be available in the next 1.2 release, which will be
|
||
released in the coming weeks.
|
||
|
||
Note that support for 32-bit Python on Windows has been dropped in this release. This
|
||
is due to the fact that SciPy 1.9.2 also dropped the support for that platform.
|
||
Windows users are advised to install the 64-bit version of Python instead.
|
||
|
||
.. _changes_1_1_2:
|
||
|
||
Version 1.1.2
|
||
=============
|
||
|
||
**August 2022**
|
||
|
||
Changed models
|
||
--------------
|
||
|
||
The following estimators and functions, when fit with the same data and
|
||
parameters, may produce different models from the previous version. This often
|
||
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
|
||
random sampling procedures.
|
||
|
||
- |Fix| :class:`manifold.TSNE` now throws a `ValueError` when fit with
|
||
`perplexity>=n_samples` to ensure mathematical correctness of the algorithm.
|
||
:pr:`10805` by :user:`Mathias Andersen <MrMathias>` and
|
||
:pr:`23471` by :user:`Meekail Zain <micky774>`.
|
||
|
||
Changelog
|
||
---------
|
||
|
||
- |Fix| A default HTML representation is shown for meta-estimators with invalid
|
||
parameters. :pr:`24015` by `Thomas Fan`_.
|
||
|
||
- |Fix| Add support for F-contiguous arrays for estimators and functions whose back-end
|
||
have been changed in 1.1.
|
||
:pr:`23990` by :user:`Julien Jerphanion <jjerphan>`.
|
||
|
||
- |Fix| Wheels are now available for MacOS 10.9 and greater. :pr:`23833` by
|
||
`Thomas Fan`_.
|
||
|
||
:mod:`sklearn.base`
|
||
...................
|
||
|
||
- |Fix| The `get_params` method of the :class:`base.BaseEstimator` class now supports
|
||
estimators with `type`-type params that have the `get_params` method.
|
||
:pr:`24017` by :user:`Henry Sorsky <hsorsky>`.
|
||
|
||
:mod:`sklearn.cluster`
|
||
......................
|
||
|
||
- |Fix| Fixed a bug in :class:`cluster.Birch` that could trigger an error when splitting
|
||
a node if there are duplicates in the dataset.
|
||
:pr:`23395` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
:mod:`sklearn.feature_selection`
|
||
................................
|
||
|
||
- |Fix| :class:`feature_selection.SelectFromModel` defaults to selection
|
||
threshold 1e-5 when the estimator is either :class:`linear_model.ElasticNet`
|
||
or :class:`linear_model.ElasticNetCV` with `l1_ratio` equals 1 or
|
||
:class:`linear_model.LassoCV`.
|
||
:pr:`23636` by :user:`Hao Chun Chang <haochunchang>`.
|
||
|
||
:mod:`sklearn.impute`
|
||
.....................
|
||
|
||
- |Fix| :class:`impute.SimpleImputer` uses the dtype seen in `fit` for
|
||
`transform` when the dtype is object. :pr:`22063` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.linear_model`
|
||
...........................
|
||
|
||
- |Fix| Use dtype-aware tolerances for the validation of gram matrices (passed by users
|
||
or precomputed). :pr:`22059` by :user:`Malte S. Kurz <MalteKurz>`.
|
||
|
||
- |Fix| Fixed an error in :class:`linear_model.LogisticRegression` with
|
||
`solver="newton-cg"`, `fit_intercept=True`, and a single feature. :pr:`23608`
|
||
by `Tom Dupre la Tour`_.
|
||
|
||
:mod:`sklearn.manifold`
|
||
.......................
|
||
|
||
- |Fix| :class:`manifold.TSNE` now throws a `ValueError` when fit with
|
||
`perplexity>=n_samples` to ensure mathematical correctness of the algorithm.
|
||
:pr:`10805` by :user:`Mathias Andersen <MrMathias>` and
|
||
:pr:`23471` by :user:`Meekail Zain <micky774>`.
|
||
|
||
:mod:`sklearn.metrics`
|
||
......................
|
||
|
||
- |Fix| Fixed error message of :class:`metrics.coverage_error` for 1D array input.
|
||
:pr:`23548` by :user:`Hao Chun Chang <haochunchang>`.
|
||
|
||
:mod:`sklearn.preprocessing`
|
||
............................
|
||
|
||
- |Fix| :meth:`preprocessing.OrdinalEncoder.inverse_transform` correctly handles
|
||
use cases where `unknown_value` or `encoded_missing_value` is `nan`. :pr:`24087`
|
||
by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.tree`
|
||
...................
|
||
|
||
- |Fix| Fixed invalid memory access bug during fit in
|
||
:class:`tree.DecisionTreeRegressor` and :class:`tree.DecisionTreeClassifier`.
|
||
:pr:`23273` by `Thomas Fan`_.
|
||
|
||
.. _changes_1_1_1:
|
||
|
||
Version 1.1.1
|
||
=============
|
||
|
||
**May 2022**
|
||
|
||
Changelog
|
||
---------
|
||
|
||
- |Enhancement| The error message is improved when importing
|
||
:class:`model_selection.HalvingGridSearchCV`,
|
||
:class:`model_selection.HalvingRandomSearchCV`, or
|
||
:class:`impute.IterativeImputer` without importing the experimental flag.
|
||
:pr:`23194` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| Added an extension in doc/conf.py to automatically generate
|
||
the list of estimators that handle NaN values.
|
||
:pr:`23198` by :user:`Lise Kleiber <lisekleiber>`, :user:`Zhehao Liu <MaxwellLZH>`
|
||
and :user:`Chiara Marmo <cmarmo>`.
|
||
|
||
:mod:`sklearn.datasets`
|
||
.......................
|
||
|
||
- |Fix| Avoid timeouts in :func:`datasets.fetch_openml` by not passing a
|
||
`timeout` argument, :pr:`23358` by :user:`Loïc Estève <lesteve>`.
|
||
|
||
:mod:`sklearn.decomposition`
|
||
............................
|
||
|
||
- |Fix| Avoid spurious warning in :class:`decomposition.IncrementalPCA` when
|
||
`n_samples == n_components`. :pr:`23264` by :user:`Lucy Liu <lucyleeow>`.
|
||
|
||
:mod:`sklearn.feature_selection`
|
||
................................
|
||
|
||
- |Fix| The `partial_fit` method of :class:`feature_selection.SelectFromModel`
|
||
now conducts validation for `max_features` and `feature_names_in` parameters.
|
||
:pr:`23299` by :user:`Long Bao <lorentzbao>`.
|
||
|
||
:mod:`sklearn.metrics`
|
||
......................
|
||
|
||
- |Fix| Fixes :func:`metrics.precision_recall_curve` to compute precision-recall at 100%
|
||
recall. The Precision-Recall curve now displays the last point corresponding to a
|
||
classifier that always predicts the positive class: recall=100% and
|
||
precision=class balance.
|
||
:pr:`23214` by :user:`Stéphane Collot <stephanecollot>` and :user:`Max Baak <mbaak>`.
|
||
|
||
:mod:`sklearn.preprocessing`
|
||
............................
|
||
|
||
- |Fix| :class:`preprocessing.PolynomialFeatures` with ``degree`` equal to 0
|
||
will raise error when ``include_bias`` is set to False, and outputs a single
|
||
constant array when ``include_bias`` is set to True.
|
||
:pr:`23370` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
:mod:`sklearn.tree`
|
||
...................
|
||
|
||
- |Fix| Fixes performance regression with low cardinality features for
|
||
:class:`tree.DecisionTreeClassifier`,
|
||
:class:`tree.DecisionTreeRegressor`,
|
||
:class:`ensemble.RandomForestClassifier`,
|
||
:class:`ensemble.RandomForestRegressor`,
|
||
:class:`ensemble.GradientBoostingClassifier`, and
|
||
:class:`ensemble.GradientBoostingRegressor`.
|
||
:pr:`23410` by :user:`Loïc Estève <lesteve>`.
|
||
|
||
:mod:`sklearn.utils`
|
||
....................
|
||
|
||
- |Fix| :func:`utils.class_weight.compute_sample_weight` now works with sparse `y`.
|
||
:pr:`23115` by :user:`kernc <kernc>`.
|
||
|
||
.. _changes_1_1:
|
||
|
||
Version 1.1.0
|
||
=============
|
||
|
||
**May 2022**
|
||
|
||
Minimal dependencies
|
||
--------------------
|
||
|
||
Version 1.1.0 of scikit-learn requires python 3.8+, numpy 1.17.3+ and
|
||
scipy 1.3.2+. Optional minimal dependency is matplotlib 3.1.2+.
|
||
|
||
Changed models
|
||
--------------
|
||
|
||
The following estimators and functions, when fit with the same data and
|
||
parameters, may produce different models from the previous version. This often
|
||
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
|
||
random sampling procedures.
|
||
|
||
- |Efficiency| :class:`cluster.KMeans` now defaults to ``algorithm="lloyd"``
|
||
instead of ``algorithm="auto"``, which was equivalent to
|
||
``algorithm="elkan"``. Lloyd's algorithm and Elkan's algorithm converge to the
|
||
same solution, up to numerical rounding errors, but in general Lloyd's
|
||
algorithm uses much less memory, and it is often faster.
|
||
|
||
- |Efficiency| Fitting :class:`tree.DecisionTreeClassifier`,
|
||
:class:`tree.DecisionTreeRegressor`,
|
||
:class:`ensemble.RandomForestClassifier`,
|
||
:class:`ensemble.RandomForestRegressor`,
|
||
:class:`ensemble.GradientBoostingClassifier`, and
|
||
:class:`ensemble.GradientBoostingRegressor` is on average 15% faster than in
|
||
previous versions thanks to a new sort algorithm to find the best split.
