 da3f56cb2e
			
		
	
	
		da3f56cb2e
		
	
	
	
	
		
			
			Now, we can reuse the path in ram_save_page() to post the page out as normal, then the only thing remained in ram_save_compressed_page() is compression that we can move it out to the caller Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Xiao Guangrong <xiaoguangrong@tencent.com> Message-Id: <20180330075128.26919-11-xiaoguangrong@tencent.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
		
			
				
	
	
		
			3121 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3121 lines
		
	
	
		
			90 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU System Emulator
 | |
|  *
 | |
|  * Copyright (c) 2003-2008 Fabrice Bellard
 | |
|  * Copyright (c) 2011-2015 Red Hat Inc
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Juan Quintela <quintela@redhat.com>
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include <zlib.h>
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/bitmap.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "xbzrle.h"
 | |
| #include "ram.h"
 | |
| #include "migration.h"
 | |
| #include "migration/register.h"
 | |
| #include "migration/misc.h"
 | |
| #include "qemu-file.h"
 | |
| #include "postcopy-ram.h"
 | |
| #include "migration/page_cache.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/qapi-events-migration.h"
 | |
| #include "qapi/qmp/qerror.h"
 | |
| #include "trace.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "exec/target_page.h"
 | |
| #include "qemu/rcu_queue.h"
 | |
| #include "migration/colo.h"
 | |
| #include "migration/block.h"
 | |
| 
 | |
| /***********************************************************/
 | |
| /* ram save/restore */
 | |
| 
 | |
| /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
 | |
|  * worked for pages that where filled with the same char.  We switched
 | |
|  * it to only search for the zero value.  And to avoid confusion with
 | |
|  * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
 | |
|  */
 | |
| 
 | |
| #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
 | |
| #define RAM_SAVE_FLAG_ZERO     0x02
 | |
| #define RAM_SAVE_FLAG_MEM_SIZE 0x04
 | |
| #define RAM_SAVE_FLAG_PAGE     0x08
 | |
| #define RAM_SAVE_FLAG_EOS      0x10
 | |
| #define RAM_SAVE_FLAG_CONTINUE 0x20
 | |
| #define RAM_SAVE_FLAG_XBZRLE   0x40
 | |
| /* 0x80 is reserved in migration.h start with 0x100 next */
 | |
| #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
 | |
| 
 | |
| static inline bool is_zero_range(uint8_t *p, uint64_t size)
 | |
| {
 | |
|     return buffer_is_zero(p, size);
 | |
| }
 | |
| 
 | |
| XBZRLECacheStats xbzrle_counters;
 | |
| 
 | |
| /* struct contains XBZRLE cache and a static page
 | |
|    used by the compression */
 | |
| static struct {
 | |
|     /* buffer used for XBZRLE encoding */
 | |
|     uint8_t *encoded_buf;
 | |
|     /* buffer for storing page content */
 | |
|     uint8_t *current_buf;
 | |
|     /* Cache for XBZRLE, Protected by lock. */
 | |
|     PageCache *cache;
 | |
|     QemuMutex lock;
 | |
|     /* it will store a page full of zeros */
 | |
|     uint8_t *zero_target_page;
 | |
|     /* buffer used for XBZRLE decoding */
 | |
|     uint8_t *decoded_buf;
 | |
| } XBZRLE;
 | |
| 
 | |
| static void XBZRLE_cache_lock(void)
 | |
| {
 | |
|     if (migrate_use_xbzrle())
 | |
|         qemu_mutex_lock(&XBZRLE.lock);
 | |
| }
 | |
| 
 | |
| static void XBZRLE_cache_unlock(void)
 | |
| {
 | |
|     if (migrate_use_xbzrle())
 | |
|         qemu_mutex_unlock(&XBZRLE.lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xbzrle_cache_resize: resize the xbzrle cache
 | |
|  *
 | |
|  * This function is called from qmp_migrate_set_cache_size in main
 | |
|  * thread, possibly while a migration is in progress.  A running
 | |
|  * migration may be using the cache and might finish during this call,
 | |
|  * hence changes to the cache are protected by XBZRLE.lock().
 | |
|  *
 | |
|  * Returns 0 for success or -1 for error
 | |
|  *
 | |
|  * @new_size: new cache size
 | |
|  * @errp: set *errp if the check failed, with reason
 | |
|  */
 | |
| int xbzrle_cache_resize(int64_t new_size, Error **errp)
 | |
| {
 | |
|     PageCache *new_cache;
 | |
|     int64_t ret = 0;
 | |
| 
 | |
|     /* Check for truncation */
 | |
|     if (new_size != (size_t)new_size) {
 | |
|         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
 | |
|                    "exceeding address space");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (new_size == migrate_xbzrle_cache_size()) {
 | |
|         /* nothing to do */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     XBZRLE_cache_lock();
 | |
| 
 | |
|     if (XBZRLE.cache != NULL) {
 | |
|         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
 | |
|         if (!new_cache) {
 | |
|             ret = -1;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         cache_fini(XBZRLE.cache);
 | |
|         XBZRLE.cache = new_cache;
 | |
|     }
 | |
| out:
 | |
|     XBZRLE_cache_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void ramblock_recv_map_init(void)
 | |
| {
 | |
|     RAMBlock *rb;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(rb) {
 | |
|         assert(!rb->receivedmap);
 | |
|         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
 | |
| {
 | |
|     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
 | |
|                     rb->receivedmap);
 | |
| }
 | |
| 
 | |
| bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
 | |
| {
 | |
|     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
 | |
| }
 | |
| 
 | |
| void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
 | |
| {
 | |
|     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
 | |
| }
 | |
| 
 | |
| void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
 | |
|                                     size_t nr)
 | |
| {
 | |
|     bitmap_set_atomic(rb->receivedmap,
 | |
|                       ramblock_recv_bitmap_offset(host_addr, rb),
 | |
|                       nr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * An outstanding page request, on the source, having been received
 | |
|  * and queued
 | |
|  */
 | |
| struct RAMSrcPageRequest {
 | |
|     RAMBlock *rb;
 | |
|     hwaddr    offset;
 | |
|     hwaddr    len;
 | |
| 
 | |
|     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
 | |
| };
 | |
| 
 | |
| /* State of RAM for migration */
 | |
| struct RAMState {
 | |
|     /* QEMUFile used for this migration */
 | |
|     QEMUFile *f;
 | |
|     /* Last block that we have visited searching for dirty pages */
 | |
|     RAMBlock *last_seen_block;
 | |
|     /* Last block from where we have sent data */
 | |
|     RAMBlock *last_sent_block;
 | |
|     /* Last dirty target page we have sent */
 | |
|     ram_addr_t last_page;
 | |
|     /* last ram version we have seen */
 | |
|     uint32_t last_version;
 | |
|     /* We are in the first round */
 | |
|     bool ram_bulk_stage;
 | |
|     /* How many times we have dirty too many pages */
 | |
|     int dirty_rate_high_cnt;
 | |
|     /* these variables are used for bitmap sync */
 | |
|     /* last time we did a full bitmap_sync */
 | |
|     int64_t time_last_bitmap_sync;
 | |
|     /* bytes transferred at start_time */
 | |
|     uint64_t bytes_xfer_prev;
 | |
|     /* number of dirty pages since start_time */
 | |
|     uint64_t num_dirty_pages_period;
 | |
|     /* xbzrle misses since the beginning of the period */
 | |
|     uint64_t xbzrle_cache_miss_prev;
 | |
|     /* number of iterations at the beginning of period */
 | |
|     uint64_t iterations_prev;
 | |
|     /* Iterations since start */
 | |
|     uint64_t iterations;
 | |
|     /* number of dirty bits in the bitmap */
 | |
|     uint64_t migration_dirty_pages;
 | |
|     /* protects modification of the bitmap */
 | |
|     QemuMutex bitmap_mutex;
 | |
|     /* The RAMBlock used in the last src_page_requests */
 | |
|     RAMBlock *last_req_rb;
 | |
|     /* Queue of outstanding page requests from the destination */
 | |
|     QemuMutex src_page_req_mutex;
 | |
|     QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
 | |
| };
 | |
| typedef struct RAMState RAMState;
 | |
| 
 | |
| static RAMState *ram_state;
 | |
| 
 | |
| uint64_t ram_bytes_remaining(void)
 | |
| {
 | |
|     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
 | |
|                        0;
 | |
| }
 | |
| 
 | |
| MigrationStats ram_counters;
 | |
| 
 | |
| /* used by the search for pages to send */
 | |
| struct PageSearchStatus {
 | |
|     /* Current block being searched */
 | |
|     RAMBlock    *block;
 | |
|     /* Current page to search from */
 | |
|     unsigned long page;
 | |
|     /* Set once we wrap around */
 | |
|     bool         complete_round;
 | |
| };
 | |
| typedef struct PageSearchStatus PageSearchStatus;
 | |
| 
 | |
| struct CompressParam {
 | |
|     bool done;
 | |
|     bool quit;
 | |
|     QEMUFile *file;
 | |
|     QemuMutex mutex;
 | |
|     QemuCond cond;
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
| 
 | |
|     /* internally used fields */
 | |
|     z_stream stream;
 | |
|     uint8_t *originbuf;
 | |
| };
 | |
| typedef struct CompressParam CompressParam;
 | |
| 
 | |
| struct DecompressParam {
 | |
|     bool done;
 | |
|     bool quit;
 | |
|     QemuMutex mutex;
 | |
|     QemuCond cond;
 | |
|     void *des;
 | |
|     uint8_t *compbuf;
 | |
|     int len;
 | |
|     z_stream stream;
 | |
| };
 | |
| typedef struct DecompressParam DecompressParam;
 | |
| 
 | |
| static CompressParam *comp_param;
 | |
| static QemuThread *compress_threads;
 | |
| /* comp_done_cond is used to wake up the migration thread when
 | |
|  * one of the compression threads has finished the compression.
 | |
|  * comp_done_lock is used to co-work with comp_done_cond.
