 d8bdf5fa13
			
		
	
	
		d8bdf5fa13
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2913 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			1167 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1167 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "exec.h"
 | |
| 
 | |
| //#define DEBUG_PCALL
 | |
| //#define DEBUG_MMU
 | |
| //#define DEBUG_UNALIGNED
 | |
| //#define DEBUG_UNASSIGNED
 | |
| 
 | |
| void raise_exception(int tt)
 | |
| {
 | |
|     env->exception_index = tt;
 | |
|     cpu_loop_exit();
 | |
| }   
 | |
| 
 | |
| void check_ieee_exceptions()
 | |
| {
 | |
|      T0 = get_float_exception_flags(&env->fp_status);
 | |
|      if (T0)
 | |
|      {
 | |
| 	/* Copy IEEE 754 flags into FSR */
 | |
| 	if (T0 & float_flag_invalid)
 | |
| 	    env->fsr |= FSR_NVC;
 | |
| 	if (T0 & float_flag_overflow)
 | |
| 	    env->fsr |= FSR_OFC;
 | |
| 	if (T0 & float_flag_underflow)
 | |
| 	    env->fsr |= FSR_UFC;
 | |
| 	if (T0 & float_flag_divbyzero)
 | |
| 	    env->fsr |= FSR_DZC;
 | |
| 	if (T0 & float_flag_inexact)
 | |
| 	    env->fsr |= FSR_NXC;
 | |
| 
 | |
| 	if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
 | |
| 	{
 | |
| 	    /* Unmasked exception, generate a trap */
 | |
| 	    env->fsr |= FSR_FTT_IEEE_EXCP;
 | |
| 	    raise_exception(TT_FP_EXCP);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 	    /* Accumulate exceptions */
 | |
| 	    env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
 | |
| 	}
 | |
|      }
 | |
| }
 | |
| 
 | |
| #ifdef USE_INT_TO_FLOAT_HELPERS
 | |
| void do_fitos(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| void do_fitod(void)
 | |
| {
 | |
|     DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void do_fabss(void)
 | |
| {
 | |
|     FT0 = float32_abs(FT1);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void do_fabsd(void)
 | |
| {
 | |
|     DT0 = float64_abs(DT1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void do_fsqrts(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     FT0 = float32_sqrt(FT1, &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| void do_fsqrtd(void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
|     DT0 = float64_sqrt(DT1, &env->fp_status);
 | |
|     check_ieee_exceptions();
 | |
| }
 | |
| 
 | |
| #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
 | |
|     void glue(do_, name) (void)                                         \
 | |
|     {                                                                   \
 | |
|         env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
 | |
|         switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
 | |
|         case float_relation_unordered:                                  \
 | |
|             T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
 | |
|             if ((env->fsr & FSR_NVM) || TRAP) {                         \
 | |
|                 env->fsr |= T0;                                         \
 | |
|                 env->fsr |= FSR_NVC;                                    \
 | |
|                 env->fsr |= FSR_FTT_IEEE_EXCP;                          \
 | |
|                 raise_exception(TT_FP_EXCP);                            \
 | |
|             } else {                                                    \
 | |
|                 env->fsr |= FSR_NVA;                                    \
 | |
|             }                                                           \
 | |
|             break;                                                      \
 | |
|         case float_relation_less:                                       \
 | |
|             T0 = FSR_FCC0 << FS;                                        \
 | |
|             break;                                                      \
 | |
|         case float_relation_greater:                                    \
 | |
|             T0 = FSR_FCC1 << FS;                                        \
 | |
|             break;                                                      \
 | |
|         default:                                                        \
 | |
|             T0 = 0;                                                     \
 | |
|             break;                                                      \
 | |
|         }                                                               \
 | |
|         env->fsr |= T0;                                                 \
 | |
|     }
 | |
| 
 | |
| GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
 | |
| GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
 | |
| 
 | |
| GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
 | |
| GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
 | |
| GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
 | |
| 
 | |
| GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
 | |
| GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
 | |
| 
 | |
| GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
 | |
| GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
 | |
| GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
 | |
| GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
 | |
| 
 | |
| GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
 | |
| GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY) 
 | |
| void helper_ld_asi(int asi, int size, int sign)
 | |
| {
 | |
| }
 | |
| 
 | |
| void helper_st_asi(int asi, int size, int sign)
 | |
| {
 | |
| }
 | |
| #else
 | |
| #ifndef TARGET_SPARC64
 | |
| void helper_ld_asi(int asi, int size, int sign)
 | |
| {
 | |
|     uint32_t ret = 0;
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 2: /* SuperSparc MXCC registers */
 | |
|         break;
 | |
|     case 3: /* MMU probe */
 | |
| 	{
 | |
| 	    int mmulev;
 | |
| 
 | |
| 	    mmulev = (T0 >> 8) & 15;
 | |
| 	    if (mmulev > 4)
 | |
| 		ret = 0;
 | |
| 	    else {
 | |
| 		ret = mmu_probe(env, T0, mmulev);
 | |
| 		//bswap32s(&ret);
 | |
| 	    }
 | |
| #ifdef DEBUG_MMU
 | |
| 	    printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
 | |
| #endif
 | |
| 	}
 | |
| 	break;
 | |
|     case 4: /* read MMU regs */
 | |
| 	{
 | |
| 	    int reg = (T0 >> 8) & 0xf;
 | |
| 	    
 | |
| 	    ret = env->mmuregs[reg];
 | |
| 	    if (reg == 3) /* Fault status cleared on read */
 | |
| 		env->mmuregs[reg] = 0;
 | |
| #ifdef DEBUG_MMU
 | |
| 	    printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
 | |
| #endif
 | |
| 	}
 | |
| 	break;
 | |
|     case 9: /* Supervisor code access */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_code(T0);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_code(T0 & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_code(T0 & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldl_code(T0 & ~3);
 | |
|             T0 = ldl_code((T0 + 4) & ~3);
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     case 0xc: /* I-cache tag */
 | |
|     case 0xd: /* I-cache data */
 | |
|     case 0xe: /* D-cache tag */
 | |
|     case 0xf: /* D-cache data */
 | |
|         break;
 | |
|     case 0x20: /* MMU passthrough */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_phys(T0);
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_phys(T0 & ~1);
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_phys(T0 & ~3);
 | |
|             break;
 | |
|         case 8:
 | |
| 	    ret = ldl_phys(T0 & ~3);
 | |
| 	    T0 = ldl_phys((T0 + 4) & ~3);
 | |
| 	    break;
 | |
|         }
 | |
| 	break;
 | |
|     case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
 | |
|     case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
 | |
|         switch(size) {
 | |
|         case 1:
 | |
|             ret = ldub_phys((target_phys_addr_t)T0
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         case 2:
 | |
|             ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         default:
 | |
|         case 4:
 | |
|             ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             break;
 | |
|         case 8:
 | |
|             ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
|             T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32));
 | |
| 	    break;
 | |
|         }
 | |
| 	break;
 | |
|     case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
 | |
|     default:
 | |
|         do_unassigned_access(T0, 0, 0, 1);
 | |
| 	ret = 0;
 | |
| 	break;
 | |
|     }
 | |
|     T1 = ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(int asi, int size, int sign)
 | |
| {
 | |
|     switch(asi) {
 | |
|     case 2: /* SuperSparc MXCC registers */
 | |
|         break;
 | |
|     case 3: /* MMU flush */
 | |
| 	{
 | |
| 	    int mmulev;
 | |
| 
 | |
| 	    mmulev = (T0 >> 8) & 15;
 | |
| #ifdef DEBUG_MMU
 | |
| 	    printf("mmu flush level %d\n", mmulev);
 | |
| #endif
 | |
| 	    switch (mmulev) {
 | |
| 	    case 0: // flush page
 | |
| 		tlb_flush_page(env, T0 & 0xfffff000);
 | |
| 		break;
 | |
| 	    case 1: // flush segment (256k)
 | |
| 	    case 2: // flush region (16M)
 | |
| 	    case 3: // flush context (4G)
 | |
| 	    case 4: // flush entire
 | |
| 		tlb_flush(env, 1);
 | |
| 		break;
 | |
| 	    default:
 | |
| 		break;
 | |