|
||
Models might be different because of a different handling of splits
|
||
with tied criterion values: both the old and the new sorting algorithm
|
||
are unstable sorting algorithms. :pr:`22868` by `Thomas Fan`_.
|
||
|
||
- |Fix| The eigenvectors initialization for :class:`cluster.SpectralClustering`
|
||
and :class:`manifold.SpectralEmbedding` now samples from a Gaussian when
|
||
using the `'amg'` or `'lobpcg'` solver. This change improves numerical
|
||
stability of the solver, but may result in a different model.
|
||
|
||
- |Fix| :func:`feature_selection.f_regression` and
|
||
:func:`feature_selection.r_regression` will now returned finite score by
|
||
default instead of `np.nan` and `np.inf` for some corner case. You can use
|
||
`force_finite=False` if you really want to get non-finite values and keep
|
||
the old behavior.
|
||
|
||
- |Fix| Panda's DataFrames with all non-string columns such as a MultiIndex no
|
||
longer warns when passed into an Estimator. Estimators will continue to
|
||
ignore the column names in DataFrames with non-string columns. For
|
||
`feature_names_in_` to be defined, columns must be all strings. :pr:`22410` by
|
||
`Thomas Fan`_.
|
||
|
||
- |Fix| :class:`preprocessing.KBinsDiscretizer` changed handling of bin edges
|
||
slightly, which might result in a different encoding with the same data.
|
||
|
||
- |Fix| :func:`calibration.calibration_curve` changed handling of bin
|
||
edges slightly, which might result in a different output curve given the same
|
||
data.
|
||
|
||
- |Fix| :class:`discriminant_analysis.LinearDiscriminantAnalysis` now uses
|
||
the correct variance-scaling coefficient which may result in different model
|
||
behavior.
|
||
|
||
- |Fix| :meth:`feature_selection.SelectFromModel.fit` and
|
||
:meth:`feature_selection.SelectFromModel.partial_fit` can now be called with
|
||
`prefit=True`. `estimators_` will be a deep copy of `estimator` when
|
||
`prefit=True`. :pr:`23271` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
Changelog
|
||
---------
|
||
|
||
..
|
||
Entries should be grouped by module (in alphabetic order) and prefixed with
|
||
one of the labels: |MajorFeature|, |Feature|, |Efficiency|, |Enhancement|,
|
||
|Fix| or |API| (see whats_new.rst for descriptions).
|
||
Entries should be ordered by those labels (e.g. |Fix| after |Efficiency|).
|
||
Changes not specific to a module should be listed under *Multiple Modules*
|
||
or *Miscellaneous*.
|
||
Entries should end with:
|
||
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
|
||
where 123456 is the *pull request* number, not the issue number.
|
||
|
||
|
||
- |Efficiency| Low-level routines for reductions on pairwise distances
|
||
for dense float64 datasets have been refactored. The following functions
|
||
and estimators now benefit from improved performances in terms of hardware
|
||
scalability and speed-ups:
|
||
|
||
- :func:`sklearn.metrics.pairwise_distances_argmin`
|
||
- :func:`sklearn.metrics.pairwise_distances_argmin_min`
|
||
- :class:`sklearn.cluster.AffinityPropagation`
|
||
- :class:`sklearn.cluster.Birch`
|
||
- :class:`sklearn.cluster.MeanShift`
|
||
- :class:`sklearn.cluster.OPTICS`
|
||
- :class:`sklearn.cluster.SpectralClustering`
|
||
- :func:`sklearn.feature_selection.mutual_info_regression`
|
||
- :class:`sklearn.neighbors.KNeighborsClassifier`
|
||
- :class:`sklearn.neighbors.KNeighborsRegressor`
|
||
- :class:`sklearn.neighbors.RadiusNeighborsClassifier`
|
||
- :class:`sklearn.neighbors.RadiusNeighborsRegressor`
|
||
- :class:`sklearn.neighbors.LocalOutlierFactor`
|
||
- :class:`sklearn.neighbors.NearestNeighbors`
|
||
- :class:`sklearn.manifold.Isomap`
|
||
- :class:`sklearn.manifold.LocallyLinearEmbedding`
|
||
- :class:`sklearn.manifold.TSNE`
|
||
- :func:`sklearn.manifold.trustworthiness`
|
||
- :class:`sklearn.semi_supervised.LabelPropagation`
|
||
- :class:`sklearn.semi_supervised.LabelSpreading`
|
||
|
||
For instance :class:`sklearn.neighbors.NearestNeighbors.kneighbors` and
|
||
:class:`sklearn.neighbors.NearestNeighbors.radius_neighbors`
|
||
can respectively be up to ×20 and ×5 faster than previously on a laptop.
|
||
|
||
Moreover, implementations of those two algorithms are now suitable
|
||
for machine with many cores, making them usable for datasets consisting
|
||
of millions of samples.
|
||
|
||
:pr:`21987`, :pr:`22064`, :pr:`22065`, :pr:`22288` and :pr:`22320`
|
||
by :user:`Julien Jerphanion <jjerphan>`.
|
||
|
||
- |Enhancement| All scikit-learn models now generate a more informative
|
||
error message when some input contains unexpected `NaN` or infinite values.
|
||
In particular the message contains the input name ("X", "y" or
|
||
"sample_weight") and if an unexpected `NaN` value is found in `X`, the error
|
||
message suggests potential solutions.
|
||
:pr:`21219` by :user:`Olivier Grisel <ogrisel>`.
|
||
|
||
- |Enhancement| All scikit-learn models now generate a more informative
|
||
error message when setting invalid hyper-parameters with `set_params`.
|
||
:pr:`21542` by :user:`Olivier Grisel <ogrisel>`.
|
||
|
||
- |Enhancement| Removes random unique identifiers in the HTML representation.
|
||
With this change, jupyter notebooks are reproducible as long as the cells are
|
||
run in the same order. :pr:`23098` by `Thomas Fan`_.
|
||
|
||
- |Fix| Estimators with `non_deterministic` tag set to `True` will skip both
|
||
`check_methods_sample_order_invariance` and `check_methods_subset_invariance` tests.
|
||
:pr:`22318` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
- |API| The option for using the log loss, aka binomial or multinomial deviance, via
|
||
the `loss` parameters was made more consistent. The preferred way is by
|
||
setting the value to `"log_loss"`. Old option names are still valid and
|
||
produce the same models, but are deprecated and will be removed in version
|
||
1.3.
|
||
|
||
- For :class:`ensemble.GradientBoostingClassifier`, the `loss` parameter name
|
||
"deviance" is deprecated in favor of the new name "log_loss", which is now the
|
||
default.
|
||
:pr:`23036` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- For :class:`ensemble.HistGradientBoostingClassifier`, the `loss` parameter names
|
||
"auto", "binary_crossentropy" and "categorical_crossentropy" are deprecated in
|
||
favor of the new name "log_loss", which is now the default.
|
||
:pr:`23040` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- For :class:`linear_model.SGDClassifier`, the `loss` parameter name
|
||
"log" is deprecated in favor of the new name "log_loss".
|
||
:pr:`23046` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |API| Rich html representation of estimators is now enabled by default in Jupyter
|
||
notebooks. It can be deactivated by setting `display='text'` in
|
||
:func:`sklearn.set_config`.
|
||
:pr:`22856` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
:mod:`sklearn.calibration`
|
||
..........................
|
||
|
||
- |Enhancement| :func:`calibration.calibration_curve` accepts a parameter
|
||
`pos_label` to specify the positive class label.
|
||
:pr:`21032` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
- |Enhancement| :meth:`calibration.CalibratedClassifierCV.fit` now supports passing
|
||
`fit_params`, which are routed to the `base_estimator`.
|
||
:pr:`18170` by :user:`Benjamin Bossan <BenjaminBossan>`.
|
||
|
||
- |Enhancement| :class:`calibration.CalibrationDisplay` accepts a parameter `pos_label`
|
||
to add this information to the plot.
|
||
:pr:`21038` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
- |Fix| :func:`calibration.calibration_curve` handles bin edges more consistently now.
|
||
:pr:`14975` by `Andreas Müller`_ and :pr:`22526` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |API| :func:`calibration.calibration_curve`'s `normalize` parameter is
|
||
now deprecated and will be removed in version 1.3. It is recommended that
|
||
a proper probability (i.e. a classifier's :term:`predict_proba` positive
|
||
class) is used for `y_prob`.
|
||
:pr:`23095` by :user:`Jordan Silke <jsilke>`.
|
||
|
||
:mod:`sklearn.cluster`
|
||
......................
|
||
|
||
- |MajorFeature| :class:`cluster.BisectingKMeans` introducing Bisecting K-Means algorithm
|
||
:pr:`20031` by :user:`Michal Krawczyk <michalkrawczyk>`,
|
||
:user:`Tom Dupre la Tour <TomDLT>`
|
||
and :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Enhancement| :class:`cluster.SpectralClustering` and
|
||
:func:`cluster.spectral_clustering` now include the new `'cluster_qr'` method that
|
||
clusters samples in the embedding space as an alternative to the existing `'kmeans'`
|
||
and `'discrete'` methods. See :func:`cluster.spectral_clustering` for more details.
|
||
:pr:`21148` by :user:`Andrew Knyazev <lobpcg>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to :class:`cluster.Birch`,
|
||
:class:`cluster.FeatureAgglomeration`, :class:`cluster.KMeans`,
|
||
:class:`cluster.MiniBatchKMeans`. :pr:`22255` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :class:`cluster.SpectralClustering` now raises consistent
|
||
error messages when passed invalid values for `n_clusters`, `n_init`,
|
||
`gamma`, `n_neighbors`, `eigen_tol` or `degree`.
|
||
:pr:`21881` by :user:`Hugo Vassard <hvassard>`.
