Clean up includes so that osdep.h is included first and headers which it implies are not included manually. This commit was created with scripts/clean-includes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1453832250-766-37-git-send-email-peter.maydell@linaro.org
		
			
				
	
	
		
			233 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * General purpose implementation of a simple periodic countdown timer.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2007 CodeSourcery.
 | 
						|
 *
 | 
						|
 * This code is licensed under the GNU LGPL.
 | 
						|
 */
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "hw/hw.h"
 | 
						|
#include "qemu/timer.h"
 | 
						|
#include "hw/ptimer.h"
 | 
						|
#include "qemu/host-utils.h"
 | 
						|
#include "sysemu/replay.h"
 | 
						|
 | 
						|
struct ptimer_state
 | 
						|
{
 | 
						|
    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
 | 
						|
    uint64_t limit;
 | 
						|
    uint64_t delta;
 | 
						|
    uint32_t period_frac;
 | 
						|
    int64_t period;
 | 
						|
    int64_t last_event;
 | 
						|
    int64_t next_event;
 | 
						|
    QEMUBH *bh;
 | 
						|
    QEMUTimer *timer;
 | 
						|
};
 | 
						|
 | 
						|
/* Use a bottom-half routine to avoid reentrancy issues.  */
 | 
						|
static void ptimer_trigger(ptimer_state *s)
 | 
						|
{
 | 
						|
    if (s->bh) {
 | 
						|
        replay_bh_schedule_event(s->bh);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ptimer_reload(ptimer_state *s)
 | 
						|
{
 | 
						|
    if (s->delta == 0) {
 | 
						|
        ptimer_trigger(s);
 | 
						|
        s->delta = s->limit;
 | 
						|
    }
 | 
						|
    if (s->delta == 0 || s->period == 0) {
 | 
						|
        fprintf(stderr, "Timer with period zero, disabling\n");
 | 
						|
        s->enabled = 0;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    s->last_event = s->next_event;
 | 
						|
    s->next_event = s->last_event + s->delta * s->period;
 | 
						|
    if (s->period_frac) {
 | 
						|
        s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
 | 
						|
    }
 | 
						|
    timer_mod(s->timer, s->next_event);
 | 
						|
}
 | 
						|
 | 
						|
static void ptimer_tick(void *opaque)
 | 
						|
{
 | 
						|
    ptimer_state *s = (ptimer_state *)opaque;
 | 
						|
    ptimer_trigger(s);
 | 
						|
    s->delta = 0;
 | 
						|
    if (s->enabled == 2) {
 | 
						|
        s->enabled = 0;
 | 
						|
    } else {
 | 
						|
        ptimer_reload(s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ptimer_get_count(ptimer_state *s)
 | 
						|
{
 | 
						|
    int64_t now;
 | 
						|
    uint64_t counter;
 | 
						|
 | 
						|
    if (s->enabled) {
 | 
						|
        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        /* Figure out the current counter value.  */
 | 
						|
        if (now - s->next_event > 0
 | 
						|
            || s->period == 0) {
 | 
						|
            /* Prevent timer underflowing if it should already have
 | 
						|
               triggered.  */
 | 
						|
            counter = 0;
 | 
						|
        } else {
 | 
						|
            uint64_t rem;
 | 
						|
            uint64_t div;
 | 
						|
            int clz1, clz2;
 | 
						|
            int shift;
 | 
						|
 | 
						|
            /* We need to divide time by period, where time is stored in
 | 
						|
               rem (64-bit integer) and period is stored in period/period_frac
 | 
						|
               (64.32 fixed point).
 | 
						|
              