| 	    }
 | |
| #ifdef DEBUG_MMU
 | |
| 	    dump_mmu(env);
 | |
| #endif
 | |
| 	    return;
 | |
| 	}
 | |
|     case 4: /* write MMU regs */
 | |
| 	{
 | |
| 	    int reg = (T0 >> 8) & 0xf;
 | |
| 	    uint32_t oldreg;
 | |
| 	    
 | |
| 	    oldreg = env->mmuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0:
 | |
| 		env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
 | |
| 		env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
 | |
| 		// Mappings generated during no-fault mode or MMU
 | |
| 		// disabled mode are invalid in normal mode
 | |
|                 if (oldreg != env->mmuregs[reg])
 | |
|                     tlb_flush(env, 1);
 | |
|                 break;
 | |
|             case 2:
 | |
| 		env->mmuregs[reg] = T1;
 | |
|                 if (oldreg != env->mmuregs[reg]) {
 | |
|                     /* we flush when the MMU context changes because
 | |
|                        QEMU has no MMU context support */
 | |
|                     tlb_flush(env, 1);
 | |
|                 }
 | |
|                 break;
 | |
|             case 3:
 | |
|             case 4:
 | |
|                 break;
 | |
|             default:
 | |
| 		env->mmuregs[reg] = T1;
 | |
|                 break;
 | |
|             }
 | |
| #ifdef DEBUG_MMU
 | |
|             if (oldreg != env->mmuregs[reg]) {
 | |
|                 printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
 | |
|             }
 | |
| 	    dump_mmu(env);
 | |
| #endif
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0xc: /* I-cache tag */
 | |
|     case 0xd: /* I-cache data */
 | |
|     case 0xe: /* D-cache tag */
 | |
|     case 0xf: /* D-cache data */
 | |
|     case 0x10: /* I/D-cache flush page */
 | |
|     case 0x11: /* I/D-cache flush segment */
 | |
|     case 0x12: /* I/D-cache flush region */
 | |
|     case 0x13: /* I/D-cache flush context */
 | |
|     case 0x14: /* I/D-cache flush user */
 | |
|         break;
 | |
|     case 0x17: /* Block copy, sta access */
 | |
| 	{
 | |
| 	    // value (T1) = src
 | |
| 	    // address (T0) = dst
 | |
| 	    // copy 32 bytes
 | |
|             unsigned int i;
 | |
|             uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
 | |
| 	    
 | |
|             for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
 | |
|                 temp = ldl_kernel(src);
 | |
|                 stl_kernel(dst, temp);
 | |
|             }
 | |
| 	}
 | |
| 	return;
 | |
|     case 0x1f: /* Block fill, stda access */
 | |
| 	{
 | |
| 	    // value (T1, T2)
 | |
| 	    // address (T0) = dst
 | |
| 	    // fill 32 bytes
 | |
|             unsigned int i;
 | |
|             uint32_t dst = T0 & 7;
 | |
|             uint64_t val;
 | |
| 
 | |
|             val = (((uint64_t)T1) << 32) | T2;
 | |
| 
 | |
|             for (i = 0; i < 32; i += 8, dst += 8)
 | |
|                 stq_kernel(dst, val);
 | |
| 	}
 | |
| 	return;
 | |
|     case 0x20: /* MMU passthrough */
 | |
| 	{
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys(T0, T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys(T0 & ~1, T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|             default:
 | |
|                 stl_phys(T0 & ~3, T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|                 stl_phys(T0 & ~3, T1);
 | |
|                 stl_phys((T0 + 4) & ~3, T2);
 | |
|                 break;
 | |
|             }
 | |
| 	}
 | |
| 	return;
 | |
|     case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
 | |
|     case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
 | |
| 	{
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys((target_phys_addr_t)T0
 | |
|                          | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys((target_phys_addr_t)(T0 & ~1)
 | |
|                             | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|             default:
 | |
|                 stl_phys((target_phys_addr_t)(T0 & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|                 stl_phys((target_phys_addr_t)(T0 & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
 | |
|                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
 | |
|                 break;
 | |
|             }
 | |
| 	}
 | |
| 	return;
 | |
|     case 0x31: /* Ross RT620 I-cache flush */
 | |
|     case 0x36: /* I-cache flash clear */
 | |
|     case 0x37: /* D-cache flash clear */
 | |
|         break;
 | |
|     case 9: /* Supervisor code access, XXX */
 | |
|     case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
 | |
|     default:
 | |