|
||
|
||
- |Enhancement| :class:`cluster.AffinityPropagation` now returns cluster
|
||
centers and labels if they exist, even if the model has not fully converged.
|
||
When returning these potentially-degenerate cluster centers and labels, a new
|
||
warning message is shown. If no cluster centers were constructed,
|
||
then the cluster centers remain an empty list with labels set to
|
||
`-1` and the original warning message is shown.
|
||
:pr:`22217` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |Efficiency| In :class:`cluster.KMeans`, the default ``algorithm`` is now
|
||
``"lloyd"`` which is the full classical EM-style algorithm. Both ``"auto"``
|
||
and ``"full"`` are deprecated and will be removed in version 1.3. They are
|
||
now aliases for ``"lloyd"``. The previous default was ``"auto"``, which relied
|
||
on Elkan's algorithm. Lloyd's algorithm uses less memory than Elkan's, it
|
||
is faster on many datasets, and its results are identical, hence the change.
|
||
:pr:`21735` by :user:`Aurélien Geron <ageron>`.
|
||
|
||
- |Fix| :class:`cluster.KMeans`'s `init` parameter now properly supports
|
||
array-like input and NumPy string scalars. :pr:`22154` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.compose`
|
||
......................
|
||
|
||
- |Fix| :class:`compose.ColumnTransformer` now removes validation errors from
|
||
`__init__` and `set_params` methods.
|
||
:pr:`22537` by :user:`iofall <iofall>` and :user:`Arisa Y. <arisayosh>`.
|
||
|
||
- |Fix| :term:`get_feature_names_out` functionality in
|
||
:class:`compose.ColumnTransformer` was broken when columns were specified
|
||
using `slice`. This is fixed in :pr:`22775` and :pr:`22913` by
|
||
:user:`randomgeek78 <randomgeek78>`.
|
||
|
||
:mod:`sklearn.covariance`
|
||
.........................
|
||
|
||
- |Fix| :class:`covariance.GraphicalLassoCV` now accepts NumPy array for the
|
||
parameter `alphas`.
|
||
:pr:`22493` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
:mod:`sklearn.cross_decomposition`
|
||
..................................
|
||
|
||
- |Enhancement| the `inverse_transform` method of
|
||
:class:`cross_decomposition.PLSRegression`, :class:`cross_decomposition.PLSCanonical`
|
||
and :class:`cross_decomposition.CCA` now allows reconstruction of a `X` target when
|
||
a `Y` parameter is given. :pr:`19680` by
|
||
:user:`Robin Thibaut <robinthibaut>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to all transformers in the
|
||
:mod:`~sklearn.cross_decomposition` module:
|
||
:class:`cross_decomposition.CCA`,
|
||
:class:`cross_decomposition.PLSSVD`,
|
||
:class:`cross_decomposition.PLSRegression`,
|
||
and :class:`cross_decomposition.PLSCanonical`. :pr:`22119` by `Thomas Fan`_.
|
||
|
||
- |Fix| The shape of the :term:`coef_` attribute of :class:`cross_decomposition.CCA`,
|
||
:class:`cross_decomposition.PLSCanonical` and
|
||
:class:`cross_decomposition.PLSRegression` will change in version 1.3, from
|
||
`(n_features, n_targets)` to `(n_targets, n_features)`, to be consistent
|
||
with other linear models and to make it work with interface expecting a
|
||
specific shape for `coef_` (e.g. :class:`feature_selection.RFE`).
|
||
:pr:`22016` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
- |API| add the fitted attribute `intercept_` to
|
||
:class:`cross_decomposition.PLSCanonical`,
|
||
:class:`cross_decomposition.PLSRegression`, and
|
||
:class:`cross_decomposition.CCA`. The method `predict` is indeed equivalent to
|
||
`Y = X @ coef_ + intercept_`.
|
||
:pr:`22015` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
:mod:`sklearn.datasets`
|
||
.......................
|
||
|
||
- |Feature| :func:`datasets.load_files` now accepts a ignore list and
|
||
an allow list based on file extensions.
|
||
:pr:`19747` by :user:`Tony Attalla <tonyattalla>` and :pr:`22498` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
- |Enhancement| :func:`datasets.make_swiss_roll` now supports the optional argument
|
||
hole; when set to True, it returns the swiss-hole dataset. :pr:`21482` by
|
||
:user:`Sebastian Pujalte <pujaltes>`.
|
||
|
||
- |Enhancement| :func:`datasets.make_blobs` no longer copies data during the generation
|
||
process, therefore uses less memory.
|
||
:pr:`22412` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
- |Enhancement| :func:`datasets.load_diabetes` now accepts the parameter
|
||
``scaled``, to allow loading unscaled data. The scaled version of this
|
||
dataset is now computed from the unscaled data, and can produce slightly
|
||
different results that in previous version (within a 1e-4 absolute
|
||
tolerance).
|
||
:pr:`16605` by :user:`Mandy Gu <happilyeverafter95>`.
|
||
|
||
- |Enhancement| :func:`datasets.fetch_openml` now has two optional arguments
|
||
`n_retries` and `delay`. By default, :func:`datasets.fetch_openml` will retry
|
||
3 times in case of a network failure with a delay between each try.
|
||
:pr:`21901` by :user:`Rileran <rileran>`.
|
||
|
||
- |Fix| :func:`datasets.fetch_covtype` is now concurrent-safe: data is downloaded
|
||
to a temporary directory before being moved to the data directory.
|
||
:pr:`23113` by :user:`Ilion Beyst <iasoon>`.
|
||
|
||
- |API| :func:`datasets.make_sparse_coded_signal` now accepts a parameter
|
||
`data_transposed` to explicitly specify the shape of matrix `X`. The default
|
||
behavior `True` is to return a transposed matrix `X` corresponding to a
|
||
`(n_features, n_samples)` shape. The default value will change to `False` in
|
||
version 1.3. :pr:`21425` by :user:`Gabriel Stefanini Vicente <g4brielvs>`.
|
||
|
||
:mod:`sklearn.decomposition`
|
||
............................
|
||
|
||
- |MajorFeature| Added a new estimator :class:`decomposition.MiniBatchNMF`. It is a
|
||
faster but less accurate version of non-negative matrix factorization, better suited
|
||
for large datasets. :pr:`16948` by :user:`Chiara Marmo <cmarmo>`,
|
||
:user:`Patricio Cerda <pcerda>` and :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Enhancement| :func:`decomposition.dict_learning`,
|
||
:func:`decomposition.dict_learning_online`
|
||
and :func:`decomposition.sparse_encode` preserve dtype for `numpy.float32`.
|
||
:class:`decomposition.DictionaryLearning`,
|
||
:class:`decomposition.MiniBatchDictionaryLearning`
|
||
and :class:`decomposition.SparseCoder` preserve dtype for `numpy.float32`.
|
||
:pr:`22002` by :user:`Takeshi Oura <takoika>`.
|
||
|
||
- |Enhancement| :class:`decomposition.PCA` exposes a parameter `n_oversamples` to tune
|
||
:func:`utils.extmath.randomized_svd` and get accurate results when the number of
|
||
features is large.
|
||
:pr:`21109` by :user:`Smile <x-shadow-man>`.
|
||
|
||
- |Enhancement| The :class:`decomposition.MiniBatchDictionaryLearning` and
|
||
:func:`decomposition.dict_learning_online` have been refactored and now have a
|
||
stopping criterion based on a small change of the dictionary or objective function,
|
||
controlled by the new `max_iter`, `tol` and `max_no_improvement` parameters. In
|
||
addition, some of their parameters and attributes are deprecated.
|
||
|
||
- the `n_iter` parameter of both is deprecated. Use `max_iter` instead.
|
||
- the `iter_offset`, `return_inner_stats`, `inner_stats` and `return_n_iter`
|
||
parameters of :func:`decomposition.dict_learning_online` serve internal purpose
|
||
and are deprecated.
|
||
- the `inner_stats_`, `iter_offset_` and `random_state_` attributes of
|
||
:class:`decomposition.MiniBatchDictionaryLearning` serve internal purpose and are
|
||
deprecated.
|
||
- the default value of the `batch_size` parameter of both will change from 3 to 256
|
||
in version 1.3.
|
||
|
||
:pr:`18975` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Enhancement| :class:`decomposition.SparsePCA` and :class:`decomposition.MiniBatchSparsePCA`
|
||
preserve dtype for `numpy.float32`.
|
||
:pr:`22111` by :user:`Takeshi Oura <takoika>`.
|
||
|
||
- |Enhancement| :class:`decomposition.TruncatedSVD` now allows
|
||
`n_components == n_features`, if `algorithm='randomized'`.
|
||
:pr:`22181` by :user:`Zach Deane-Mayer <zachmayer>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to all transformers in the
|
||
:mod:`~sklearn.decomposition` module:
|
||
:class:`decomposition.DictionaryLearning`,
|
||
:class:`decomposition.FactorAnalysis`,
|
||
:class:`decomposition.FastICA`,
|
||
:class:`decomposition.IncrementalPCA`,
|
||
:class:`decomposition.KernelPCA`,
|
||
:class:`decomposition.LatentDirichletAllocation`,
|
||
:class:`decomposition.MiniBatchDictionaryLearning`,
|
||
:class:`decomposition.MiniBatchSparsePCA`,
|
||
:class:`decomposition.NMF`,
|
||
:class:`decomposition.PCA`,
|
||
:class:`decomposition.SparsePCA`,
|
||
and :class:`decomposition.TruncatedSVD`. :pr:`21334` by
|
||
`Thomas Fan`_.
|
||
|
||
- |Enhancement| :class:`decomposition.TruncatedSVD` exposes the parameter
|
||
`n_oversamples` and `power_iteration_normalizer` to tune
|
||
:func:`utils.extmath.randomized_svd` and get accurate results when the number
|
||
of features is large, the rank of the matrix is high, or other features of
|
||
the matrix make low rank approximation difficult.