 | |
|  */
 | |
| static QemuMutex comp_done_lock;
 | |
| static QemuCond comp_done_cond;
 | |
| /* The empty QEMUFileOps will be used by file in CompressParam */
 | |
| static const QEMUFileOps empty_ops = { };
 | |
| 
 | |
| static QEMUFile *decomp_file;
 | |
| static DecompressParam *decomp_param;
 | |
| static QemuThread *decompress_threads;
 | |
| static QemuMutex decomp_done_lock;
 | |
| static QemuCond decomp_done_cond;
 | |
| 
 | |
| static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
 | |
|                                 ram_addr_t offset, uint8_t *source_buf);
 | |
| 
 | |
| static void *do_data_compress(void *opaque)
 | |
| {
 | |
|     CompressParam *param = opaque;
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
| 
 | |
|     qemu_mutex_lock(¶m->mutex);
 | |
|     while (!param->quit) {
 | |
|         if (param->block) {
 | |
|             block = param->block;
 | |
|             offset = param->offset;
 | |
|             param->block = NULL;
 | |
|             qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|             do_compress_ram_page(param->file, ¶m->stream, block, offset,
 | |
|                                  param->originbuf);
 | |
| 
 | |
|             qemu_mutex_lock(&comp_done_lock);
 | |
|             param->done = true;
 | |
|             qemu_cond_signal(&comp_done_cond);
 | |
|             qemu_mutex_unlock(&comp_done_lock);
 | |
| 
 | |
|             qemu_mutex_lock(¶m->mutex);
 | |
|         } else {
 | |
|             qemu_cond_wait(¶m->cond, ¶m->mutex);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static inline void terminate_compression_threads(void)
 | |
| {
 | |
|     int idx, thread_count;
 | |
| 
 | |
|     thread_count = migrate_compress_threads();
 | |
| 
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         qemu_mutex_lock(&comp_param[idx].mutex);
 | |
|         comp_param[idx].quit = true;
 | |
|         qemu_cond_signal(&comp_param[idx].cond);
 | |
|         qemu_mutex_unlock(&comp_param[idx].mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void compress_threads_save_cleanup(void)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return;
 | |
|     }
 | |
|     terminate_compression_threads();
 | |
|     thread_count = migrate_compress_threads();
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         /*
 | |
|          * we use it as a indicator which shows if the thread is
 | |
|          * properly init'd or not
 | |
|          */
 | |
|         if (!comp_param[i].file) {
 | |
|             break;
 | |
|         }
 | |
|         qemu_thread_join(compress_threads + i);
 | |
|         qemu_mutex_destroy(&comp_param[i].mutex);
 | |
|         qemu_cond_destroy(&comp_param[i].cond);
 | |
|         deflateEnd(&comp_param[i].stream);
 | |
|         g_free(comp_param[i].originbuf);
 | |
|         qemu_fclose(comp_param[i].file);
 | |
|         comp_param[i].file = NULL;
 | |
|     }
 | |
|     qemu_mutex_destroy(&comp_done_lock);
 | |
|     qemu_cond_destroy(&comp_done_cond);
 | |
|     g_free(compress_threads);
 | |
|     g_free(comp_param);
 | |
|     compress_threads = NULL;
 | |
|     comp_param = NULL;
 | |
| }
 | |
| 
 | |
| static int compress_threads_save_setup(void)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return 0;
 | |
|     }
 | |
|     thread_count = migrate_compress_threads();
 | |
|     compress_threads = g_new0(QemuThread, thread_count);
 | |
|     comp_param = g_new0(CompressParam, thread_count);
 | |
|     qemu_cond_init(&comp_done_cond);
 | |
|     qemu_mutex_init(&comp_done_lock);
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
 | |
|         if (!comp_param[i].originbuf) {
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         if (deflateInit(&comp_param[i].stream,
 | |
|                         migrate_compress_level()) != Z_OK) {
 | |
|             g_free(comp_param[i].originbuf);
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         /* comp_param[i].file is just used as a dummy buffer to save data,
 | |
|          * set its ops to empty.
 | |
|          */
 | |
|         comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
 | |
|         comp_param[i].done = true;
 | |
|         comp_param[i].quit = false;
 | |
|         qemu_mutex_init(&comp_param[i].mutex);
 | |
|         qemu_cond_init(&comp_param[i].cond);
 | |
|         qemu_thread_create(compress_threads + i, "compress",
 | |
|                            do_data_compress, comp_param + i,
 | |
|                            QEMU_THREAD_JOINABLE);
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| exit:
 | |
|     compress_threads_save_cleanup();
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /* Multiple fd's */
 | |
| 
 | |
| struct MultiFDSendParams {
 | |
|     uint8_t id;
 | |
|     char *name;
 | |
|     QemuThread thread;
 | |
|     QemuSemaphore sem;
 | |
|     QemuMutex mutex;
 | |
|     bool quit;
 | |
| };
 | |
| typedef struct MultiFDSendParams MultiFDSendParams;
 | |
| 
 | |
| struct {
 | |
|     MultiFDSendParams *params;
 | |
|     /* number of created threads */
 | |
|     int count;
 | |
| } *multifd_send_state;
 | |
| 
 | |
| static void terminate_multifd_send_threads(Error *errp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < multifd_send_state->count; i++) {
 | |
|         MultiFDSendParams *p = &multifd_send_state->params[i];
 | |
| 
 | |
|         qemu_mutex_lock(&p->mutex);
 | |
|         p->quit = true;
 | |
|         qemu_sem_post(&p->sem);
 | |
|         qemu_mutex_unlock(&p->mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int multifd_save_cleanup(Error **errp)
 | |
| {
 | |
|     int i;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!migrate_use_multifd()) {
 | |
|         return 0;
 | |
|     }
 | |
|     terminate_multifd_send_threads(NULL);
 | |
|     for (i = 0; i < multifd_send_state->count; i++) {
 | |
|         MultiFDSendParams *p = &multifd_send_state->params[i];
 | |
| 
 | |
|         qemu_thread_join(&p->thread);
 | |
|         qemu_mutex_destroy(&p->mutex);
 | |
|         qemu_sem_destroy(&p->sem);
 | |
|         g_free(p->name);
 | |
|         p->name = NULL;
 | |
|     }
 | |
|     g_free(multifd_send_state->params);
 | |
|     multifd_send_state->params = NULL;
 | |
|     g_free(multifd_send_state);
 | |
|     multifd_send_state = NULL;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void *multifd_send_thread(void *opaque)
 | |
| {
 | |
|     MultiFDSendParams *p = opaque;
 | |
| 
 | |
|     while (true) {
 | |
|         qemu_mutex_lock(&p->mutex);
 | |
|         if (p->quit) {
 | |
|             qemu_mutex_unlock(&p->mutex);
 | |
|             break;
 | |
|         }
 | |
|         qemu_mutex_unlock(&p->mutex);
 | |
|         qemu_sem_wait(&p->sem);
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int multifd_save_setup(void)
 | |
| {
 | |
|     int thread_count;
 | |
|     uint8_t i;
 | |
| 
 | |
|     if (!migrate_use_multifd()) {
 | |
|         return 0;
 | |
|     }
 | |
|     thread_count = migrate_multifd_channels();
 | |
|     multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
 | |
|     multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
 | |
|     multifd_send_state->count = 0;
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         MultiFDSendParams *p = &multifd_send_state->params[i];
 | |
| 
 | |
|         qemu_mutex_init(&p->mutex);
 | |
|         qemu_sem_init(&p->sem, 0);
 | |
|         p->quit = false;
 | |
|         p->id = i;
 | |
|         p->name = g_strdup_printf("multifdsend_%d", i);
 | |
|         qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
 | |
|                            QEMU_THREAD_JOINABLE);
 | |
| 
 | |
|         multifd_send_state->count++;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| struct MultiFDRecvParams {
 | |
|     uint8_t id;
 | |
|     char *name;
 | |
|     QemuThread thread;
 | |
|     QemuSemaphore sem;
 | |
|     QemuMutex mutex;
 | |
|     bool quit;
 | |
| };
 | |
| typedef struct MultiFDRecvParams MultiFDRecvParams;
 | |
| 
 | |
| struct {
 | |
|     MultiFDRecvParams *params;
 | |
|     /* number of created threads */
 | |
|     int count;
 | |
| } *multifd_recv_state;
 | |
| 
 | |
| static void terminate_multifd_recv_threads(Error *errp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < multifd_recv_state->count; i++) {
 | |
|         MultiFDRecvParams *p = &multifd_recv_state->params[i];
 | |
| 
 | |
|         qemu_mutex_lock(&p->mutex);
 | |
|         p->quit = true;
 | |
|         qemu_sem_post(&p->sem);
 | |
|         qemu_mutex_unlock(&p->mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int multifd_load_cleanup(Error **errp)
 | |
| {
 | |
|     int i;
 | |
|     int ret = 0;
 | |
| 
 | |
|     if (!migrate_use_multifd()) {
 | |
|         return 0;
 | |
|     }
 | |
|     terminate_multifd_recv_threads(NULL);
 | |
|     for (i = 0; i < multifd_recv_state->count; i++) {
 | |
|         MultiFDRecvParams *p = &multifd_recv_state->params[i];
 | |
| 
 | |
|         qemu_thread_join(&p->thread);
 | |
|         qemu_mutex_destroy(&p->mutex);
 | |
|         qemu_sem_destroy(&p->sem);
 | |
|         g_free(p->name);
 | |
|         p->name = NULL;
 | |
|     }
 | |
|     g_free(multifd_recv_state->params);
 | |
|     multifd_recv_state->params = NULL;
 | |
|     g_free(multifd_recv_state);
 | |
|     multifd_recv_state = NULL;
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void *multifd_recv_thread(void *opaque)
 | |
| {
 | |
|     MultiFDRecvParams *p = opaque;
 | |
| 
 | |
|     while (true) {
 | |
|         qemu_mutex_lock(&p->mutex);
 | |
|         if (p->quit) {
 | |
|             qemu_mutex_unlock(&p->mutex);
 | |
|             break;
 | |
|         }
 | |
|         qemu_mutex_unlock(&p->mutex);
 | |
|         qemu_sem_wait(&p->sem);
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int multifd_load_setup(void)
 | |
| {
 | |
|     int thread_count;
 | |
|     uint8_t i;
 | |
| 
 | |
|     if (!migrate_use_multifd()) {
 | |
|         return 0;
 | |
|     }
 | |
|     thread_count = migrate_multifd_channels();
 | |
|     multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
 | |
|     multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
 | |
|     multifd_recv_state->count = 0;
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         MultiFDRecvParams *p = &multifd_recv_state->params[i];
 | |
| 
 | |
|         qemu_mutex_init(&p->mutex);
 | |
|         qemu_sem_init(&p->sem, 0);
 | |
|         p->quit = false;
 | |
|         p->id = i;
 | |
|         p->name = g_strdup_printf("multifdrecv_%d", i);
 | |
|         qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
 | |
|                            QEMU_THREAD_JOINABLE);
 | |
|         multifd_recv_state->count++;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * save_page_header: write page header to wire
 | |
|  *
 | |
|  * If this is the 1st block, it also writes the block identification
 | |
|  *
 | |
|  * Returns the number of bytes written
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  *          in the lower bits, it contains flags
 | |
|  */
 | |
| static size_t save_page_header(RAMState *rs, QEMUFile *f,  RAMBlock *block,
 | |
|                                ram_addr_t offset)
 | |
| {
 | |
|     size_t size, len;
 | |
| 
 | |
|     if (block == rs->last_sent_block) {
 | |
|         offset |= RAM_SAVE_FLAG_CONTINUE;
 | |
|     }
 | |
|     qemu_put_be64(f, offset);
 | |
|     size = 8;
 | |
| 
 | |
|     if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
 | |
|         len = strlen(block->idstr);
 | |
|         qemu_put_byte(f, len);
 | |
|         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
 | |
|         size += 1 + len;
 | |
|         rs->last_sent_block = block;
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mig_throttle_guest_down: throotle down the guest
 | |
|  *
 | |
|  * Reduce amount of guest cpu execution to hopefully slow down memory
 | |
|  * writes. If guest dirty memory rate is reduced below the rate at
 | |
|  * which we can transfer pages to the destination then we should be
 | |
|  * able to complete migration. Some workloads dirty memory way too
 | |
|  * fast and will not effectively converge, even with auto-converge.