|         do_unassigned_access(T0, 1, 0, 1);
 | |
| 	return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void helper_ld_asi(int asi, int size, int sign)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
 | |
| 	raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     switch (asi) {
 | |
|     case 0x14: // Bypass
 | |
|     case 0x15: // Bypass, non-cacheable
 | |
| 	{
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 ret = ldub_phys(T0);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ret = lduw_phys(T0 & ~1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 ret = ldl_phys(T0 & ~3);
 | |
|                 break;
 | |
|             default:
 | |
|             case 8:
 | |
|                 ret = ldq_phys(T0 & ~7);
 | |
|                 break;
 | |
|             }
 | |
| 	    break;
 | |
| 	}
 | |
|     case 0x04: // Nucleus
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x10: // As if user primary
 | |
|     case 0x11: // As if user secondary
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|     case 0x24: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x2c: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x4a: // UPA config
 | |
|     case 0x82: // Primary no-fault
 | |
|     case 0x83: // Secondary no-fault
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
|     case 0x8a: // Primary no-fault LE
 | |
|     case 0x8b: // Secondary no-fault LE
 | |
| 	// XXX
 | |
| 	break;
 | |
|     case 0x45: // LSU
 | |
| 	ret = env->lsu;
 | |
| 	break;
 | |
|     case 0x50: // I-MMU regs
 | |
| 	{
 | |
| 	    int reg = (T0 >> 3) & 0xf;
 | |
| 
 | |
| 	    ret = env->immuregs[reg];
 | |
| 	    break;
 | |
| 	}
 | |
|     case 0x51: // I-MMU 8k TSB pointer
 | |
|     case 0x52: // I-MMU 64k TSB pointer
 | |
|     case 0x55: // I-MMU data access
 | |
| 	// XXX
 | |
| 	break;
 | |
|     case 0x56: // I-MMU tag read
 | |
| 	{
 | |
| 	    unsigned int i;
 | |
| 	    
 | |
| 	    for (i = 0; i < 64; i++) {
 | |
| 		// Valid, ctx match, vaddr match
 | |
| 		if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
 | |
| 		    env->itlb_tag[i] == T0) {
 | |
| 		    ret = env->itlb_tag[i];
 | |
| 		    break;
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 	}
 | |
|     case 0x58: // D-MMU regs
 | |
| 	{
 | |
| 	    int reg = (T0 >> 3) & 0xf;
 | |
| 
 | |
| 	    ret = env->dmmuregs[reg];
 | |
| 	    break;
 | |
| 	}
 | |
|     case 0x5e: // D-MMU tag read
 | |
| 	{
 | |
| 	    unsigned int i;
 | |
| 	    
 | |
| 	    for (i = 0; i < 64; i++) {
 | |
| 		// Valid, ctx match, vaddr match
 | |
| 		if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
 | |
| 		    env->dtlb_tag[i] == T0) {
 | |
| 		    ret = env->dtlb_tag[i];
 | |
| 		    break;
 | |
| 		}
 | |
| 	    }
 | |
| 	    break;
 | |
| 	}
 | |
|     case 0x59: // D-MMU 8k TSB pointer
 | |
|     case 0x5a: // D-MMU 64k TSB pointer
 | |
|     case 0x5b: // D-MMU data pointer
 | |
|     case 0x5d: // D-MMU data access
 | |
|     case 0x48: // Interrupt dispatch, RO
 | |
|     case 0x49: // Interrupt data receive
 | |
|     case 0x7f: // Incoming interrupt vector, RO
 | |
| 	// XXX
 | |
| 	break;
 | |
|     case 0x54: // I-MMU data in, WO
 | |
|     case 0x57: // I-MMU demap, WO
 | |
|     case 0x5c: // D-MMU data in, WO
 | |
|     case 0x5f: // D-MMU demap, WO
 | |
|     case 0x77: // Interrupt vector, WO
 | |
|     default:
 | |
|         do_unassigned_access(T0, 0, 0, 1);
 | |
| 	ret = 0;
 | |
| 	break;
 | |
|     }
 | |
|     T1 = ret;
 | |
| }
 | |
| 
 | |
| void helper_st_asi(int asi, int size, int sign)
 | |
| {
 | |
|     if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
 | |
| 	raise_exception(TT_PRIV_ACT);
 | |
| 
 | |
|     switch(asi) {
 | |
|     case 0x14: // Bypass
 | |
|     case 0x15: // Bypass, non-cacheable
 | |
| 	{
 | |
|             switch(size) {
 | |
|             case 1:
 | |
|                 stb_phys(T0, T1);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_phys(T0 & ~1, T1);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_phys(T0 & ~3, T1);
 | |
|                 break;
 | |
|             case 8:
 | |
|             default:
 | |
|                 stq_phys(T0 & ~7, T1);
 | |
|                 break;
 | |
|             }
 | |
| 	}
 | |
| 	return;
 | |
|     case 0x04: // Nucleus
 | |
|     case 0x0c: // Nucleus Little Endian (LE)
 | |
|     case 0x10: // As if user primary
 | |
|     case 0x11: // As if user secondary
 | |
|     case 0x18: // As if user primary LE
 | |
|     case 0x19: // As if user secondary LE
 | |
|     case 0x1c: // Bypass LE
 | |
|     case 0x1d: // Bypass, non-cacheable LE