|
||
:pr:`21705` by :user:`Jay S. Stanley III <stanleyjs>`.
|
||
|
||
- |Enhancement| :class:`decomposition.PCA` exposes the parameter
|
||
`power_iteration_normalizer` to tune :func:`utils.extmath.randomized_svd` and
|
||
get more accurate results when low rank approximation is difficult.
|
||
:pr:`21705` by :user:`Jay S. Stanley III <stanleyjs>`.
|
||
|
||
- |Fix| :class:`decomposition.FastICA` now validates input parameters in `fit`
|
||
instead of `__init__`.
|
||
:pr:`21432` by :user:`Hannah Bohle <hhnnhh>` and
|
||
:user:`Maren Westermann <marenwestermann>`.
|
||
|
||
- |Fix| :class:`decomposition.FastICA` now accepts `np.float32` data without
|
||
silent upcasting. The dtype is preserved by `fit` and `fit_transform` and the
|
||
main fitted attributes use a dtype of the same precision as the training
|
||
data. :pr:`22806` by :user:`Jihane Bennis <JihaneBennis>` and
|
||
:user:`Olivier Grisel <ogrisel>`.
|
||
|
||
- |Fix| :class:`decomposition.FactorAnalysis` now validates input parameters
|
||
in `fit` instead of `__init__`.
|
||
:pr:`21713` by :user:`Haya <HayaAlmutairi>` and :user:`Krum Arnaudov <krumeto>`.
|
||
|
||
- |Fix| :class:`decomposition.KernelPCA` now validates input parameters in
|
||
`fit` instead of `__init__`.
|
||
:pr:`21567` by :user:`Maggie Chege <MaggieChege>`.
|
||
|
||
- |Fix| :class:`decomposition.PCA` and :class:`decomposition.IncrementalPCA`
|
||
more safely calculate precision using the inverse of the covariance matrix
|
||
if `self.noise_variance_` is zero.
|
||
:pr:`22300` by :user:`Meekail Zain <micky774>` and :pr:`15948` by :user:`sysuresh`.
|
||
|
||
- |Fix| Greatly reduced peak memory usage in :class:`decomposition.PCA` when
|
||
calling `fit` or `fit_transform`.
|
||
:pr:`22553` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |API| :func:`decomposition.FastICA` now supports unit variance for whitening.
|
||
The default value of its `whiten` argument will change from `True`
|
||
(which behaves like `'arbitrary-variance'`) to `'unit-variance'` in version 1.3.
|
||
:pr:`19490` by :user:`Facundo Ferrin <fferrin>` and
|
||
:user:`Julien Jerphanion <jjerphan>`.
|
||
|
||
:mod:`sklearn.discriminant_analysis`
|
||
....................................
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`discriminant_analysis.LinearDiscriminantAnalysis`. :pr:`22120` by
|
||
`Thomas Fan`_.
|
||
|
||
- |Fix| :class:`discriminant_analysis.LinearDiscriminantAnalysis` now uses
|
||
the correct variance-scaling coefficient which may result in different model
|
||
behavior. :pr:`15984` by :user:`Okon Samuel <OkonSamuel>` and :pr:`22696` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
:mod:`sklearn.dummy`
|
||
....................
|
||
|
||
- |Fix| :class:`dummy.DummyRegressor` no longer overrides the `constant`
|
||
parameter during `fit`. :pr:`22486` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.ensemble`
|
||
.......................
|
||
|
||
- |MajorFeature| Added additional option `loss="quantile"` to
|
||
:class:`ensemble.HistGradientBoostingRegressor` for modelling quantiles.
|
||
The quantile level can be specified with the new parameter `quantile`.
|
||
:pr:`21800` and :pr:`20567` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Efficiency| `fit` of :class:`ensemble.GradientBoostingClassifier`
|
||
and :class:`ensemble.GradientBoostingRegressor` now calls :func:`utils.check_array`
|
||
with parameter `force_all_finite=False` for non initial warm-start runs as it has
|
||
already been checked before.
|
||
:pr:`22159` by :user:`Geoffrey Paris <Geoffrey-Paris>`.
|
||
|
||
- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` is faster,
|
||
for binary and in particular for multiclass problems thanks to the new private loss
|
||
function module.
|
||
:pr:`20811`, :pr:`20567` and :pr:`21814` by
|
||
:user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Enhancement| Adds support to use pre-fit models with `cv="prefit"`
|
||
in :class:`ensemble.StackingClassifier` and :class:`ensemble.StackingRegressor`.
|
||
:pr:`16748` by :user:`Siqi He <siqi-he>` and :pr:`22215` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
- |Enhancement| :class:`ensemble.RandomForestClassifier` and
|
||
:class:`ensemble.ExtraTreesClassifier` have the new `criterion="log_loss"`, which is
|
||
equivalent to `criterion="entropy"`.
|
||
:pr:`23047` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`ensemble.VotingClassifier`, :class:`ensemble.VotingRegressor`,
|
||
:class:`ensemble.StackingClassifier`, and
|
||
:class:`ensemble.StackingRegressor`. :pr:`22695` and :pr:`22697` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :class:`ensemble.RandomTreesEmbedding` now has an informative
|
||
:term:`get_feature_names_out` function that includes both tree index and leaf index in
|
||
the output feature names.
|
||
:pr:`21762` by :user:`Zhehao Liu <MaxwellLZH>` and `Thomas Fan`_.
|
||
|
||
- |Efficiency| Fitting a :class:`ensemble.RandomForestClassifier`,
|
||
:class:`ensemble.RandomForestRegressor`, :class:`ensemble.ExtraTreesClassifier`,
|
||
:class:`ensemble.ExtraTreesRegressor`, and :class:`ensemble.RandomTreesEmbedding`
|
||
is now faster in a multiprocessing setting, especially for subsequent fits with
|
||
`warm_start` enabled.
|
||
:pr:`22106` by :user:`Pieter Gijsbers <PGijsbers>`.
|
||
|
||
- |Fix| Change the parameter `validation_fraction` in
|
||
:class:`ensemble.GradientBoostingClassifier` and
|
||
:class:`ensemble.GradientBoostingRegressor` so that an error is raised if anything
|
||
other than a float is passed in as an argument.
|
||
:pr:`21632` by :user:`Genesis Valencia <genvalen>`.
|
||
|
||
- |Fix| Removed a potential source of CPU oversubscription in
|
||
:class:`ensemble.HistGradientBoostingClassifier` and
|
||
:class:`ensemble.HistGradientBoostingRegressor` when CPU resource usage is limited,
|
||
for instance using cgroups quota in a docker container. :pr:`22566` by
|
||
:user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Fix| :class:`ensemble.HistGradientBoostingClassifier` and
|
||
:class:`ensemble.HistGradientBoostingRegressor` no longer warns when
|
||
fitting on a pandas DataFrame with a non-default `scoring` parameter and
|
||
early_stopping enabled. :pr:`22908` by `Thomas Fan`_.
|
||
|
||
- |Fix| Fixes HTML repr for :class:`ensemble.StackingClassifier` and
|
||
:class:`ensemble.StackingRegressor`. :pr:`23097` by `Thomas Fan`_.
|
||
|
||
- |API| The attribute `loss_` of :class:`ensemble.GradientBoostingClassifier` and
|
||
:class:`ensemble.GradientBoostingRegressor` has been deprecated and will be removed
|
||
in version 1.3.
|
||
:pr:`23079` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |API| Changed the default of `max_features` to 1.0 for
|
||
:class:`ensemble.RandomForestRegressor` and to `"sqrt"` for
|
||
:class:`ensemble.RandomForestClassifier`. Note that these give the same fit
|
||
results as before, but are much easier to understand. The old default value
|
||
`"auto"` has been deprecated and will be removed in version 1.3. The same
|
||
changes are also applied for :class:`ensemble.ExtraTreesRegressor` and
|
||
:class:`ensemble.ExtraTreesClassifier`.
|
||
:pr:`20803` by :user:`Brian Sun <bsun94>`.
|
||
|
||
- |Efficiency| Improve runtime performance of :class:`ensemble.IsolationForest`
|
||
by skipping repetitive input checks. :pr:`23149` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
:mod:`sklearn.feature_extraction`
|
||
.................................
|
||
|
||
- |Feature| :class:`feature_extraction.FeatureHasher` now supports PyPy.
|
||
:pr:`23023` by `Thomas Fan`_.
|
||
|
||
- |Fix| :class:`feature_extraction.FeatureHasher` now validates input parameters
|
||
in `transform` instead of `__init__`. :pr:`21573` by
|
||
:user:`Hannah Bohle <hhnnhh>` and :user:`Maren Westermann <marenwestermann>`.
|
||
|
||
- |Fix| :class:`feature_extraction.text.TfidfVectorizer` now does not create
|
||
a :class:`feature_extraction.text.TfidfTransformer` at `__init__` as required
|
||
by our API.
|
||
:pr:`21832` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
:mod:`sklearn.feature_selection`
|
||
................................
|
||
|
||
- |Feature| Added auto mode to :class:`feature_selection.SequentialFeatureSelector`.
|
||
If the argument `n_features_to_select` is `'auto'`, select features until the score
|
||
improvement does not exceed the argument `tol`. The default value of
|
||
`n_features_to_select` changed from `None` to `'warn'` in 1.1 and will become
|
||
`'auto'` in 1.3. `None` and `'warn'` will be removed in 1.3. :pr:`20145` by
|
||
:user:`murata-yu <murata-yu>`.
|
||
|
||
- |Feature| Added the ability to pass callables to the `max_features` parameter
|
||
of :class:`feature_selection.SelectFromModel`. Also introduced new attribute
|
||
`max_features_` which is inferred from `max_features` and the data during
|
||
`fit`. If `max_features` is an integer, then `max_features_ = max_features`.