 | |
|  */
 | |
| static void mig_throttle_guest_down(void)
 | |
| {
 | |
|     MigrationState *s = migrate_get_current();
 | |
|     uint64_t pct_initial = s->parameters.cpu_throttle_initial;
 | |
|     uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
 | |
| 
 | |
|     /* We have not started throttling yet. Let's start it. */
 | |
|     if (!cpu_throttle_active()) {
 | |
|         cpu_throttle_set(pct_initial);
 | |
|     } else {
 | |
|         /* Throttling already on, just increase the rate */
 | |
|         cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @current_addr: address for the zero page
 | |
|  *
 | |
|  * Update the xbzrle cache to reflect a page that's been sent as all 0.
 | |
|  * The important thing is that a stale (not-yet-0'd) page be replaced
 | |
|  * by the new data.
 | |
|  * As a bonus, if the page wasn't in the cache it gets added so that
 | |
|  * when a small write is made into the 0'd page it gets XBZRLE sent.
 | |
|  */
 | |
| static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
 | |
| {
 | |
|     if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* We don't care if this fails to allocate a new cache page
 | |
|      * as long as it updated an old one */
 | |
|     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
 | |
|                  ram_counters.dirty_sync_count);
 | |
| }
 | |
| 
 | |
| #define ENCODING_FLAG_XBZRLE 0x1
 | |
| 
 | |
| /**
 | |
|  * save_xbzrle_page: compress and send current page
 | |
|  *
 | |
|  * Returns: 1 means that we wrote the page
 | |
|  *          0 means that page is identical to the one already sent
 | |
|  *          -1 means that xbzrle would be longer than normal
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @current_data: pointer to the address of the page contents
 | |
|  * @current_addr: addr of the page
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
 | |
|                             ram_addr_t current_addr, RAMBlock *block,
 | |
|                             ram_addr_t offset, bool last_stage)
 | |
| {
 | |
|     int encoded_len = 0, bytes_xbzrle;
 | |
|     uint8_t *prev_cached_page;
 | |
| 
 | |
|     if (!cache_is_cached(XBZRLE.cache, current_addr,
 | |
|                          ram_counters.dirty_sync_count)) {
 | |
|         xbzrle_counters.cache_miss++;
 | |
|         if (!last_stage) {
 | |
|             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
 | |
|                              ram_counters.dirty_sync_count) == -1) {
 | |
|                 return -1;
 | |
|             } else {
 | |
|                 /* update *current_data when the page has been
 | |
|                    inserted into cache */
 | |
|                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
 | |
|             }
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
 | |
| 
 | |
|     /* save current buffer into memory */
 | |
|     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
 | |
| 
 | |
|     /* XBZRLE encoding (if there is no overflow) */
 | |
|     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
 | |
|                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
 | |
|                                        TARGET_PAGE_SIZE);
 | |
|     if (encoded_len == 0) {
 | |
|         trace_save_xbzrle_page_skipping();
 | |
|         return 0;
 | |
|     } else if (encoded_len == -1) {
 | |
|         trace_save_xbzrle_page_overflow();
 | |
|         xbzrle_counters.overflow++;
 | |
|         /* update data in the cache */
 | |
|         if (!last_stage) {
 | |
|             memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
 | |
|             *current_data = prev_cached_page;
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* we need to update the data in the cache, in order to get the same data */
 | |
|     if (!last_stage) {
 | |
|         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
 | |
|     }
 | |
| 
 | |
|     /* Send XBZRLE based compressed page */
 | |
|     bytes_xbzrle = save_page_header(rs, rs->f, block,
 | |
|                                     offset | RAM_SAVE_FLAG_XBZRLE);
 | |
|     qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
 | |
|     qemu_put_be16(rs->f, encoded_len);
 | |
|     qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
 | |
|     bytes_xbzrle += encoded_len + 1 + 2;
 | |
|     xbzrle_counters.pages++;
 | |
|     xbzrle_counters.bytes += bytes_xbzrle;
 | |
|     ram_counters.transferred += bytes_xbzrle;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migration_bitmap_find_dirty: find the next dirty page from start
 | |
|  *
 | |
|  * Called with rcu_read_lock() to protect migration_bitmap
 | |
|  *
 | |
|  * Returns the byte offset within memory region of the start of a dirty page
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @rb: RAMBlock where to search for dirty pages
 | |
|  * @start: page where we start the search
 | |
|  */
 | |
| static inline
 | |
| unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
 | |
|                                           unsigned long start)
 | |
| {
 | |
|     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
 | |
|     unsigned long *bitmap = rb->bmap;
 | |
|     unsigned long next;
 | |
| 
 | |
|     if (rs->ram_bulk_stage && start > 0) {
 | |
|         next = start + 1;
 | |
|     } else {
 | |
|         next = find_next_bit(bitmap, size, start);
 | |
|     }
 | |
| 
 | |
|     return next;
 | |
| }
 | |
| 
 | |
| static inline bool migration_bitmap_clear_dirty(RAMState *rs,
 | |
|                                                 RAMBlock *rb,
 | |
|                                                 unsigned long page)
 | |
| {
 | |
|     bool ret;
 | |
| 
 | |
|     ret = test_and_clear_bit(page, rb->bmap);
 | |
| 
 | |
|     if (ret) {
 | |
|         rs->migration_dirty_pages--;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
 | |
|                                         ram_addr_t start, ram_addr_t length)
 | |
| {
 | |
|     rs->migration_dirty_pages +=
 | |
|         cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
 | |
|                                               &rs->num_dirty_pages_period);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_pagesize_summary: calculate all the pagesizes of a VM
 | |
|  *
 | |
|  * Returns a summary bitmap of the page sizes of all RAMBlocks
 | |
|  *
 | |
|  * For VMs with just normal pages this is equivalent to the host page
 | |
|  * size. If it's got some huge pages then it's the OR of all the
 | |
|  * different page sizes.
 | |
|  */
 | |
| uint64_t ram_pagesize_summary(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint64_t summary = 0;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         summary |= block->page_size;
 | |
|     }
 | |
| 
 | |
|     return summary;
 | |
| }
 | |
| 
 | |
| static void migration_bitmap_sync(RAMState *rs)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     int64_t end_time;
 | |
|     uint64_t bytes_xfer_now;
 | |
| 
 | |
|     ram_counters.dirty_sync_count++;
 | |
| 
 | |
|     if (!rs->time_last_bitmap_sync) {
 | |
|         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | |
|     }
 | |
| 
 | |
|     trace_migration_bitmap_sync_start();
 | |
|     memory_global_dirty_log_sync();
 | |
| 
 | |
|     qemu_mutex_lock(&rs->bitmap_mutex);
 | |
|     rcu_read_lock();
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         migration_bitmap_sync_range(rs, block, 0, block->used_length);
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     qemu_mutex_unlock(&rs->bitmap_mutex);
 | |
| 
 | |
|     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
 | |
| 
 | |
|     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | |
| 
 | |
|     /* more than 1 second = 1000 millisecons */
 | |
|     if (end_time > rs->time_last_bitmap_sync + 1000) {
 | |
|         /* calculate period counters */
 | |
|         ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
 | |
|             / (end_time - rs->time_last_bitmap_sync);
 | |
|         bytes_xfer_now = ram_counters.transferred;
 | |
| 
 | |
|         /* During block migration the auto-converge logic incorrectly detects
 | |
|          * that ram migration makes no progress. Avoid this by disabling the
 | |
|          * throttling logic during the bulk phase of block migration. */
 | |
|         if (migrate_auto_converge() && !blk_mig_bulk_active()) {
 | |
|             /* The following detection logic can be refined later. For now:
 | |
|                Check to see if the dirtied bytes is 50% more than the approx.