 | |
|     case 0x24: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x2c: // Nucleus quad LDD 128 bit atomic
 | |
|     case 0x4a: // UPA config
 | |
|     case 0x88: // Primary LE
 | |
|     case 0x89: // Secondary LE
 | |
| 	// XXX
 | |
| 	return;
 | |
|     case 0x45: // LSU
 | |
| 	{
 | |
| 	    uint64_t oldreg;
 | |
| 
 | |
| 	    oldreg = env->lsu;
 | |
| 	    env->lsu = T1 & (DMMU_E | IMMU_E);
 | |
| 	    // Mappings generated during D/I MMU disabled mode are
 | |
| 	    // invalid in normal mode
 | |
| 	    if (oldreg != env->lsu) {
 | |
| #ifdef DEBUG_MMU
 | |
|                 printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
 | |
| 		dump_mmu(env);
 | |
| #endif
 | |
| 		tlb_flush(env, 1);
 | |
| 	    }
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x50: // I-MMU regs
 | |
| 	{
 | |
| 	    int reg = (T0 >> 3) & 0xf;
 | |
| 	    uint64_t oldreg;
 | |
| 	    
 | |
| 	    oldreg = env->immuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // RO
 | |
|             case 4:
 | |
|                 return;
 | |
|             case 1: // Not in I-MMU
 | |
|             case 2:
 | |
|             case 7:
 | |
|             case 8:
 | |
|                 return;
 | |
|             case 3: // SFSR
 | |
| 		if ((T1 & 1) == 0)
 | |
| 		    T1 = 0; // Clear SFSR
 | |
|                 break;
 | |
|             case 5: // TSB access
 | |
|             case 6: // Tag access
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
| 	    env->immuregs[reg] = T1;
 | |
| #ifdef DEBUG_MMU
 | |
|             if (oldreg != env->immuregs[reg]) {
 | |
|                 printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
 | |
|             }
 | |
| 	    dump_mmu(env);
 | |
| #endif
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x54: // I-MMU data in
 | |
| 	{
 | |
| 	    unsigned int i;
 | |
| 
 | |
| 	    // Try finding an invalid entry
 | |
| 	    for (i = 0; i < 64; i++) {
 | |
| 		if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
 | |
| 		    env->itlb_tag[i] = env->immuregs[6];
 | |
| 		    env->itlb_tte[i] = T1;
 | |
| 		    return;
 | |
| 		}
 | |
| 	    }
 | |
| 	    // Try finding an unlocked entry
 | |
| 	    for (i = 0; i < 64; i++) {
 | |
| 		if ((env->itlb_tte[i] & 0x40) == 0) {
 | |
| 		    env->itlb_tag[i] = env->immuregs[6];
 | |
| 		    env->itlb_tte[i] = T1;
 | |
| 		    return;
 | |
| 		}
 | |
| 	    }
 | |
| 	    // error state?
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x55: // I-MMU data access
 | |
| 	{
 | |
| 	    unsigned int i = (T0 >> 3) & 0x3f;
 | |
| 
 | |
| 	    env->itlb_tag[i] = env->immuregs[6];
 | |
| 	    env->itlb_tte[i] = T1;
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x57: // I-MMU demap
 | |
| 	// XXX
 | |
| 	return;
 | |
|     case 0x58: // D-MMU regs
 | |
| 	{
 | |
| 	    int reg = (T0 >> 3) & 0xf;
 | |
| 	    uint64_t oldreg;
 | |
| 	    
 | |
| 	    oldreg = env->dmmuregs[reg];
 | |
|             switch(reg) {
 | |
|             case 0: // RO
 | |
|             case 4:
 | |
|                 return;
 | |
|             case 3: // SFSR
 | |
| 		if ((T1 & 1) == 0) {
 | |
| 		    T1 = 0; // Clear SFSR, Fault address
 | |
| 		    env->dmmuregs[4] = 0;
 | |
| 		}
 | |
| 		env->dmmuregs[reg] = T1;
 | |
|                 break;
 | |
|             case 1: // Primary context
 | |
|             case 2: // Secondary context
 | |
|             case 5: // TSB access
 | |
|             case 6: // Tag access
 | |
|             case 7: // Virtual Watchpoint
 | |
|             case 8: // Physical Watchpoint
 | |
|             default:
 | |
|                 break;
 | |
|             }
 | |
| 	    env->dmmuregs[reg] = T1;
 | |
| #ifdef DEBUG_MMU
 | |
|             if (oldreg != env->dmmuregs[reg]) {
 | |
|                 printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
 | |
|             }
 | |
| 	    dump_mmu(env);
 | |
| #endif
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x5c: // D-MMU data in
 | |
| 	{
 | |
| 	    unsigned int i;
 | |
| 
 | |
| 	    // Try finding an invalid entry
 | |
| 	    for (i = 0; i < 64; i++) {
 | |
| 		if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
 | |
| 		    env->dtlb_tag[i] = env->dmmuregs[6];
 | |
| 		    env->dtlb_tte[i] = T1;
 | |
| 		    return;
 | |
| 		}
 | |
| 	    }
 | |
| 	    // Try finding an unlocked entry
 | |
| 	    for (i = 0; i < 64; i++) {
 | |
| 		if ((env->dtlb_tte[i] & 0x40) == 0) {
 | |
| 		    env->dtlb_tag[i] = env->dmmuregs[6];
 | |
| 		    env->dtlb_tte[i] = T1;
 | |
| 		    return;
 | |
| 		}
 | |
| 	    }
 | |
| 	    // error state?