|
||
If `max_features` is a callable, then `max_features_ = max_features(X)`.
|
||
:pr:`22356` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |Enhancement| :class:`feature_selection.GenericUnivariateSelect` preserves
|
||
float32 dtype. :pr:`18482` by :user:`Thierry Gameiro <titigmr>`
|
||
and :user:`Daniel Kharsa <aflatoune>` and :pr:`22370` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
- |Enhancement| Add a parameter `force_finite` to
|
||
:func:`feature_selection.f_regression` and
|
||
:func:`feature_selection.r_regression`. This parameter allows to force the
|
||
output to be finite in the case where a feature or a the target is constant
|
||
or that the feature and target are perfectly correlated (only for the
|
||
F-statistic).
|
||
:pr:`17819` by :user:`Juan Carlos Alfaro Jiménez <alfaro96>`.
|
||
|
||
- |Efficiency| Improve runtime performance of :func:`feature_selection.chi2`
|
||
with boolean arrays. :pr:`22235` by `Thomas Fan`_.
|
||
|
||
- |Efficiency| Reduced memory usage of :func:`feature_selection.chi2`.
|
||
:pr:`21837` by :user:`Louis Wagner <lrwagner>`.
|
||
|
||
:mod:`sklearn.gaussian_process`
|
||
...............................
|
||
|
||
- |Fix| `predict` and `sample_y` methods of
|
||
:class:`gaussian_process.GaussianProcessRegressor` now return
|
||
arrays of the correct shape in single-target and multi-target cases, and for
|
||
both `normalize_y=False` and `normalize_y=True`.
|
||
:pr:`22199` by :user:`Guillaume Lemaitre <glemaitre>`,
|
||
:user:`Aidar Shakerimoff <AidarShakerimoff>` and
|
||
:user:`Tenavi Nakamura-Zimmerer <Tenavi>`.
|
||
|
||
- |Fix| :class:`gaussian_process.GaussianProcessClassifier` raises
|
||
a more informative error if `CompoundKernel` is passed via `kernel`.
|
||
:pr:`22223` by :user:`MarcoM <marcozzxx810>`.
|
||
|
||
:mod:`sklearn.impute`
|
||
.....................
|
||
|
||
- |Enhancement| :class:`impute.SimpleImputer` now warns with feature names when features
|
||
which are skipped due to the lack of any observed values in the training set.
|
||
:pr:`21617` by :user:`Christian Ritter <chritter>`.
|
||
|
||
- |Enhancement| Added support for `pd.NA` in :class:`impute.SimpleImputer`.
|
||
:pr:`21114` by :user:`Ying Xiong <yxiong>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`impute.SimpleImputer`, :class:`impute.KNNImputer`,
|
||
:class:`impute.IterativeImputer`, and :class:`impute.MissingIndicator`.
|
||
:pr:`21078` by `Thomas Fan`_.
|
||
|
||
- |API| The `verbose` parameter was deprecated for :class:`impute.SimpleImputer`.
|
||
A warning will always be raised upon the removal of empty columns.
|
||
:pr:`21448` by :user:`Oleh Kozynets <OlehKSS>` and
|
||
:user:`Christian Ritter <chritter>`.
|
||
|
||
:mod:`sklearn.inspection`
|
||
.........................
|
||
|
||
- |Feature| Add a display to plot the boundary decision of a classifier by
|
||
using the method :func:`inspection.DecisionBoundaryDisplay.from_estimator`.
|
||
:pr:`16061` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| In
|
||
:meth:`inspection.PartialDependenceDisplay.from_estimator`, allow
|
||
`kind` to accept a list of strings to specify which type of
|
||
plot to draw for each feature interaction.
|
||
:pr:`19438` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
- |Enhancement| :meth:`inspection.PartialDependenceDisplay.from_estimator`,
|
||
:meth:`inspection.PartialDependenceDisplay.plot`, and
|
||
`inspection.plot_partial_dependence` now support plotting centered
|
||
Individual Conditional Expectation (cICE) and centered PDP curves controlled
|
||
by setting the parameter `centered`.
|
||
:pr:`18310` by :user:`Johannes Elfner <JoElfner>` and
|
||
:user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
:mod:`sklearn.isotonic`
|
||
.......................
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`isotonic.IsotonicRegression`.
|
||
:pr:`22249` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.kernel_approximation`
|
||
...................................
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`kernel_approximation.AdditiveChi2Sampler`.
|
||
:class:`kernel_approximation.Nystroem`,
|
||
:class:`kernel_approximation.PolynomialCountSketch`,
|
||
:class:`kernel_approximation.RBFSampler`, and
|
||
:class:`kernel_approximation.SkewedChi2Sampler`.
|
||
:pr:`22137` and :pr:`22694` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.linear_model`
|
||
...........................
|
||
|
||
- |Feature| :class:`linear_model.ElasticNet`, :class:`linear_model.ElasticNetCV`,
|
||
:class:`linear_model.Lasso` and :class:`linear_model.LassoCV` support `sample_weight`
|
||
for sparse input `X`.
|
||
:pr:`22808` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Feature| :class:`linear_model.Ridge` with `solver="lsqr"` now supports to fit sparse
|
||
input with `fit_intercept=True`.
|
||
:pr:`22950` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Enhancement| :class:`linear_model.QuantileRegressor` support sparse input
|
||
for the highs based solvers.
|
||
:pr:`21086` by :user:`Venkatachalam Natchiappan <venkyyuvy>`.
|
||
In addition, those solvers now use the CSC matrix right from the
|
||
beginning which speeds up fitting.
|
||
:pr:`22206` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Enhancement| :class:`linear_model.LogisticRegression` is faster for
|
||
``solvers="lbfgs"`` and ``solver="newton-cg"``, for binary and in particular for
|
||
multiclass problems thanks to the new private loss function module. In the multiclass
|
||
case, the memory consumption has also been reduced for these solvers as the target is
|
||
now label encoded (mapped to integers) instead of label binarized (one-hot encoded).
|
||
The more classes, the larger the benefit.
|
||
:pr:`21808`, :pr:`20567` and :pr:`21814` by
|
||
:user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Enhancement| :class:`linear_model.GammaRegressor`,
|
||
:class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor`
|
||
are faster for ``solvers="lbfgs"``.
|
||
:pr:`22548`, :pr:`21808` and :pr:`20567` by
|
||
:user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Enhancement| Rename parameter `base_estimator` to `estimator` in
|
||
:class:`linear_model.RANSACRegressor` to improve readability and consistency.
|
||
`base_estimator` is deprecated and will be removed in 1.3.
|
||
:pr:`22062` by :user:`Adrian Trujillo <trujillo9616>`.
|
||
|
||
- |Enhancement| :func:`linear_model.ElasticNet` and
|
||
and other linear model classes using coordinate descent show error
|
||
messages when non-finite parameter weights are produced. :pr:`22148`
|
||
by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.
|
||
|
||
- |Enhancement| :class:`linear_model.ElasticNet` and :class:`linear_model.Lasso`
|
||
now raise consistent error messages when passed invalid values for `l1_ratio`,
|
||
`alpha`, `max_iter` and `tol`.
|
||
:pr:`22240` by :user:`Arturo Amor <ArturoAmorQ>`.
|
||
|
||
- |Enhancement| :class:`linear_model.BayesianRidge` and
|
||
:class:`linear_model.ARDRegression` now preserve float32 dtype. :pr:`9087` by
|
||
:user:`Arthur Imbert <Henley13>` and :pr:`22525` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |Enhancement| :class:`linear_model.RidgeClassifier` is now supporting
|
||
multilabel classification.
|
||
:pr:`19689` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
- |Enhancement| :class:`linear_model.RidgeCV` and
|
||
:class:`linear_model.RidgeClassifierCV` now raise consistent error message
|
||
when passed invalid values for `alphas`.
|
||
:pr:`21606` by :user:`Arturo Amor <ArturoAmorQ>`.
|
||
|
||
- |Enhancement| :class:`linear_model.Ridge` and :class:`linear_model.RidgeClassifier`
|
||
now raise consistent error message when passed invalid values for `alpha`,
|
||
`max_iter` and `tol`.
|
||
:pr:`21341` by :user:`Arturo Amor <ArturoAmorQ>`.
|
||
|
||
- |Enhancement| :func:`linear_model.orthogonal_mp_gram` preservse dtype for
|
||
`numpy.float32`.
|
||
:pr:`22002` by :user:`Takeshi Oura <takoika>`.
|
||
|
||
- |Fix| :class:`linear_model.LassoLarsIC` now correctly computes AIC
|
||
and BIC. An error is now raised when `n_features > n_samples` and
|
||
when the noise variance is not provided.
|
||
:pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>` and
|
||
:user:`Andrés Babino <ababino>`.
|
||
|
||
- |Fix| :class:`linear_model.TheilSenRegressor` now validates input parameter
|
||
``max_subpopulation`` in `fit` instead of `__init__`.
|
||
:pr:`21767` by :user:`Maren Westermann <marenwestermann>`.
|
||
|
||
- |Fix| :class:`linear_model.ElasticNetCV` now produces correct
|
||
warning when `l1_ratio=0`.
|
||
:pr:`21724` by :user:`Yar Khine Phyo <yarkhinephyo>`.
|
||
|
||
- |Fix| :class:`linear_model.LogisticRegression` and
|
||
:class:`linear_model.LogisticRegressionCV` now set the `n_iter_` attribute
|
||
with a shape that respects the docstring and that is consistent with the shape
|
||
obtained when using the other solvers in the one-vs-rest setting. Previously,
|
||
it would record only the maximum of the number of iterations for each binary
|
||
sub-problem while now all of them are recorded. :pr:`21998` by
|
||
:user:`Olivier Grisel <ogrisel>`.