 | |
|                amount of bytes that just got transferred since the last time we
 | |
|                were in this routine. If that happens twice, start or increase
 | |
|                throttling */
 | |
| 
 | |
|             if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
 | |
|                    (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
 | |
|                 (++rs->dirty_rate_high_cnt >= 2)) {
 | |
|                     trace_migration_throttle();
 | |
|                     rs->dirty_rate_high_cnt = 0;
 | |
|                     mig_throttle_guest_down();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (migrate_use_xbzrle()) {
 | |
|             if (rs->iterations_prev != rs->iterations) {
 | |
|                 xbzrle_counters.cache_miss_rate =
 | |
|                    (double)(xbzrle_counters.cache_miss -
 | |
|                             rs->xbzrle_cache_miss_prev) /
 | |
|                    (rs->iterations - rs->iterations_prev);
 | |
|             }
 | |
|             rs->iterations_prev = rs->iterations;
 | |
|             rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
 | |
|         }
 | |
| 
 | |
|         /* reset period counters */
 | |
|         rs->time_last_bitmap_sync = end_time;
 | |
|         rs->num_dirty_pages_period = 0;
 | |
|         rs->bytes_xfer_prev = bytes_xfer_now;
 | |
|     }
 | |
|     if (migrate_use_events()) {
 | |
|         qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * save_zero_page: send the zero page to the stream
 | |
|  *
 | |
|  * Returns the number of pages written.
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  */
 | |
| static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
 | |
| {
 | |
|     uint8_t *p = block->host + offset;
 | |
|     int pages = -1;
 | |
| 
 | |
|     if (is_zero_range(p, TARGET_PAGE_SIZE)) {
 | |
|         ram_counters.duplicate++;
 | |
|         ram_counters.transferred +=
 | |
|             save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
 | |
|         qemu_put_byte(rs->f, 0);
 | |
|         ram_counters.transferred += 1;
 | |
|         pages = 1;
 | |
|     }
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
 | |
| {
 | |
|     if (!migrate_release_ram() || !migration_in_postcopy()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @pages: the number of pages written by the control path,
 | |
|  *        < 0 - error
 | |
|  *        > 0 - number of pages written
 | |
|  *
 | |
|  * Return true if the pages has been saved, otherwise false is returned.
 | |
|  */
 | |
| static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
 | |
|                               int *pages)
 | |
| {
 | |
|     uint64_t bytes_xmit = 0;
 | |
|     int ret;
 | |
| 
 | |
|     *pages = -1;
 | |
|     ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
 | |
|                                 &bytes_xmit);
 | |
|     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (bytes_xmit) {
 | |
|         ram_counters.transferred += bytes_xmit;
 | |
|         *pages = 1;
 | |
|     }
 | |
| 
 | |
|     if (ret == RAM_SAVE_CONTROL_DELAYED) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (bytes_xmit > 0) {
 | |
|         ram_counters.normal++;
 | |
|     } else if (bytes_xmit == 0) {
 | |
|         ram_counters.duplicate++;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * directly send the page to the stream
 | |
|  *
 | |
|  * Returns the number of pages written.
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  * @buf: the page to be sent
 | |
|  * @async: send to page asyncly
 | |
|  */
 | |
| static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
 | |
|                             uint8_t *buf, bool async)
 | |
| {
 | |
|     ram_counters.transferred += save_page_header(rs, rs->f, block,
 | |
|                                                  offset | RAM_SAVE_FLAG_PAGE);
 | |
|     if (async) {
 | |
|         qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
 | |
|                               migrate_release_ram() &
 | |
|                               migration_in_postcopy());
 | |
|     } else {
 | |
|         qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
 | |
|     }
 | |
|     ram_counters.transferred += TARGET_PAGE_SIZE;
 | |
|     ram_counters.normal++;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_page: send the given page to the stream
 | |
|  *
 | |
|  * Returns the number of pages written.
 | |
|  *          < 0 - error
 | |
|  *          >=0 - Number of pages written - this might legally be 0
 | |
|  *                if xbzrle noticed the page was the same.
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
 | |
| {
 | |
|     int pages = -1;
 | |
|     uint8_t *p;
 | |
|     bool send_async = true;
 | |
|     RAMBlock *block = pss->block;
 | |
|     ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
 | |
|     ram_addr_t current_addr = block->offset + offset;
 | |
| 
 | |
|     p = block->host + offset;
 | |
|     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
 | |
| 
 | |
|     XBZRLE_cache_lock();
 | |
|     if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
 | |
|         migrate_use_xbzrle()) {
 | |
|         pages = save_xbzrle_page(rs, &p, current_addr, block,
 | |
|                                  offset, last_stage);
 | |
|         if (!last_stage) {
 | |
|             /* Can't send this cached data async, since the cache page
 | |
|              * might get updated before it gets to the wire
 | |
|              */
 | |
|             send_async = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* XBZRLE overflow or normal page */
 | |
|     if (pages == -1) {
 | |
|         pages = save_normal_page(rs, block, offset, p, send_async);
 | |
|     }
 | |
| 
 | |
|     XBZRLE_cache_unlock();
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
 | |
|                                 ram_addr_t offset, uint8_t *source_buf)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     int bytes_sent, blen;
 | |
|     uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
 | |
| 
 | |
|     bytes_sent = save_page_header(rs, f, block, offset |
 | |
|                                   RAM_SAVE_FLAG_COMPRESS_PAGE);
 | |
| 
 | |
|     /*
 | |
|      * copy it to a internal buffer to avoid it being modified by VM
 | |
|      * so that we can catch up the error during compression and
 | |
|      * decompression
 | |
|      */
 | |
|     memcpy(source_buf, p, TARGET_PAGE_SIZE);
 | |
|     blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
 | |
|     if (blen < 0) {
 | |
|         bytes_sent = 0;
 | |
|         qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
 | |
|         error_report("compressed data failed!");
 | |
|     } else {
 | |
|         bytes_sent += blen;
 | |
|         ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
 | |
|     }
 | |
| 
 | |
|     return bytes_sent;
 | |
| }
 | |
| 
 | |
| static void flush_compressed_data(RAMState *rs)
 | |
| {
 | |
|     int idx, len, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return;
 | |
|     }
 | |
|     thread_count = migrate_compress_threads();
 | |
| 
 | |
|     qemu_mutex_lock(&comp_done_lock);
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         while (!comp_param[idx].done) {
 | |
|             qemu_cond_wait(&comp_done_cond, &comp_done_lock);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&comp_done_lock);
 | |
| 
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         qemu_mutex_lock(&comp_param[idx].mutex);
 | |
|         if (!comp_param[idx].quit) {
 | |
|             len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
 | |
|             ram_counters.transferred += len;
 | |
|         }
 | |
|         qemu_mutex_unlock(&comp_param[idx].mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void set_compress_params(CompressParam *param, RAMBlock *block,
 | |
|                                        ram_addr_t offset)
 | |
| {
 | |
|     param->block = block;
 | |
|     param->offset = offset;
 | |
| }
 | |
| 
 | |
| static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
 | |
|                                            ram_addr_t offset)
 | |
| {
 | |
|     int idx, thread_count, bytes_xmit = -1, pages = -1;
 | |
| 
 | |
|     thread_count = migrate_compress_threads();
 | |
|     qemu_mutex_lock(&comp_done_lock);
 | |
|     while (true) {
 | |
|         for (idx = 0; idx < thread_count; idx++) {
 | |
|             if (comp_param[idx].done) {
 | |
|                 comp_param[idx].done = false;
 | |
|                 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
 | |
|                 qemu_mutex_lock(&comp_param[idx].mutex);
 | |
|                 set_compress_params(&comp_param[idx], block, offset);
 | |
|                 qemu_cond_signal(&comp_param[idx].cond);
 | |
|                 qemu_mutex_unlock(&comp_param[idx].mutex);
 | |
|                 pages = 1;
 | |
|                 ram_counters.normal++;
 | |
|                 ram_counters.transferred += bytes_xmit;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (pages > 0) {
 | |
|             break;
 | |
|         } else {
 | |
|             qemu_cond_wait(&comp_done_cond, &comp_done_lock);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&comp_done_lock);
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_dirty_block: find the next dirty page and update any state
 | |
|  * associated with the search process.
 | |
|  *
 | |
|  * Returns if a page is found
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: data about the state of the current dirty page scan
 | |
|  * @again: set to false if the search has scanned the whole of RAM
 | |
|  */
 | |
| static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
 | |
| {
 | |
|     pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
 | |
|     if (pss->complete_round && pss->block == rs->last_seen_block &&
 | |
|         pss->page >= rs->last_page) {
 | |
|         /*
 | |
|          * We've been once around the RAM and haven't found anything.
 | |
|          * Give up.
 | |
|          */
 | |
|         *again = false;
 | |
|         return false;
 | |
|     }
 | |
|     if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
 | |
|         /* Didn't find anything in this RAM Block */
 | |
|         pss->page = 0;
 | |
|         pss->block = QLIST_NEXT_RCU(pss->block, next);
 | |
|         if (!pss->block) {
 | |
|             /* Hit the end of the list */
 | |
|             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
 | |
|             /* Flag that we've looped */
 | |
|             pss->complete_round = true;
 | |
|             rs->ram_bulk_stage = false;
 | |
|             if (migrate_use_xbzrle()) {
 | |
|                 /* If xbzrle is on, stop using the data compression at this
 | |
|                  * point. In theory, xbzrle can do better than compression.