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x5d: // D-MMU data access
 | |
| 	{
 | |
| 	    unsigned int i = (T0 >> 3) & 0x3f;
 | |
| 
 | |
| 	    env->dtlb_tag[i] = env->dmmuregs[6];
 | |
| 	    env->dtlb_tte[i] = T1;
 | |
| 	    return;
 | |
| 	}
 | |
|     case 0x5f: // D-MMU demap
 | |
|     case 0x49: // Interrupt data receive
 | |
| 	// XXX
 | |
| 	return;
 | |
|     case 0x51: // I-MMU 8k TSB pointer, RO
 | |
|     case 0x52: // I-MMU 64k TSB pointer, RO
 | |
|     case 0x56: // I-MMU tag read, RO
 | |
|     case 0x59: // D-MMU 8k TSB pointer, RO
 | |
|     case 0x5a: // D-MMU 64k TSB pointer, RO
 | |
|     case 0x5b: // D-MMU data pointer, RO
 | |
|     case 0x5e: // D-MMU tag read, RO
 | |
|     case 0x48: // Interrupt dispatch, RO
 | |
|     case 0x7f: // Incoming interrupt vector, RO
 | |
|     case 0x82: // Primary no-fault, RO
 | |
|     case 0x83: // Secondary no-fault, RO
 | |
|     case 0x8a: // Primary no-fault LE, RO
 | |
|     case 0x8b: // Secondary no-fault LE, RO
 | |
|     default:
 | |
|         do_unassigned_access(T0, 1, 0, 1);
 | |
| 	return;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void helper_rett()
 | |
| {
 | |
|     unsigned int cwp;
 | |
| 
 | |
|     if (env->psret == 1)
 | |
|         raise_exception(TT_ILL_INSN);
 | |
| 
 | |
|     env->psret = 1;
 | |
|     cwp = (env->cwp + 1) & (NWINDOWS - 1); 
 | |
|     if (env->wim & (1 << cwp)) {
 | |
|         raise_exception(TT_WIN_UNF);
 | |
|     }
 | |
|     set_cwp(cwp);
 | |
|     env->psrs = env->psrps;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void helper_ldfsr(void)
 | |
| {
 | |
|     int rnd_mode;
 | |
|     switch (env->fsr & FSR_RD_MASK) {
 | |
|     case FSR_RD_NEAREST:
 | |
|         rnd_mode = float_round_nearest_even;
 | |
| 	break;
 | |
|     default:
 | |
|     case FSR_RD_ZERO:
 | |
|         rnd_mode = float_round_to_zero;
 | |
| 	break;
 | |
|     case FSR_RD_POS:
 | |
|         rnd_mode = float_round_up;
 | |
| 	break;
 | |
|     case FSR_RD_NEG:
 | |
|         rnd_mode = float_round_down;
 | |
| 	break;
 | |
|     }
 | |
|     set_float_rounding_mode(rnd_mode, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_debug()
 | |
| {
 | |
|     env->exception_index = EXCP_DEBUG;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void do_wrpsr()
 | |
| {
 | |
|     if ((T0 & PSR_CWP) >= NWINDOWS)
 | |
|         raise_exception(TT_ILL_INSN);
 | |
|     else
 | |
|         PUT_PSR(env, T0);
 | |
| }
 | |
| 
 | |
| void do_rdpsr()
 | |
| {
 | |
|     T0 = GET_PSR(env);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void do_popc()
 | |
| {
 | |
|     T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
 | |
|     T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
 | |
|     T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
 | |
|     T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
 | |
|     T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
 | |
|     T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
 | |
| }
 | |
| 
 | |
| static inline uint64_t *get_gregset(uint64_t pstate)
 | |
| {
 | |
|     switch (pstate) {
 | |
|     default:
 | |
|     case 0:
 | |
| 	return env->bgregs;
 | |
|     case PS_AG:
 | |
| 	return env->agregs;
 | |
|     case PS_MG:
 | |
| 	return env->mgregs;
 | |
|     case PS_IG:
 | |
| 	return env->igregs;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void do_wrpstate()
 | |
| {
 | |
|     uint64_t new_pstate, pstate_regs, new_pstate_regs;
 | |
|     uint64_t *src, *dst;
 | |
| 
 | |
|     new_pstate = T0 & 0xf3f;
 | |
|     pstate_regs = env->pstate & 0xc01;
 | |
|     new_pstate_regs = new_pstate & 0xc01;
 | |
|     if (new_pstate_regs != pstate_regs) {
 | |
| 	// Switch global register bank
 | |
| 	src = get_gregset(new_pstate_regs);
 | |
| 	dst = get_gregset(pstate_regs);
 | |
| 	memcpy32(dst, env->gregs);
 | |
| 	memcpy32(env->gregs, src);
 | |
|     }
 | |
|     env->pstate = new_pstate;
 | |
| }
 | |
| 
 | |
| void do_done(void)
 | |
| {
 | |
|     env->tl--;