|
||
|
||
- |Fix| The property `family` of :class:`linear_model.TweedieRegressor` is not
|
||
validated in `__init__` anymore. Instead, this (private) property is deprecated in
|
||
:class:`linear_model.GammaRegressor`, :class:`linear_model.PoissonRegressor` and
|
||
:class:`linear_model.TweedieRegressor`, and will be removed in 1.3.
|
||
:pr:`22548` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Fix| The `coef_` and `intercept_` attributes of
|
||
:class:`linear_model.LinearRegression` are now correctly computed in the presence of
|
||
sample weights when the input is sparse.
|
||
:pr:`22891` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Fix| The `coef_` and `intercept_` attributes of :class:`linear_model.Ridge` with
|
||
`solver="sparse_cg"` and `solver="lbfgs"` are now correctly computed in the presence
|
||
of sample weights when the input is sparse.
|
||
:pr:`22899` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Fix| :class:`linear_model.SGDRegressor` and :class:`linear_model.SGDClassifier` now
|
||
computes the validation error correctly when early stopping is enabled.
|
||
:pr:`23256` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
- |API| :class:`linear_model.LassoLarsIC` now exposes `noise_variance` as
|
||
a parameter in order to provide an estimate of the noise variance.
|
||
This is particularly relevant when `n_features > n_samples` and the
|
||
estimator of the noise variance cannot be computed.
|
||
:pr:`21481` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
:mod:`sklearn.manifold`
|
||
.......................
|
||
|
||
- |Feature| :class:`manifold.Isomap` now supports radius-based
|
||
neighbors via the `radius` argument.
|
||
:pr:`19794` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
- |Enhancement| :func:`manifold.spectral_embedding` and
|
||
:class:`manifold.SpectralEmbedding` supports `np.float32` dtype and will
|
||
preserve this dtype.
|
||
:pr:`21534` by :user:`Andrew Knyazev <lobpcg>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to :class:`manifold.Isomap`
|
||
and :class:`manifold.LocallyLinearEmbedding`. :pr:`22254` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| added `metric_params` to :class:`manifold.TSNE` constructor for
|
||
additional parameters of distance metric to use in optimization.
|
||
:pr:`21805` by :user:`Jeanne Dionisi <jeannedionisi>` and :pr:`22685` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
- |Enhancement| :func:`manifold.trustworthiness` raises an error if
|
||
`n_neighbours >= n_samples / 2` to ensure a correct support for the function.
|
||
:pr:`18832` by :user:`Hong Shao Yang <hongshaoyang>` and :pr:`23033` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
- |Fix| :func:`manifold.spectral_embedding` now uses Gaussian instead of
|
||
the previous uniform on [0, 1] random initial approximations to eigenvectors
|
||
in eigen_solvers `lobpcg` and `amg` to improve their numerical stability.
|
||
:pr:`21565` by :user:`Andrew Knyazev <lobpcg>`.
|
||
|
||
:mod:`sklearn.metrics`
|
||
......................
|
||
|
||
- |Feature| :func:`metrics.r2_score` and :func:`metrics.explained_variance_score` have a
|
||
new `force_finite` parameter. Setting this parameter to `False` will return the
|
||
actual non-finite score in case of perfect predictions or constant `y_true`,
|
||
instead of the finite approximation (`1.0` and `0.0` respectively) currently
|
||
returned by default. :pr:`17266` by :user:`Sylvain Marié <smarie>`.
|
||
|
||
- |Feature| :func:`metrics.d2_pinball_score` and :func:`metrics.d2_absolute_error_score`
|
||
calculate the :math:`D^2` regression score for the pinball loss and the
|
||
absolute error respectively. :func:`metrics.d2_absolute_error_score` is a special case
|
||
of :func:`metrics.d2_pinball_score` with a fixed quantile parameter `alpha=0.5`
|
||
for ease of use and discovery. The :math:`D^2` scores are generalizations
|
||
of the `r2_score` and can be interpreted as the fraction of deviance explained.
|
||
:pr:`22118` by :user:`Ohad Michel <ohadmich>`.
|
||
|
||
- |Enhancement| :func:`metrics.top_k_accuracy_score` raises an improved error
|
||
message when `y_true` is binary and `y_score` is 2d. :pr:`22284` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :func:`metrics.roc_auc_score` now supports ``average=None``
|
||
in the multiclass case when ``multiclass='ovr'`` which will return the score
|
||
per class. :pr:`19158` by :user:`Nicki Skafte <SkafteNicki>`.
|
||
|
||
- |Enhancement| Adds `im_kw` parameter to
|
||
:meth:`metrics.ConfusionMatrixDisplay.from_estimator`
|
||
:meth:`metrics.ConfusionMatrixDisplay.from_predictions`, and
|
||
:meth:`metrics.ConfusionMatrixDisplay.plot`. The `im_kw` parameter is passed
|
||
to the `matplotlib.pyplot.imshow` call when plotting the confusion matrix.
|
||
:pr:`20753` by `Thomas Fan`_.
|
||
|
||
- |Fix| :func:`metrics.silhouette_score` now supports integer input for precomputed
|
||
distances. :pr:`22108` by `Thomas Fan`_.
|
||
|
||
- |Fix| Fixed a bug in :func:`metrics.normalized_mutual_info_score` which could return
|
||
unbounded values. :pr:`22635` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
- |Fix| Fixes :func:`metrics.precision_recall_curve` and
|
||
:func:`metrics.average_precision_score` when true labels are all negative.
|
||
:pr:`19085` by :user:`Varun Agrawal <varunagrawal>`.
|
||
|
||
- |API| `metrics.SCORERS` is now deprecated and will be removed in 1.3. Please
|
||
use :func:`metrics.get_scorer_names` to retrieve the names of all available
|
||
scorers. :pr:`22866` by `Adrin Jalali`_.
|
||
|
||
- |API| Parameters ``sample_weight`` and ``multioutput`` of
|
||
:func:`metrics.mean_absolute_percentage_error` are now keyword-only, in accordance
|
||
with `SLEP009 <https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep009/proposal.html>`_.
|
||
A deprecation cycle was introduced.
|
||
:pr:`21576` by :user:`Paul-Emile Dugnat <pedugnat>`.
|
||
|
||
- |API| The `"wminkowski"` metric of :class:`metrics.DistanceMetric` is deprecated
|
||
and will be removed in version 1.3. Instead the existing `"minkowski"` metric now takes
|
||
in an optional `w` parameter for weights. This deprecation aims at remaining consistent
|
||
with SciPy 1.8 convention. :pr:`21873` by :user:`Yar Khine Phyo <yarkhinephyo>`.
|
||
|
||
- |API| :class:`metrics.DistanceMetric` has been moved from
|
||
:mod:`sklearn.neighbors` to :mod:`sklearn.metrics`.
|
||
Using `neighbors.DistanceMetric` for imports is still valid for
|
||
backward compatibility, but this alias will be removed in 1.3.
|
||
:pr:`21177` by :user:`Julien Jerphanion <jjerphan>`.
|
||
|
||
:mod:`sklearn.mixture`
|
||
......................
|
||
|
||
- |Enhancement| :class:`mixture.GaussianMixture` and
|
||
:class:`mixture.BayesianGaussianMixture` can now be initialized using
|
||
k-means++ and random data points. :pr:`20408` by
|
||
:user:`Gordon Walsh <g-walsh>`, :user:`Alberto Ceballos<alceballosa>`
|
||
and :user:`Andres Rios<ariosramirez>`.
|
||
|
||
- |Fix| Fix a bug that correctly initialize `precisions_cholesky_` in
|
||
:class:`mixture.GaussianMixture` when providing `precisions_init` by taking
|
||
its square root.
|
||
:pr:`22058` by :user:`Guillaume Lemaitre <glemaitre>`.
|
||
|
||
- |Fix| :class:`mixture.GaussianMixture` now normalizes `weights_` more safely,
|
||
preventing rounding errors when calling :meth:`mixture.GaussianMixture.sample` with
|
||
`n_components=1`.
|
||
:pr:`23034` by :user:`Meekail Zain <micky774>`.
|
||
|
||
:mod:`sklearn.model_selection`
|
||
..............................
|
||
|
||
- |Enhancement| it is now possible to pass `scoring="matthews_corrcoef"` to all
|
||
model selection tools with a `scoring` argument to use the Matthews
|
||
correlation coefficient (MCC).
|
||
:pr:`22203` by :user:`Olivier Grisel <ogrisel>`.
|
||
|
||
- |Enhancement| raise an error during cross-validation when the fits for all the
|
||
splits failed. Similarly raise an error during grid-search when the fits for
|
||
all the models and all the splits failed.
|
||
:pr:`21026` by :user:`Loïc Estève <lesteve>`.
|
||
|
||
- |Fix| :class:`model_selection.GridSearchCV`,
|
||
:class:`model_selection.HalvingGridSearchCV`
|
||
now validate input parameters in `fit` instead of `__init__`.
|
||
:pr:`21880` by :user:`Mrinal Tyagi <MrinalTyagi>`.
|
||
|
||
- |Fix| :func:`model_selection.learning_curve` now supports `partial_fit`
|
||
with regressors. :pr:`22982` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.multiclass`
|
||
.........................
|
||
|
||
- |Enhancement| :class:`multiclass.OneVsRestClassifier` now supports a `verbose`
|
||
parameter so progress on fitting can be seen.
|
||
:pr:`22508` by :user:`Chris Combs <combscCode>`.
|
||
|
||
- |Fix| :meth:`multiclass.OneVsOneClassifier.predict` returns correct predictions when
|
||
the inner classifier only has a :term:`predict_proba`. :pr:`22604` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.neighbors`
|
||
........................