 | |
|                  */
 | |
|                 flush_compressed_data(rs);
 | |
|             }
 | |
|         }
 | |
|         /* Didn't find anything this time, but try again on the new block */
 | |
|         *again = true;
 | |
|         return false;
 | |
|     } else {
 | |
|         /* Can go around again, but... */
 | |
|         *again = true;
 | |
|         /* We've found something so probably don't need to */
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unqueue_page: gets a page of the queue
 | |
|  *
 | |
|  * Helper for 'get_queued_page' - gets a page off the queue
 | |
|  *
 | |
|  * Returns the block of the page (or NULL if none available)
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @offset: used to return the offset within the RAMBlock
 | |
|  */
 | |
| static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
 | |
| {
 | |
|     RAMBlock *block = NULL;
 | |
| 
 | |
|     qemu_mutex_lock(&rs->src_page_req_mutex);
 | |
|     if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
 | |
|         struct RAMSrcPageRequest *entry =
 | |
|                                 QSIMPLEQ_FIRST(&rs->src_page_requests);
 | |
|         block = entry->rb;
 | |
|         *offset = entry->offset;
 | |
| 
 | |
|         if (entry->len > TARGET_PAGE_SIZE) {
 | |
|             entry->len -= TARGET_PAGE_SIZE;
 | |
|             entry->offset += TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             memory_region_unref(block->mr);
 | |
|             QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
 | |
|             g_free(entry);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&rs->src_page_req_mutex);
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_queued_page: unqueue a page from the postocpy requests
 | |
|  *
 | |
|  * Skips pages that are already sent (!dirty)
 | |
|  *
 | |
|  * Returns if a queued page is found
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: data about the state of the current dirty page scan
 | |
|  */
 | |
| static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
 | |
| {
 | |
|     RAMBlock  *block;
 | |
|     ram_addr_t offset;
 | |
|     bool dirty;
 | |
| 
 | |
|     do {
 | |
|         block = unqueue_page(rs, &offset);
 | |
|         /*
 | |
|          * We're sending this page, and since it's postcopy nothing else
 | |
|          * will dirty it, and we must make sure it doesn't get sent again
 | |
|          * even if this queue request was received after the background
 | |
|          * search already sent it.
 | |
|          */
 | |
|         if (block) {
 | |
|             unsigned long page;
 | |
| 
 | |
|             page = offset >> TARGET_PAGE_BITS;
 | |
|             dirty = test_bit(page, block->bmap);
 | |
|             if (!dirty) {
 | |
|                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
 | |
|                        page, test_bit(page, block->unsentmap));
 | |
|             } else {
 | |
|                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     } while (block && !dirty);
 | |
| 
 | |
|     if (block) {
 | |
|         /*
 | |
|          * As soon as we start servicing pages out of order, then we have
 | |
|          * to kill the bulk stage, since the bulk stage assumes
 | |
|          * in (migration_bitmap_find_and_reset_dirty) that every page is
 | |
|          * dirty, that's no longer true.
 | |
|          */
 | |
|         rs->ram_bulk_stage = false;
 | |
| 
 | |
|         /*
 | |
|          * We want the background search to continue from the queued page
 | |
|          * since the guest is likely to want other pages near to the page
 | |
|          * it just requested.
 | |
|          */
 | |
|         pss->block = block;
 | |
|         pss->page = offset >> TARGET_PAGE_BITS;
 | |
|     }
 | |
| 
 | |
|     return !!block;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migration_page_queue_free: drop any remaining pages in the ram
 | |
|  * request queue
 | |
|  *
 | |
|  * It should be empty at the end anyway, but in error cases there may
 | |
|  * be some left.  in case that there is any page left, we drop it.
 | |
|  *
 | |
|  */
 | |
| static void migration_page_queue_free(RAMState *rs)
 | |
| {
 | |
|     struct RAMSrcPageRequest *mspr, *next_mspr;
 | |
|     /* This queue generally should be empty - but in the case of a failed
 | |
|      * migration might have some droppings in.
 | |
|      */
 | |
|     rcu_read_lock();
 | |
|     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
 | |
|         memory_region_unref(mspr->rb->mr);
 | |
|         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
 | |
|         g_free(mspr);
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_queue_pages: queue the page for transmission
 | |
|  *
 | |
|  * A request from postcopy destination for example.
 | |
|  *
 | |
|  * Returns zero on success or negative on error
 | |
|  *
 | |
|  * @rbname: Name of the RAMBLock of the request. NULL means the
 | |
|  *          same that last one.
 | |
|  * @start: starting address from the start of the RAMBlock
 | |
|  * @len: length (in bytes) to send
 | |
|  */
 | |
| int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
 | |
| {
 | |
|     RAMBlock *ramblock;
 | |
|     RAMState *rs = ram_state;
 | |
| 
 | |
|     ram_counters.postcopy_requests++;
 | |
|     rcu_read_lock();
 | |
|     if (!rbname) {
 | |
|         /* Reuse last RAMBlock */
 | |
|         ramblock = rs->last_req_rb;
 | |
| 
 | |
|         if (!ramblock) {
 | |
|             /*
 | |
|              * Shouldn't happen, we can't reuse the last RAMBlock if
 | |
|              * it's the 1st request.
 | |
|              */
 | |
|             error_report("ram_save_queue_pages no previous block");
 | |
|             goto err;
 | |
|         }
 | |
|     } else {
 | |
|         ramblock = qemu_ram_block_by_name(rbname);
 | |
| 
 | |
|         if (!ramblock) {
 | |
|             /* We shouldn't be asked for a non-existent RAMBlock */
 | |
|             error_report("ram_save_queue_pages no block '%s'", rbname);
 | |
|             goto err;
 | |
|         }
 | |
|         rs->last_req_rb = ramblock;
 | |
|     }
 | |
|     trace_ram_save_queue_pages(ramblock->idstr, start, len);
 | |
|     if (start+len > ramblock->used_length) {
 | |
|         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
 | |
|                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
 | |
|                      __func__, start, len, ramblock->used_length);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     struct RAMSrcPageRequest *new_entry =
 | |
|         g_malloc0(sizeof(struct RAMSrcPageRequest));
 | |
|     new_entry->rb = ramblock;
 | |
|     new_entry->offset = start;
 | |
|     new_entry->len = len;
 | |
| 
 | |
|     memory_region_ref(ramblock->mr);
 | |
|     qemu_mutex_lock(&rs->src_page_req_mutex);
 | |
|     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
 | |
|     qemu_mutex_unlock(&rs->src_page_req_mutex);
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| err:
 | |
|     rcu_read_unlock();
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static bool save_page_use_compression(RAMState *rs)
 | |
| {
 | |
|     if (!migrate_use_compression()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If xbzrle is on, stop using the data compression after first
 | |
|      * round of migration even if compression is enabled. In theory,
 | |
|      * xbzrle can do better than compression.
 | |
|      */
 | |
|     if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_target_page: save one target page
 | |
|  *
 | |
|  * Returns the number of pages written
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: data about the page we want to send
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
 | |
|                                 bool last_stage)
 | |
| {
 | |
|     RAMBlock *block = pss->block;
 | |
|     ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
 | |
|     int res;
 | |
| 
 | |
|     if (control_save_page(rs, block, offset, &res)) {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When starting the process of a new block, the first page of
 | |
|      * the block should be sent out before other pages in the same
 | |
|      * block, and all the pages in last block should have been sent
 | |
|      * out, keeping this order is important, because the 'cont' flag
 | |
|      * is used to avoid resending the block name.
 | |
|      */
 | |
|     if (block != rs->last_sent_block && save_page_use_compression(rs)) {
 | |
|             flush_compressed_data(rs);
 | |
|     }
 | |
| 
 | |
|     res = save_zero_page(rs, block, offset);
 | |
|     if (res > 0) {
 | |
|         /* Must let xbzrle know, otherwise a previous (now 0'd) cached
 | |
|          * page would be stale
 | |
|          */
 | |
|         if (!save_page_use_compression(rs)) {
 | |
|             XBZRLE_cache_lock();
 | |
|             xbzrle_cache_zero_page(rs, block->offset + offset);
 | |
|             XBZRLE_cache_unlock();
 | |
|         }
 | |
|         ram_release_pages(block->idstr, offset, res);
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Make sure the first page is sent out before other pages.
 | |
|      *
 | |
|      * we post it as normal page as compression will take much
 | |
|      * CPU resource.
 | |
|      */
 | |
|     if (block == rs->last_sent_block && save_page_use_compression(rs)) {
 | |
|         res = compress_page_with_multi_thread(rs, block, offset);
 | |
|     }
 | |
| 
 | |
|     return ram_save_page(rs, pss, last_stage);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_host_page: save a whole host page
 | |
|  *
 | |
|  * Starting at *offset send pages up to the end of the current host
 | |
|  * page. It's valid for the initial offset to point into the middle of
 | |
|  * a host page in which case the remainder of the hostpage is sent.
 | |
|  * Only dirty target pages are sent. Note that the host page size may
 | |
|  * be a huge page for this block.
 | |
|  * The saving stops at the boundary of the used_length of the block
 | |
|  * if the RAMBlock isn't a multiple of the host page size.
 | |
|  *
 | |
|  * Returns the number of pages written or negative on error
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @ms: current migration state
 | |
|  * @pss: data about the page we want to send
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
 | |
|                               bool last_stage)
 | |
| {
 | |
|     int tmppages, pages = 0;
 | |
|     size_t pagesize_bits =
 | |
|         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     do {
 | |
|         /* Check the pages is dirty and if it is send it */
 | |
|         if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
 | |
|             pss->page++;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         tmppages = ram_save_target_page(rs, pss, last_stage);
 | |
|         if (tmppages < 0) {
 | |
|             return tmppages;
 | |
|         }
 | |
| 
 | |
|         pages += tmppages;
 | |
|         if (pss->block->unsentmap) {
 | |
|             clear_bit(pss->page, pss->block->unsentmap);
 | |
|         }
 | |
| 
 | |
|         pss->page++;
 | |
|     } while ((pss->page & (pagesize_bits - 1)) &&
 | |
|              offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
 | |
| 
 | |
|     /* The offset we leave with is the last one we looked at */
 | |
|     pss->page--;
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_find_and_save_block: finds a dirty page and sends it to f
 | |
|  *
 | |
|  * Called within an RCU critical section.