 | 
						|
               Doing full precision division is hard, so scale values and
 | 
						|
               do a 64-bit division.  The result should be rounded down,
 | 
						|
               so that the rounding error never causes the timer to go
 | 
						|
               backwards.
 | 
						|
            */
 | 
						|
 | 
						|
            rem = s->next_event - now;
 | 
						|
            div = s->period;
 | 
						|
 | 
						|
            clz1 = clz64(rem);
 | 
						|
            clz2 = clz64(div);
 | 
						|
            shift = clz1 < clz2 ? clz1 : clz2;
 | 
						|
 | 
						|
            rem <<= shift;
 | 
						|
            div <<= shift;
 | 
						|
            if (shift >= 32) {
 | 
						|
                div |= ((uint64_t)s->period_frac << (shift - 32));
 | 
						|
            } else {
 | 
						|
                if (shift != 0)
 | 
						|
                    div |= (s->period_frac >> (32 - shift));
 | 
						|
                /* Look at remaining bits of period_frac and round div up if 
 | 
						|
                   necessary.  */
 | 
						|
                if ((uint32_t)(s->period_frac << shift))
 | 
						|
                    div += 1;
 | 
						|
            }
 | 
						|
            counter = rem / div;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        counter = s->delta;
 | 
						|
    }
 | 
						|
    return counter;
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_set_count(ptimer_state *s, uint64_t count)
 | 
						|
{
 | 
						|
    s->delta = count;
 | 
						|
    if (s->enabled) {
 | 
						|
        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        ptimer_reload(s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_run(ptimer_state *s, int oneshot)
 | 
						|
{
 | 
						|
    if (s->enabled) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (s->period == 0) {
 | 
						|
        fprintf(stderr, "Timer with period zero, disabling\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    s->enabled = oneshot ? 2 : 1;
 | 
						|
    s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
    ptimer_reload(s);
 | 
						|
}
 | 
						|
 | 
						|
/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 | 
						|
   is immediately restarted.  */
 | 
						|
void ptimer_stop(ptimer_state *s)
 | 
						|
{
 | 
						|
    if (!s->enabled)
 | 
						|
        return;
 | 
						|
 | 
						|
    s->delta = ptimer_get_count(s);
 | 
						|
    timer_del(s->timer);
 | 
						|
    s->enabled = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set counter increment interval in nanoseconds.  */
 | 
						|
void ptimer_set_period(ptimer_state *s, int64_t period)
 | 
						|
{
 | 
						|
    s->period = period;
 | 
						|
    s->period_frac = 0;
 | 
						|
    if (s->enabled) {
 | 
						|
        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        ptimer_reload(s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Set counter frequency in Hz.  */
 | 
						|
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 | 
						|
{
 | 
						|
    s->period = 1000000000ll / freq;
 | 
						|
    s->period_frac = (1000000000ll << 32) / freq;
 | 
						|
    if (s->enabled) {
 | 
						|
        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        ptimer_reload(s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Set the initial countdown value.  If reload is nonzero then also set
 | 
						|
   count = limit.  */
 | 
						|
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * Artificially limit timeout rate to something
 | 
						|
     * achievable under QEMU.  Otherwise, QEMU spends all
 | 
						|
     * its time generating timer interrupts, and there
 | 
						|
     * is no forward progress.
 | 
						|
     * About ten microseconds is the fastest that really works
 | 
						|
     * on the current generation of host machines.
 | 
						|
     */
 | 
						|
 | 
						|
    if (!use_icount && limit * s->period < 10000 && s->period) {
 | 
						|
        limit = 10000 / s->period;
 | 
						|
    }
 | 
						|
 | 
						|
    s->limit = limit;
 | 
						|
    if (reload)
 | 
						|
        s->delta = limit;
 | 
						|
    if (s->enabled && reload) {
 | 
						|
        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        ptimer_reload(s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
const VMStateDescription vmstate_ptimer = {
 | 
						|
    .name = "ptimer",
 | 
						|
    .version_id = 1,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .fields = (VMStateField[]) {
 | 
						|
        VMSTATE_UINT8(enabled, ptimer_state),
 | 
						|
        VMSTATE_UINT64(limit, ptimer_state),
 | 
						|
        VMSTATE_UINT64(delta, ptimer_state),
 | 
						|
        VMSTATE_UINT32(period_frac, ptimer_state),
 | 
						|
        VMSTATE_INT64(period, ptimer_state),
 | 
						|
        VMSTATE_INT64(last_event, ptimer_state),
 | 
						|
        VMSTATE_INT64(next_event, ptimer_state),
 | 
						|
        VMSTATE_TIMER_PTR(timer, ptimer_state),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
ptimer_state *ptimer_init(QEMUBH *bh)
 | 
						|
{
 | 
						|
    ptimer_state *s;
 | 
						|
 | 
						|
    s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
 | 
						|
    s->bh = bh;
 | 
						|
    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 | 
						|
    return s;
 | 
						|
}
 |