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`neighbors.RadiusNeighborsTransformer`,
|
||
:class:`neighbors.KNeighborsTransformer`
|
||
and :class:`neighbors.NeighborhoodComponentsAnalysis`.
|
||
:pr:`22212` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |Fix| :class:`neighbors.KernelDensity` now validates input parameters in `fit`
|
||
instead of `__init__`. :pr:`21430` by :user:`Desislava Vasileva <DessyVV>` and
|
||
:user:`Lucy Jimenez <LucyJimenez>`.
|
||
|
||
- |Fix| :func:`neighbors.KNeighborsRegressor.predict` now works properly when
|
||
given an array-like input if `KNeighborsRegressor` is first constructed with a
|
||
callable passed to the `weights` parameter. :pr:`22687` by
|
||
:user:`Meekail Zain <micky774>`.
|
||
|
||
:mod:`sklearn.neural_network`
|
||
.............................
|
||
|
||
- |Enhancement| :func:`neural_network.MLPClassifier` and
|
||
:func:`neural_network.MLPRegressor` show error
|
||
messages when optimizers produce non-finite parameter weights. :pr:`22150`
|
||
by :user:`Christian Ritter <chritter>` and :user:`Norbert Preining <norbusan>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`neural_network.BernoulliRBM`. :pr:`22248` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.pipeline`
|
||
.......................
|
||
|
||
- |Enhancement| Added support for "passthrough" in :class:`pipeline.FeatureUnion`.
|
||
Setting a transformer to "passthrough" will pass the features unchanged.
|
||
:pr:`20860` by :user:`Shubhraneel Pal <shubhraneel>`.
|
||
|
||
- |Fix| :class:`pipeline.Pipeline` now does not validate hyper-parameters in
|
||
`__init__` but in `.fit()`.
|
||
:pr:`21888` by :user:`iofall <iofall>` and :user:`Arisa Y. <arisayosh>`.
|
||
|
||
- |Fix| :class:`pipeline.FeatureUnion` does not validate hyper-parameters in
|
||
`__init__`. Validation is now handled in `.fit()` and `.fit_transform()`.
|
||
:pr:`21954` by :user:`iofall <iofall>` and :user:`Arisa Y. <arisayosh>`.
|
||
|
||
- |Fix| Defines `__sklearn_is_fitted__` in :class:`pipeline.FeatureUnion` to
|
||
return correct result with :func:`utils.validation.check_is_fitted`.
|
||
:pr:`22953` by :user:`randomgeek78 <randomgeek78>`.
|
||
|
||
:mod:`sklearn.preprocessing`
|
||
............................
|
||
|
||
- |Feature| :class:`preprocessing.OneHotEncoder` now supports grouping
|
||
infrequent categories into a single feature. Grouping infrequent categories
|
||
is enabled by specifying how to select infrequent categories with
|
||
`min_frequency` or `max_categories`. :pr:`16018` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| Adds a `subsample` parameter to :class:`preprocessing.KBinsDiscretizer`.
|
||
This allows specifying a maximum number of samples to be used while fitting
|
||
the model. The option is only available when `strategy` is set to `quantile`.
|
||
:pr:`21445` by :user:`Felipe Bidu <fbidu>` and :user:`Amanda Dsouza <amy12xx>`.
|
||
|
||
- |Enhancement| Adds `encoded_missing_value` to :class:`preprocessing.OrdinalEncoder`
|
||
to configure the encoded value for missing data. :pr:`21988` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| Added the `get_feature_names_out` method and a new parameter
|
||
`feature_names_out` to :class:`preprocessing.FunctionTransformer`. You can set
|
||
`feature_names_out` to 'one-to-one' to use the input features names as the
|
||
output feature names, or you can set it to a callable that returns the output
|
||
feature names. This is especially useful when the transformer changes the
|
||
number of features. If `feature_names_out` is None (which is the default),
|
||
then `get_output_feature_names` is not defined.
|
||
:pr:`21569` by :user:`Aurélien Geron <ageron>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to
|
||
:class:`preprocessing.Normalizer`,
|
||
:class:`preprocessing.KernelCenterer`,
|
||
:class:`preprocessing.OrdinalEncoder`, and
|
||
:class:`preprocessing.Binarizer`. :pr:`21079` by `Thomas Fan`_.
|
||
|
||
- |Fix| :class:`preprocessing.PowerTransformer` with `method='yeo-johnson'`
|
||
better supports significantly non-Gaussian data when searching for an optimal
|
||
lambda. :pr:`20653` by `Thomas Fan`_.
|
||
|
||
- |Fix| :class:`preprocessing.LabelBinarizer` now validates input parameters in
|
||
`fit` instead of `__init__`.
|
||
:pr:`21434` by :user:`Krum Arnaudov <krumeto>`.
|
||
|
||
- |Fix| :class:`preprocessing.FunctionTransformer` with `check_inverse=True`
|
||
now provides informative error message when input has mixed dtypes. :pr:`19916` by
|
||
:user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
- |Fix| :class:`preprocessing.KBinsDiscretizer` handles bin edges more consistently now.
|
||
:pr:`14975` by `Andreas Müller`_ and :pr:`22526` by :user:`Meekail Zain <micky774>`.
|
||
|
||
- |Fix| Adds :meth:`preprocessing.KBinsDiscretizer.get_feature_names_out` support when
|
||
`encode="ordinal"`. :pr:`22735` by `Thomas Fan`_.
|
||
|
||
:mod:`sklearn.random_projection`
|
||
................................
|
||
|
||
- |Enhancement| Adds an `inverse_transform` method and a `compute_inverse_transform`
|
||
parameter to :class:`random_projection.GaussianRandomProjection` and
|
||
:class:`random_projection.SparseRandomProjection`. When the parameter is set
|
||
to True, the pseudo-inverse of the components is computed during `fit` and stored as
|
||
`inverse_components_`. :pr:`21701` by :user:`Aurélien Geron <ageron>`.
|
||
|
||
- |Enhancement| :class:`random_projection.SparseRandomProjection` and
|
||
:class:`random_projection.GaussianRandomProjection` preserves dtype for
|
||
`numpy.float32`. :pr:`22114` by :user:`Takeshi Oura <takoika>`.
|
||
|
||
- |Enhancement| Adds :term:`get_feature_names_out` to all transformers in the
|
||
:mod:`sklearn.random_projection` module:
|
||
:class:`random_projection.GaussianRandomProjection` and
|
||
:class:`random_projection.SparseRandomProjection`. :pr:`21330` by
|
||
:user:`Loïc Estève <lesteve>`.
|
||
|
||
:mod:`sklearn.svm`
|
||
..................
|
||
|
||
- |Enhancement| :class:`svm.OneClassSVM`, :class:`svm.NuSVC`,
|
||
:class:`svm.NuSVR`, :class:`svm.SVC` and :class:`svm.SVR` now expose
|
||
`n_iter_`, the number of iterations of the libsvm optimization routine.
|
||
:pr:`21408` by :user:`Juan Martín Loyola <jmloyola>`.
|
||
|
||
- |Enhancement| :func:`svm.SVR`, :func:`svm.SVC`, :func:`svm.NuSVR`,
|
||
:func:`svm.OneClassSVM`, :func:`svm.NuSVC` now raise an error
|
||
when the dual-gap estimation produce non-finite parameter weights.
|
||
:pr:`22149` by :user:`Christian Ritter <chritter>` and
|
||
:user:`Norbert Preining <norbusan>`.
|
||
|
||
- |Fix| :class:`svm.NuSVC`, :class:`svm.NuSVR`, :class:`svm.SVC`,
|
||
:class:`svm.SVR`, :class:`svm.OneClassSVM` now validate input
|
||
parameters in `fit` instead of `__init__`.
|
||
:pr:`21436` by :user:`Haidar Almubarak <Haidar13 >`.
|
||
|
||
:mod:`sklearn.tree`
|
||
...................
|
||
|
||
- |Enhancement| :class:`tree.DecisionTreeClassifier` and
|
||
:class:`tree.ExtraTreeClassifier` have the new `criterion="log_loss"`, which is
|
||
equivalent to `criterion="entropy"`.
|
||
:pr:`23047` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |Fix| Fix a bug in the Poisson splitting criterion for
|
||
:class:`tree.DecisionTreeRegressor`.
|
||
:pr:`22191` by :user:`Christian Lorentzen <lorentzenchr>`.
|
||
|
||
- |API| Changed the default value of `max_features` to 1.0 for
|
||
:class:`tree.ExtraTreeRegressor` and to `"sqrt"` for
|
||
:class:`tree.ExtraTreeClassifier`, which will not change the fit result. The original
|
||
default value `"auto"` has been deprecated and will be removed in version 1.3.
|
||
Setting `max_features` to `"auto"` is also deprecated
|
||
for :class:`tree.DecisionTreeClassifier` and :class:`tree.DecisionTreeRegressor`.
|
||
:pr:`22476` by :user:`Zhehao Liu <MaxwellLZH>`.
|
||
|
||
:mod:`sklearn.utils`
|
||
....................
|
||
|
||
- |Enhancement| :func:`utils.check_array` and
|
||
:func:`utils.multiclass.type_of_target` now accept an `input_name` parameter to make
|
||
the error message more informative when passed invalid input data (e.g. with NaN or
|
||
infinite values).
|
||
:pr:`21219` by :user:`Olivier Grisel <ogrisel>`.
|
||
|
||
- |Enhancement| :func:`utils.check_array` returns a float
|
||
ndarray with `np.nan` when passed a `Float32` or `Float64` pandas extension
|
||
array with `pd.NA`. :pr:`21278` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :func:`utils.estimator_html_repr` shows a more helpful error
|
||
message when running in a jupyter notebook that is not trusted. :pr:`21316`
|
||
by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :func:`utils.estimator_html_repr` displays an arrow on the top
|
||
left corner of the HTML representation to show how the elements are
|
||
clickable. :pr:`21298` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :func:`utils.check_array` with `dtype=None` returns numeric
|
||
arrays when passed in a pandas DataFrame with mixed dtypes. `dtype="numeric"`
|
||
will also make better infer the dtype when the DataFrame has mixed dtypes.