 | |
|     env->pc = env->tnpc[env->tl];
 | |
|     env->npc = env->tnpc[env->tl] + 4;
 | |
|     PUT_CCR(env, env->tstate[env->tl] >> 32);
 | |
|     env->asi = (env->tstate[env->tl] >> 24) & 0xff;
 | |
|     env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
 | |
|     set_cwp(env->tstate[env->tl] & 0xff);
 | |
| }
 | |
| 
 | |
| void do_retry(void)
 | |
| {
 | |
|     env->tl--;
 | |
|     env->pc = env->tpc[env->tl];
 | |
|     env->npc = env->tnpc[env->tl];
 | |
|     PUT_CCR(env, env->tstate[env->tl] >> 32);
 | |
|     env->asi = (env->tstate[env->tl] >> 24) & 0xff;
 | |
|     env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
 | |
|     set_cwp(env->tstate[env->tl] & 0xff);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void set_cwp(int new_cwp)
 | |
| {
 | |
|     /* put the modified wrap registers at their proper location */
 | |
|     if (env->cwp == (NWINDOWS - 1))
 | |
|         memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
 | |
|     env->cwp = new_cwp;
 | |
|     /* put the wrap registers at their temporary location */
 | |
|     if (new_cwp == (NWINDOWS - 1))
 | |
|         memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
 | |
|     env->regwptr = env->regbase + (new_cwp * 16);
 | |
|     REGWPTR = env->regwptr;
 | |
| }
 | |
| 
 | |
| void cpu_set_cwp(CPUState *env1, int new_cwp)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
| #ifdef reg_REGWPTR
 | |
|     target_ulong *saved_regwptr;
 | |
| #endif
 | |
| 
 | |
|     saved_env = env;
 | |
| #ifdef reg_REGWPTR
 | |
|     saved_regwptr = REGWPTR;
 | |
| #endif
 | |
|     env = env1;
 | |
|     set_cwp(new_cwp);
 | |
|     env = saved_env;
 | |
| #ifdef reg_REGWPTR
 | |
|     REGWPTR = saved_regwptr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void do_interrupt(int intno)
 | |
| {
 | |
| #ifdef DEBUG_PCALL
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
| 	static int count;
 | |
| 	fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
 | |
|                 count, intno,
 | |
|                 env->pc,
 | |
|                 env->npc, env->regwptr[6]);
 | |
| 	cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #if 0
 | |
| 	{
 | |
| 	    int i;
 | |
| 	    uint8_t *ptr;
 | |
| 
 | |
| 	    fprintf(logfile, "       code=");
 | |
| 	    ptr = (uint8_t *)env->pc;
 | |
| 	    for(i = 0; i < 16; i++) {
 | |
| 		fprintf(logfile, " %02x", ldub(ptr + i));
 | |
| 	    }
 | |
| 	    fprintf(logfile, "\n");
 | |
| 	}
 | |
| #endif
 | |
| 	count++;
 | |
|     }
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY) 
 | |
|     if (env->tl == MAXTL) {
 | |
|         cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
 | |
| 	return;
 | |
|     }
 | |
| #endif
 | |
|     env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
 | |
| 	((env->pstate & 0xfff) << 8) | (env->cwp & 0xff);
 | |
|     env->tpc[env->tl] = env->pc;
 | |
|     env->tnpc[env->tl] = env->npc;
 | |
|     env->tt[env->tl] = intno;
 | |
|     env->pstate = PS_PEF | PS_PRIV | PS_AG;
 | |
|     env->tbr &= ~0x7fffULL;
 | |
|     env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
 | |
|     if (env->tl < MAXTL - 1) {
 | |
| 	env->tl++;
 | |
|     } else {
 | |
| 	env->pstate |= PS_RED;
 | |
| 	if (env->tl != MAXTL)
 | |
| 	    env->tl++;
 | |
|     }
 | |
|     env->pc = env->tbr;
 | |
|     env->npc = env->pc + 4;
 | |
|     env->exception_index = 0;
 | |
| }
 | |
| #else
 | |
| void do_interrupt(int intno)
 | |
| {
 | |
|     int cwp;
 | |
| 
 | |
| #ifdef DEBUG_PCALL
 | |
|     if (loglevel & CPU_LOG_INT) {
 | |
| 	static int count;
 | |
| 	fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
 | |
|                 count, intno,
 | |
|                 env->pc,
 | |
|                 env->npc, env->regwptr[6]);
 | |
| 	cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #if 0
 | |
| 	{
 | |
| 	    int i;
 | |
| 	    uint8_t *ptr;
 | |
| 
 | |
| 	    fprintf(logfile, "       code=");
 | |
| 	    ptr = (uint8_t *)env->pc;
 | |
| 	    for(i = 0; i < 16; i++) {