 | |
|  *
 | |
|  * Returns the number of pages written where zero means no dirty pages
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  *
 | |
|  * On systems where host-page-size > target-page-size it will send all the
 | |
|  * pages in a host page that are dirty.
 | |
|  */
 | |
| 
 | |
| static int ram_find_and_save_block(RAMState *rs, bool last_stage)
 | |
| {
 | |
|     PageSearchStatus pss;
 | |
|     int pages = 0;
 | |
|     bool again, found;
 | |
| 
 | |
|     /* No dirty page as there is zero RAM */
 | |
|     if (!ram_bytes_total()) {
 | |
|         return pages;
 | |
|     }
 | |
| 
 | |
|     pss.block = rs->last_seen_block;
 | |
|     pss.page = rs->last_page;
 | |
|     pss.complete_round = false;
 | |
| 
 | |
|     if (!pss.block) {
 | |
|         pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         again = true;
 | |
|         found = get_queued_page(rs, &pss);
 | |
| 
 | |
|         if (!found) {
 | |
|             /* priority queue empty, so just search for something dirty */
 | |
|             found = find_dirty_block(rs, &pss, &again);
 | |
|         }
 | |
| 
 | |
|         if (found) {
 | |
|             pages = ram_save_host_page(rs, &pss, last_stage);
 | |
|         }
 | |
|     } while (!pages && again);
 | |
| 
 | |
|     rs->last_seen_block = pss.block;
 | |
|     rs->last_page = pss.page;
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| void acct_update_position(QEMUFile *f, size_t size, bool zero)
 | |
| {
 | |
|     uint64_t pages = size / TARGET_PAGE_SIZE;
 | |
| 
 | |
|     if (zero) {
 | |
|         ram_counters.duplicate += pages;
 | |
|     } else {
 | |
|         ram_counters.normal += pages;
 | |
|         ram_counters.transferred += size;
 | |
|         qemu_update_position(f, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t ram_bytes_total(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint64_t total = 0;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         total += block->used_length;
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| static void xbzrle_load_setup(void)
 | |
| {
 | |
|     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void xbzrle_load_cleanup(void)
 | |
| {
 | |
|     g_free(XBZRLE.decoded_buf);
 | |
|     XBZRLE.decoded_buf = NULL;
 | |
| }
 | |
| 
 | |
| static void ram_state_cleanup(RAMState **rsp)
 | |
| {
 | |
|     if (*rsp) {
 | |
|         migration_page_queue_free(*rsp);
 | |
|         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
 | |
|         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
 | |
|         g_free(*rsp);
 | |
|         *rsp = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void xbzrle_cleanup(void)
 | |
| {
 | |
|     XBZRLE_cache_lock();
 | |
|     if (XBZRLE.cache) {
 | |
|         cache_fini(XBZRLE.cache);
 | |
|         g_free(XBZRLE.encoded_buf);
 | |
|         g_free(XBZRLE.current_buf);
 | |
|         g_free(XBZRLE.zero_target_page);
 | |
|         XBZRLE.cache = NULL;
 | |
|         XBZRLE.encoded_buf = NULL;
 | |
|         XBZRLE.current_buf = NULL;
 | |
|         XBZRLE.zero_target_page = NULL;
 | |
|     }
 | |
|     XBZRLE_cache_unlock();
 | |
| }
 | |
| 
 | |
| static void ram_save_cleanup(void *opaque)
 | |
| {
 | |
|     RAMState **rsp = opaque;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* caller have hold iothread lock or is in a bh, so there is
 | |
|      * no writing race against this migration_bitmap
 | |
|      */
 | |
|     memory_global_dirty_log_stop();
 | |
| 
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         g_free(block->bmap);
 | |
|         block->bmap = NULL;
 | |
|         g_free(block->unsentmap);
 | |
|         block->unsentmap = NULL;
 | |
|     }
 | |
| 
 | |
|     xbzrle_cleanup();
 | |
|     compress_threads_save_cleanup();
 | |
|     ram_state_cleanup(rsp);
 | |
| }
 | |
| 
 | |
| static void ram_state_reset(RAMState *rs)
 | |
| {
 | |
|     rs->last_seen_block = NULL;
 | |
|     rs->last_sent_block = NULL;
 | |
|     rs->last_page = 0;
 | |
|     rs->last_version = ram_list.version;
 | |
|     rs->ram_bulk_stage = true;
 | |
| }
 | |
| 
 | |
| #define MAX_WAIT 50 /* ms, half buffered_file limit */
 | |
| 
 | |
| /*
 | |
|  * 'expected' is the value you expect the bitmap mostly to be full
 | |
|  * of; it won't bother printing lines that are all this value.
 | |
|  * If 'todump' is null the migration bitmap is dumped.
 | |
|  */
 | |
| void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
 | |
|                            unsigned long pages)
 | |
| {
 | |
|     int64_t cur;
 | |
|     int64_t linelen = 128;
 | |
|     char linebuf[129];
 | |
| 
 | |
|     for (cur = 0; cur < pages; cur += linelen) {
 | |
|         int64_t curb;
 | |
|         bool found = false;
 | |
|         /*
 | |
|          * Last line; catch the case where the line length
 | |
|          * is longer than remaining ram
 | |
|          */
 | |
|         if (cur + linelen > pages) {
 | |
|             linelen = pages - cur;
 | |
|         }
 | |
|         for (curb = 0; curb < linelen; curb++) {
 | |
|             bool thisbit = test_bit(cur + curb, todump);
 | |
|             linebuf[curb] = thisbit ? '1' : '.';
 | |
|             found = found || (thisbit != expected);
 | |
|         }
 | |
|         if (found) {
 | |
|             linebuf[curb] = '\0';
 | |
|             fprintf(stderr,  "0x%08" PRIx64 " : %s\n", cur, linebuf);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* **** functions for postcopy ***** */
 | |
| 
 | |
| void ram_postcopy_migrated_memory_release(MigrationState *ms)
 | |
| {
 | |
|     struct RAMBlock *block;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         unsigned long *bitmap = block->bmap;
 | |
|         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
 | |
|         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
 | |
| 
 | |
|         while (run_start < range) {
 | |
|             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
 | |
|             ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
 | |
|                               (run_end - run_start) << TARGET_PAGE_BITS);
 | |
|             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_send_discard_bm_ram: discard a RAMBlock
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * Callback from postcopy_each_ram_send_discard for each RAMBlock
 | |
|  * Note: At this point the 'unsentmap' is the processed bitmap combined
 | |
|  *       with the dirtymap; so a '1' means it's either dirty or unsent.
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  * @pds: state for postcopy
 | |
|  * @start: RAMBlock starting page
 | |
|  * @length: RAMBlock size
 | |
|  */
 | |
| static int postcopy_send_discard_bm_ram(MigrationState *ms,
 | |
|                                         PostcopyDiscardState *pds,
 | |
|                                         RAMBlock *block)
 | |
| {
 | |
|     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
 | |
|     unsigned long current;
 | |
|     unsigned long *unsentmap = block->unsentmap;
 | |
| 
 | |
|     for (current = 0; current < end; ) {
 | |
|         unsigned long one = find_next_bit(unsentmap, end, current);
 | |
| 
 | |
|         if (one <= end) {
 | |
|             unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
 | |
|             unsigned long discard_length;
 | |
| 
 | |
|             if (zero >= end) {
 | |
|                 discard_length = end - one;
 | |
|             } else {
 | |
|                 discard_length = zero - one;
 | |
|             }
 | |
|             if (discard_length) {
 | |
|                 postcopy_discard_send_range(ms, pds, one, discard_length);
 | |
|             }
 | |
|             current = one + discard_length;
 | |
|         } else {
 | |
|             current = one;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_each_ram_send_discard: discard all RAMBlocks
 | |
|  *
 | |
|  * Returns 0 for success or negative for error
 | |
|  *
 | |
|  * Utility for the outgoing postcopy code.
 | |
|  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
 | |
|  *   passing it bitmap indexes and name.
 | |
|  * (qemu_ram_foreach_block ends up passing unscaled lengths
 | |
|  *  which would mean postcopy code would have to deal with target page)
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  */
 | |
| static int postcopy_each_ram_send_discard(MigrationState *ms)
 | |
| {
 | |
|     struct RAMBlock *block;
 | |
|     int ret;
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         PostcopyDiscardState *pds =
 | |
|             postcopy_discard_send_init(ms, block->idstr);
 | |
| 
 | |
|         /*
 | |
|          * Postcopy sends chunks of bitmap over the wire, but it
 | |
|          * just needs indexes at this point, avoids it having
 | |
|          * target page specific code.
 | |
|          */
 | |
|         ret = postcopy_send_discard_bm_ram(ms, pds, block);
 | |
|         postcopy_discard_send_finish(ms, pds);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
 | |
|  *
 | |
|  * Helper for postcopy_chunk_hostpages; it's called twice to
 | |
|  * canonicalize the two bitmaps, that are similar, but one is
 | |
|  * inverted.
 | |
|  *
 | |
|  * Postcopy requires that all target pages in a hostpage are dirty or
 | |
|  * clean, not a mix.  This function canonicalizes the bitmaps.