|
||
:pr:`22237` by `Thomas Fan`_.
|
||
|
||
- |Enhancement| :func:`utils.check_scalar` now has better messages
|
||
when displaying the type. :pr:`22218` by `Thomas Fan`_.
|
||
|
||
- |Fix| Changes the error message of the `ValidationError` raised by
|
||
:func:`utils.check_X_y` when y is None so that it is compatible
|
||
with the `check_requires_y_none` estimator check. :pr:`22578` by
|
||
:user:`Claudio Salvatore Arcidiacono <ClaudioSalvatoreArcidiacono>`.
|
||
|
||
- |Fix| :func:`utils.class_weight.compute_class_weight` now only requires that
|
||
all classes in `y` have a weight in `class_weight`. An error is still raised
|
||
when a class is present in `y` but not in `class_weight`. :pr:`22595` by
|
||
`Thomas Fan`_.
|
||
|
||
- |Fix| :func:`utils.estimator_html_repr` has an improved visualization for nested
|
||
meta-estimators. :pr:`21310` by `Thomas Fan`_.
|
||
|
||
- |Fix| :func:`utils.check_scalar` raises an error when
|
||
`include_boundaries={"left", "right"}` and the boundaries are not set.
|
||
:pr:`22027` by :user:`Marie Lanternier <mlant>`.
|
||
|
||
- |Fix| :func:`utils.metaestimators.available_if` correctly returns a bounded
|
||
method that can be pickled. :pr:`23077` by `Thomas Fan`_.
|
||
|
||
- |API| :func:`utils.estimator_checks.check_estimator`'s argument is now called
|
||
`estimator` (previous name was `Estimator`). :pr:`22188` by
|
||
:user:`Mathurin Massias <mathurinm>`.
|
||
|
||
- |API| ``utils.metaestimators.if_delegate_has_method`` is deprecated and will be
|
||
removed in version 1.3. Use :func:`utils.metaestimators.available_if` instead.
|
||
:pr:`22830` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
|
||
|
||
.. rubric:: Code and documentation contributors
|
||
|
||
Thanks to everyone who has contributed to the maintenance and improvement of
|
||
the project since version 1.0, including:
|
||
|
||
2357juan, Abhishek Gupta, adamgonzo, Adam Li, adijohar, Aditya Kumawat, Aditya
|
||
Raghuwanshi, Aditya Singh, Adrian Trujillo Duron, Adrin Jalali, ahmadjubair33,
|
||
AJ Druck, aj-white, Alan Peixinho, Alberto Mario Ceballos-Arroyo, Alek
|
||
Lefebvre, Alex, Alexandr, Alexandre Gramfort, alexanmv, almeidayoel, Amanda
|
||
Dsouza, Aman Sharma, Amar pratap singh, Amit, amrcode, András Simon, Andreas
|
||
Grivas, Andreas Mueller, Andrew Knyazev, Andriy, Angus L'Herrou, Ankit Sharma,
|
||
Anne Ducout, Arisa, Arth, arthurmello, Arturo Amor, ArturoAmor, Atharva Patil,
|
||
aufarkari, Aurélien Geron, avm19, Ayan Bag, baam, Bardiya Ak, Behrouz B,
|
||
Ben3940, Benjamin Bossan, Bharat Raghunathan, Bijil Subhash, bmreiniger,
|
||
Brandon Truth, Brenden Kadota, Brian Sun, cdrig, Chalmer Lowe, Chiara Marmo,
|
||
Chitteti Srinath Reddy, Chloe-Agathe Azencott, Christian Lorentzen, Christian
|
||
Ritter, christopherlim98, Christoph T. Weidemann, Christos Aridas, Claudio
|
||
Salvatore Arcidiacono, combscCode, Daniela Fernandes, darioka, Darren Nguyen,
|
||
Dave Eargle, David Gilbertson, David Poznik, Dea María Léon, Dennis Osei,
|
||
DessyVV, Dev514, Dimitri Papadopoulos Orfanos, Diwakar Gupta, Dr. Felix M.
|
||
Riese, drskd, Emiko Sano, Emmanouil Gionanidis, EricEllwanger, Erich Schubert,
|
||
Eric Larson, Eric Ndirangu, ErmolaevPA, Estefania Barreto-Ojeda, eyast, Fatima
|
||
GASMI, Federico Luna, Felix Glushchenkov, fkaren27, Fortune Uwha, FPGAwesome,
|
||
francoisgoupil, Frans Larsson, ftorres16, Gabor Berei, Gabor Kertesz, Gabriel
|
||
Stefanini Vicente, Gabriel S Vicente, Gael Varoquaux, GAURAV CHOUDHARY,
|
||
Gauthier I, genvalen, Geoffrey-Paris, Giancarlo Pablo, glennfrutiz, gpapadok,
|
||
Guillaume Lemaitre, Guillermo Tomás Fernández Martín, Gustavo Oliveira, Haidar
|
||
Almubarak, Hannah Bohle, Hansin Ahuja, Haoyin Xu, Haya, Helder Geovane Gomes de
|
||
Lima, henrymooresc, Hideaki Imamura, Himanshu Kumar, Hind-M, hmasdev, hvassard,
|
||
i-aki-y, iasoon, Inclusive Coding Bot, Ingela, iofall, Ishan Kumar, Jack Liu,
|
||
Jake Cowton, jalexand3r, J Alexander, Jauhar, Jaya Surya Kommireddy, Jay
|
||
Stanley, Jeff Hale, je-kr, JElfner, Jenny Vo, Jérémie du Boisberranger, Jihane,
|
||
Jirka Borovec, Joel Nothman, Jon Haitz Legarreta Gorroño, Jordan Silke, Jorge
|
||
Ciprián, Jorge Loayza, Joseph Chazalon, Joseph Schwartz-Messing, Jovan
|
||
Stojanovic, JSchuerz, Juan Carlos Alfaro Jiménez, Juan Martin Loyola, Julien
|
||
Jerphanion, katotten, Kaushik Roy Chowdhury, Ken4git, Kenneth Prabakaran,
|
||
kernc, Kevin Doucet, KimAYoung, Koushik Joshi, Kranthi Sedamaki, krishna kumar,
|
||
krumetoft, lesnee, Lisa Casino, Logan Thomas, Loic Esteve, Louis Wagner,
|
||
LucieClair, Lucy Liu, Luiz Eduardo Amaral, Magali, MaggieChege, Mai,
|
||
mandjevant, Mandy Gu, Manimaran, MarcoM, Marco Wurps, Maren Westermann, Maria
|
||
Boerner, MarieS-WiMLDS, Martel Corentin, martin-kokos, mathurinm, Matías,
|
||
matjansen, Matteo Francia, Maxwell, Meekail Zain, Megabyte, Mehrdad
|
||
Moradizadeh, melemo2, Michael I Chen, michalkrawczyk, Micky774, milana2,
|
||
millawell, Ming-Yang Ho, Mitzi, miwojc, Mizuki, mlant, Mohamed Haseeb, Mohit
|
||
Sharma, Moonkyung94, mpoemsl, MrinalTyagi, Mr. Leu, msabatier, murata-yu, N,
|
||
Nadirhan Şahin, Naipawat Poolsawat, NartayXD, nastegiano, nathansquan,
|
||
nat-salt, Nicki Skafte Detlefsen, Nicolas Hug, Niket Jain, Nikhil Suresh,
|
||
Nikita Titov, Nikolay Kondratyev, Ohad Michel, Oleksandr Husak, Olivier Grisel,
|
||
partev, Patrick Ferreira, Paul, pelennor, PierreAttard, Piet Brömmel, Pieter
|
||
Gijsbers, Pinky, poloso, Pramod Anantharam, puhuk, Purna Chandra Mansingh,
|
||
QuadV, Rahil Parikh, Randall Boyes, randomgeek78, Raz Hoshia, Reshama Shaikh,
|
||
Ricardo Ferreira, Richard Taylor, Rileran, Rishabh, Robin Thibaut, Rocco Meli,
|
||
Roman Feldbauer, Roman Yurchak, Ross Barnowski, rsnegrin, Sachin Yadav,
|
||
sakinaOuisrani, Sam Adam Day, Sanjay Marreddi, Sebastian Pujalte, SEELE, SELEE,
|
||
Seyedsaman (Sam) Emami, ShanDeng123, Shao Yang Hong, sharmadharmpal,
|
||
shaymerNaturalint, Shuangchi He, Shubhraneel Pal, siavrez, slishak, Smile,
|
||
spikebh, sply88, Srinath Kailasa, Stéphane Collot, Sultan Orazbayev, Sumit
|
||
Saha, Sven Eschlbeck, Sven Stehle, Swapnil Jha, Sylvain Marié, Takeshi Oura,
|
||
Tamires Santana, Tenavi, teunpe, Theis Ferré Hjortkjær, Thiruvenkadam, Thomas
|
||
J. Fan, t-jakubek, toastedyeast, Tom Dupré la Tour, Tom McTiernan, TONY GEORGE,
|
||
Tyler Martin, Tyler Reddy, Udit Gupta, Ugo Marchand, Varun Agrawal,
|
||
Venkatachalam N, Vera Komeyer, victoirelouis, Vikas Vishwakarma, Vikrant
|
||
khedkar, Vladimir Chernyy, Vladimir Kim, WeijiaDu, Xiao Yuan, Yar Khine Phyo,
|
||
Ying Xiong, yiyangq, Yosshi999, Yuki Koyama, Zach Deane-Mayer, Zeel B Patel,
|
||
zempleni, zhenfisher, 赵丰 (Zhao Feng)
|