 | |
| 		fprintf(logfile, " %02x", ldub(ptr + i));
 | |
| 	    }
 | |
| 	    fprintf(logfile, "\n");
 | |
| 	}
 | |
| #endif
 | |
| 	count++;
 | |
|     }
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY) 
 | |
|     if (env->psret == 0) {
 | |
|         cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
 | |
| 	return;
 | |
|     }
 | |
| #endif
 | |
|     env->psret = 0;
 | |
|     cwp = (env->cwp - 1) & (NWINDOWS - 1); 
 | |
|     set_cwp(cwp);
 | |
|     env->regwptr[9] = env->pc;
 | |
|     env->regwptr[10] = env->npc;
 | |
|     env->psrps = env->psrs;
 | |
|     env->psrs = 1;
 | |
|     env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
 | |
|     env->pc = env->tbr;
 | |
|     env->npc = env->pc + 4;
 | |
|     env->exception_index = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY) 
 | |
| 
 | |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
 | |
|                                 void *retaddr);
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| #define ALIGNED_ONLY
 | |
| #define GETPC() (__builtin_return_address(0))
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
 | |
|                                 void *retaddr)
 | |
| {
 | |
| #ifdef DEBUG_UNALIGNED
 | |
|     printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
 | |
| #endif
 | |
|     raise_exception(TT_UNALIGNED);
 | |
| }
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
|     unsigned long pc;
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
| 
 | |
|     ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
 | |
|     if (ret) {
 | |
|         if (retaddr) {
 | |
|             /* now we have a real cpu fault */
 | |
|             pc = (unsigned long)retaddr;
 | |
|             tb = tb_find_pc(pc);
 | |
|             if (tb) {
 | |
|                 /* the PC is inside the translated code. It means that we have
 | |
|                    a virtual CPU fault */
 | |
|                 cpu_restore_state(tb, env, pc, (void *)T2);
 | |
|             }
 | |
|         }
 | |
|         cpu_loop_exit();
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     if (env->mmuregs[3]) /* Fault status register */
 | |
| 	env->mmuregs[3] = 1; /* overflow (not read before another fault) */
 | |
|     if (is_asi)
 | |
|         env->mmuregs[3] |= 1 << 16;
 | |
|     if (env->psrs)
 | |
|         env->mmuregs[3] |= 1 << 5;
 | |
|     if (is_exec)
 | |
|         env->mmuregs[3] |= 1 << 6;
 | |
|     if (is_write)
 | |
|         env->mmuregs[3] |= 1 << 7;
 | |
|     env->mmuregs[3] |= (5 << 2) | 2;
 | |
|     env->mmuregs[4] = addr; /* Fault address register */
 | |
|     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|         printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
 | |
|                "\n", addr, env->pc);
 | |
| #endif
 | |
|         if (is_exec)
 | |
|             raise_exception(TT_CODE_ACCESS);
 | |
|         else
 | |
|             raise_exception(TT_DATA_ACCESS);
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| #else
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     CPUState *saved_env;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
 | |
|            addr, env->pc);
 | |
|     env = saved_env;
 | |
| #endif
 | |
|     if (is_exec)
 | |
|         raise_exception(TT_CODE_ACCESS);
 | |
|     else
 | |
|         raise_exception(TT_DATA_ACCESS);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
| void do_tick_set_count(void *opaque, uint64_t count)
 | |
| {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     ptimer_set_count(opaque, -count);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| uint64_t do_tick_get_count(void *opaque)
 | |
| {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     return -ptimer_get_count(opaque);
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void do_tick_set_limit(void *opaque, uint64_t limit)
 | |
| {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     ptimer_set_limit(opaque, -limit, 0);
 | |
| #endif
 | |
| }
 | |
| #endif
 |