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  * @unsent_pass: if true we need to canonicalize partially unsent host pages
 | |
|  *               otherwise we need to canonicalize partially dirty host pages
 | |
|  * @block: block that contains the page we want to canonicalize
 | |
|  * @pds: state for postcopy
 | |
|  */
 | |
| static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
 | |
|                                           RAMBlock *block,
 | |
|                                           PostcopyDiscardState *pds)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     unsigned long *bitmap = block->bmap;
 | |
|     unsigned long *unsentmap = block->unsentmap;
 | |
|     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
 | |
|     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
 | |
|     unsigned long run_start;
 | |
| 
 | |
|     if (block->page_size == TARGET_PAGE_SIZE) {
 | |
|         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (unsent_pass) {
 | |
|         /* Find a sent page */
 | |
|         run_start = find_next_zero_bit(unsentmap, pages, 0);
 | |
|     } else {
 | |
|         /* Find a dirty page */
 | |
|         run_start = find_next_bit(bitmap, pages, 0);
 | |
|     }
 | |
| 
 | |
|     while (run_start < pages) {
 | |
|         bool do_fixup = false;
 | |
|         unsigned long fixup_start_addr;
 | |
|         unsigned long host_offset;
 | |
| 
 | |
|         /*
 | |
|          * If the start of this run of pages is in the middle of a host
 | |
|          * page, then we need to fixup this host page.
 | |
|          */
 | |
|         host_offset = run_start % host_ratio;
 | |
|         if (host_offset) {
 | |
|             do_fixup = true;
 | |
|             run_start -= host_offset;
 | |
|             fixup_start_addr = run_start;
 | |
|             /* For the next pass */
 | |
|             run_start = run_start + host_ratio;
 | |
|         } else {
 | |
|             /* Find the end of this run */
 | |
|             unsigned long run_end;
 | |
|             if (unsent_pass) {
 | |
|                 run_end = find_next_bit(unsentmap, pages, run_start + 1);
 | |
|             } else {
 | |
|                 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
 | |
|             }
 | |
|             /*
 | |
|              * If the end isn't at the start of a host page, then the
 | |
|              * run doesn't finish at the end of a host page
 | |
|              * and we need to discard.
 | |
|              */
 | |
|             host_offset = run_end % host_ratio;
 | |
|             if (host_offset) {
 | |
|                 do_fixup = true;
 | |
|                 fixup_start_addr = run_end - host_offset;
 | |
|                 /*
 | |
|                  * This host page has gone, the next loop iteration starts
 | |
|                  * from after the fixup
 | |
|                  */
 | |
|                 run_start = fixup_start_addr + host_ratio;
 | |
|             } else {
 | |
|                 /*
 | |
|                  * No discards on this iteration, next loop starts from
 | |
|                  * next sent/dirty page
 | |
|                  */
 | |
|                 run_start = run_end + 1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (do_fixup) {
 | |
|             unsigned long page;
 | |
| 
 | |
|             /* Tell the destination to discard this page */
 | |
|             if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
 | |
|                 /* For the unsent_pass we:
 | |
|                  *     discard partially sent pages
 | |
|                  * For the !unsent_pass (dirty) we:
 | |
|                  *     discard partially dirty pages that were sent
 | |
|                  *     (any partially sent pages were already discarded
 | |
|                  *     by the previous unsent_pass)
 | |
|                  */
 | |
|                 postcopy_discard_send_range(ms, pds, fixup_start_addr,
 | |
|                                             host_ratio);
 | |
|             }
 | |
| 
 | |
|             /* Clean up the bitmap */
 | |
|             for (page = fixup_start_addr;
 | |
|                  page < fixup_start_addr + host_ratio; page++) {
 | |
|                 /* All pages in this host page are now not sent */
 | |
|                 set_bit(page, unsentmap);
 | |
| 
 | |
|                 /*
 | |
|                  * Remark them as dirty, updating the count for any pages
 | |
|                  * that weren't previously dirty.
 | |
|                  */
 | |
|                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (unsent_pass) {
 | |
|             /* Find the next sent page for the next iteration */
 | |
|             run_start = find_next_zero_bit(unsentmap, pages, run_start);
 | |
|         } else {
 | |
|             /* Find the next dirty page for the next iteration */
 | |
|             run_start = find_next_bit(bitmap, pages, run_start);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_chuck_hostpages: discrad any partially sent host page
 | |
|  *
 | |
|  * Utility for the outgoing postcopy code.
 | |
|  *
 | |
|  * Discard any partially sent host-page size chunks, mark any partially
 | |
|  * dirty host-page size chunks as all dirty.  In this case the host-page
 | |
|  * is the host-page for the particular RAMBlock, i.e. it might be a huge page
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  * @block: block we want to work with
 | |
|  */
 | |
| static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
 | |
| {
 | |
|     PostcopyDiscardState *pds =
 | |
|         postcopy_discard_send_init(ms, block->idstr);
 | |
| 
 | |
|     /* First pass: Discard all partially sent host pages */
 | |
|     postcopy_chunk_hostpages_pass(ms, true, block, pds);
 | |
|     /*
 | |
|      * Second pass: Ensure that all partially dirty host pages are made
 | |
|      * fully dirty.
 | |
|      */
 | |
|     postcopy_chunk_hostpages_pass(ms, false, block, pds);
 | |
| 
 | |
|     postcopy_discard_send_finish(ms, pds);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * Transmit the set of pages to be discarded after precopy to the target
 | |
|  * these are pages that:
 | |
|  *     a) Have been previously transmitted but are now dirty again
 | |
|  *     b) Pages that have never been transmitted, this ensures that
 | |
|  *        any pages on the destination that have been mapped by background
 | |
|  *        tasks get discarded (transparent huge pages is the specific concern)
 | |
|  * Hopefully this is pretty sparse
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  */
 | |
| int ram_postcopy_send_discard_bitmap(MigrationState *ms)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     RAMBlock *block;
 | |
|     int ret;
 | |
| 
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     /* This should be our last sync, the src is now paused */
 | |
|     migration_bitmap_sync(rs);
 | |
| 
 | |
|     /* Easiest way to make sure we don't resume in the middle of a host-page */
 | |
|     rs->last_seen_block = NULL;
 | |
|     rs->last_sent_block = NULL;
 | |
|     rs->last_page = 0;
 | |
| 
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
 | |
|         unsigned long *bitmap = block->bmap;
 | |
|         unsigned long *unsentmap = block->unsentmap;
 | |
| 
 | |
|         if (!unsentmap) {
 | |
|             /* We don't have a safe way to resize the sentmap, so
 | |
|              * if the bitmap was resized it will be NULL at this
 | |
|              * point.
 | |
|              */
 | |
|             error_report("migration ram resized during precopy phase");
 | |
|             rcu_read_unlock();
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         /* Deal with TPS != HPS and huge pages */
 | |
|         ret = postcopy_chunk_hostpages(ms, block);
 | |
|         if (ret) {
 | |
|             rcu_read_unlock();
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Update the unsentmap to be unsentmap = unsentmap | dirty
 | |
|          */
 | |
|         bitmap_or(unsentmap, unsentmap, bitmap, pages);
 | |
| #ifdef DEBUG_POSTCOPY
 | |
|         ram_debug_dump_bitmap(unsentmap, true, pages);
 | |
| #endif
 | |
|     }
 | |
|     trace_ram_postcopy_send_discard_bitmap();
 | |
| 
 | |
|     ret = postcopy_each_ram_send_discard(ms);
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_discard_range: discard dirtied pages at the beginning of postcopy
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * @rbname: name of the RAMBlock of the request. NULL means the
 | |
|  *          same that last one.
 | |
|  * @start: RAMBlock starting page
 | |
|  * @length: RAMBlock size
 | |
|  */
 | |
| int ram_discard_range(const char *rbname, uint64_t start, size_t length)
 | |
| {
 | |
|     int ret = -1;
 | |
| 
 | |
|     trace_ram_discard_range(rbname, start, length);
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     RAMBlock *rb = qemu_ram_block_by_name(rbname);
 | |
| 
 | |
|     if (!rb) {
 | |
|         error_report("ram_discard_range: Failed to find block '%s'", rbname);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
 | |
|                  length >> qemu_target_page_bits());
 | |
|     ret = ram_block_discard_range(rb, start, length);
 | |
| 
 | |
| err:
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For every allocation, we will try not to crash the VM if the
 | |
|  * allocation failed.
 | |
|  */
 | |
| static int xbzrle_init(void)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (!migrate_use_xbzrle()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     XBZRLE_cache_lock();
 | |
| 
 | |
|     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
 | |
|     if (!XBZRLE.zero_target_page) {
 | |
|         error_report("%s: Error allocating zero page", __func__);
 | |
|         goto err_out;
 | |
|     }
 | |
| 
 | |
|     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
 | |
|                               TARGET_PAGE_SIZE, &local_err);
 | |
|     if (!XBZRLE.cache) {
 | |
|         error_report_err(local_err);
 | |
|         goto free_zero_page;
 | |
|     }
 | |
| 
 | |
|     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
 | |
|     if (!XBZRLE.encoded_buf) {
 | |
|         error_report("%s: Error allocating encoded_buf", __func__);
 | |
|         goto free_cache;
 | |
|     }
 | |
| 
 | |
|     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
 | |
|     if (!XBZRLE.current_buf) {
 | |
|         error_report("%s: Error allocating current_buf", __func__);
 | |
|         goto free_encoded_buf;
 | |
|     }
 | |
| 
 | |
|     /* We are all good */
 | |
|     XBZRLE_cache_unlock();
 | |
|     return 0;
 | |
| 
 | |
| free_encoded_buf:
 | |
|     g_free(XBZRLE.encoded_buf);
 | |
|     XBZRLE.encoded_buf = NULL;
 | |
| free_cache:
 | |
|     cache_fini(XBZRLE.cache);
 | |
|     XBZRLE.cache = NULL;
 | |
| free_zero_page:
 | |
|     g_free(XBZRLE.zero_target_page);
 | |
|     XBZRLE.zero_target_page = NULL;
 | |
| err_out:
 | |
|     XBZRLE_cache_unlock();
 | |
|     return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int ram_state_init(RAMState **rsp)
 | |
| {
 | |
|     *rsp = g_try_new0(RAMState, 1);
 | |
| 
 | |
|     if (!*rsp) {
 | |
|         error_report("%s: Init ramstate fail", __func__);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_init(&(*rsp)->bitmap_mutex);
 | |
|     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
 | |
|     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
 | |
| 
 | |
|     /*
 | |
|      * Count the total number of pages used by ram blocks not including any
 | |
|      * gaps due to alignment or unplugs.
 | |
|      */
 | |
|     (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     ram_state_reset(*rsp);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ram_list_init_bitmaps(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     unsigned long pages;
 | |
| 
 | |
|     /* Skip setting bitmap if there is no RAM */
 | |
|     if (ram_bytes_total()) {
 | |
|         QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|             pages = block->max_length >> TARGET_PAGE_BITS;
 | |
|             block->bmap = bitmap_new(pages);
 | |
|             bitmap_set(block->bmap, 0, pages);
 | |
|             if (migrate_postcopy_ram()) {
 | |
|                 block->unsentmap = bitmap_new(pages);
 | |
|                 bitmap_set(block->unsentmap, 0, pages);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ram_init_bitmaps(RAMState *rs)
 | |
| {
 | |
|     /* For memory_global_dirty_log_start below.  */
 | |
|     qemu_mutex_lock_iothread();
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     ram_list_init_bitmaps();
 | |
|     memory_global_dirty_log_start();
 | |
|     migration_bitmap_sync(rs);
 | |
| 
 | |
|     rcu_read_unlock();
 | |
|     qemu_mutex_unlock_ramlist();
 | |
|     qemu_mutex_unlock_iothread();
 | |
| }
 | |
| 
 | |
| static int ram_init_all(RAMState **rsp)
 | |
| {
 | |
|     if (ram_state_init(rsp)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (xbzrle_init()) {
 | |
|         ram_state_cleanup(rsp);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     ram_init_bitmaps(*rsp);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
 | |
|  * long-running RCU critical section.  When rcu-reclaims in the code
 | |
|  * start to become numerous it will be necessary to reduce the
 | |
|  * granularity of these critical sections.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ram_save_setup: Setup RAM for migration
 | |
|  *
 | |
|  * Returns zero to indicate success and negative for error
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_save_setup(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RAMState **rsp = opaque;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     if (compress_threads_save_setup()) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* migration has already setup the bitmap, reuse it. */
 | |
|     if (!migration_in_colo_state()) {
 | |
|         if (ram_init_all(rsp) != 0) {
 | |
|             compress_threads_save_cleanup();
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     (*rsp)->f = f;
 | |
| 
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
 | |
| 
 | |
|     RAMBLOCK_FOREACH(block) {
 | |
|         qemu_put_byte(f, strlen(block->idstr));
 | |
|         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
 | |
|         qemu_put_be64(f, block->used_length);
 | |
|         if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
 | |
|             qemu_put_be64(f, block->page_size);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
 | |
|     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
 | |
| 
 | |
|     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_iterate: iterative stage for migration
 | |
|  *
 | |
|  * Returns zero to indicate success and negative for error
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_save_iterate(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RAMState **temp = opaque;
 | |
|     RAMState *rs = *temp;
 | |
|     int ret;
 | |
|     int i;
 | |
|     int64_t t0;
 | |
|     int done = 0;
 | |
| 
 | |
|     if (blk_mig_bulk_active()) {
 | |
|         /* Avoid transferring ram during bulk phase of block migration as
 | |
|          * the bulk phase will usually take a long time and transferring
 | |
|          * ram updates during that time is pointless. */
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     if (ram_list.version != rs->last_version) {
 | |
|         ram_state_reset(rs);
 | |
|     }
 | |
| 
 | |
|     /* Read version before ram_list.blocks */
 | |
|     smp_rmb();
 | |
| 
 | |
|     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
 | |
| 
 | |
|     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
|     i = 0;
 | |
|     while ((ret = qemu_file_rate_limit(f)) == 0) {
 | |
|         int pages;
 | |
| 
 | |
|         pages = ram_find_and_save_block(rs, false);
 | |
|         /* no more pages to sent */
 | |
|         if (pages == 0) {
 | |
|             done = 1;
 | |
|             break;
 | |
|         }
 | |
|         rs->iterations++;
 | |
| 
 | |
|         /* we want to check in the 1st loop, just in case it was the 1st time
 | |
|            and we had to sync the dirty bitmap.
 | |
|            qemu_get_clock_ns() is a bit expensive, so we only check each some
 | |
|            iterations
 | |
|         */
 | |
|         if ((i & 63) == 0) {
 | |
|             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
 | |
|             if (t1 > MAX_WAIT) {
 | |
|                 trace_ram_save_iterate_big_wait(t1, i);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         i++;
 | |
|     }
 | |
|     flush_compressed_data(rs);
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     /*
 | |
|      * Must occur before EOS (or any QEMUFile operation)
 | |
|      * because of RDMA protocol.
 | |
|      */
 | |
|     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
 | |
| 
 | |
| out:
 | |
|     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | |
|     ram_counters.transferred += 8;
 | |
| 
 | |
|     ret = qemu_file_get_error(f);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_complete: function called to send the remaining amount of ram
 | |
|  *
 | |
|  * Returns zero to indicate success
 | |
|  *
 | |
|  * Called with iothread lock
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_save_complete(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RAMState **temp = opaque;
 | |
|     RAMState *rs = *temp;
 | |
| 
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     if (!migration_in_postcopy()) {
 | |
|         migration_bitmap_sync(rs);
 | |
|     }
 | |
| 
 | |
|     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
 | |
| 
 | |
|     /* try transferring iterative blocks of memory */
 | |
| 
 | |
|     /* flush all remaining blocks regardless of rate limiting */
 | |
|     while (true) {
 | |
|         int pages;
 | |
| 
 | |
|         pages = ram_find_and_save_block(rs, !migration_in_colo_state());
 | |
|         /* no more blocks to sent */
 | |
|         if (pages == 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     flush_compressed_data(rs);
 | |
|     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
 | |
| 
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
 | |
|                              uint64_t *res_precopy_only,
 | |
|                              uint64_t *res_compatible,
 | |
|                              uint64_t *res_postcopy_only)
 | |
| {
 | |
|     RAMState **temp = opaque;
 | |
|     RAMState *rs = *temp;
 | |
|     uint64_t remaining_size;
 | |
| 
 | |
|     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
 | |
| 
 | |
|     if (!migration_in_postcopy() &&
 | |
|         remaining_size < max_size) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         rcu_read_lock();
 | |
|         migration_bitmap_sync(rs);
 | |
|         rcu_read_unlock();
 | |
|         qemu_mutex_unlock_iothread();
 | |
|         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
 | |
|     }
 | |
| 
 | |
|     if (migrate_postcopy_ram()) {
 | |
|         /* We can do postcopy, and all the data is postcopiable */
 | |
|         *res_compatible += remaining_size;
 | |
|     } else {
 | |
|         *res_precopy_only += remaining_size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
 | |
| {
 | |
|     unsigned int xh_len;
 | |
|     int xh_flags;
 | |
|     uint8_t *loaded_data;
 | |
| 
 | |
|     /* extract RLE header */
 | |
|     xh_flags = qemu_get_byte(f);
 | |
|     xh_len = qemu_get_be16(f);
 | |
| 
 | |
|     if (xh_flags != ENCODING_FLAG_XBZRLE) {
 | |
|         error_report("Failed to load XBZRLE page - wrong compression!");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (xh_len > TARGET_PAGE_SIZE) {
 | |
|         error_report("Failed to load XBZRLE page - len overflow!");
 | |
|         return -1;
 | |
|     }
 | |
|     loaded_data = XBZRLE.decoded_buf;
 | |
|     /* load data and decode */
 | |
|     /* it can change loaded_data to point to an internal buffer */
 | |
|     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
 | |
| 
 | |
|     /* decode RLE */
 | |
|     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
 | |
|                              TARGET_PAGE_SIZE) == -1) {
 | |
|         error_report("Failed to load XBZRLE page - decode error!");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_block_from_stream: read a RAMBlock id from the migration stream
 | |
|  *
 | |
|  * Must be called from within a rcu critical section.
 | |
|  *
 | |
|  * Returns a pointer from within the RCU-protected ram_list.
 | |
|  *
 | |
|  * @f: QEMUFile where to read the data from
 | |
|  * @flags: Page flags (mostly to see if it's a continuation of previous block)
 | |
|  */
 | |
| static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
 | |
| {
 | |
|     static RAMBlock *block = NULL;
 | |
|     char id[256];
 | |
|     uint8_t len;
 | |
| 
 | |
|     if (flags & RAM_SAVE_FLAG_CONTINUE) {
 | |
|         if (!block) {
 | |
|             error_report("Ack, bad migration stream!");
 | |
|             return NULL;
 | |
|         }
 | |
|         return block;
 | |
|     }
 | |
| 
 | |
|     len = qemu_get_byte(f);
 | |
|     qemu_get_buffer(f, (uint8_t *)id, len);
 | |
|     id[len] = 0;
 | |
| 
 | |
|     block = qemu_ram_block_by_name(id);
 | |
|     if (!block) {
 | |
|         error_report("Can't find block %s", id);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| static inline void *host_from_ram_block_offset(RAMBlock *block,
 | |
|                                                ram_addr_t offset)
 | |
| {
 | |
|     if (!offset_in_ramblock(block, offset)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return block->host + offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_handle_compressed: handle the zero page case
 | |
|  *
 | |
|  * If a page (or a whole RDMA chunk) has been
 | |
|  * determined to be zero, then zap it.
 | |
|  *
 | |
|  * @host: host address for the zero page
 | |
|  * @ch: what the page is filled from.  We only support zero
 | |
|  * @size: size of the zero page
 | |
|  */
 | |
| void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
 | |
| {
 | |
|     if (ch != 0 || !is_zero_range(host, size)) {
 | |
|         memset(host, ch, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* return the size after decompression, or negative value on error */
 | |
| static int
 | |
| qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
 | |
|                      const uint8_t *source, size_t source_len)
 | |
| {
 | |
|     int err;
 | |
| 
 | |
|     err = inflateReset(stream);
 | |
|     if (err != Z_OK) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     stream->avail_in = source_len;
 | |
|     stream->next_in = (uint8_t *)source;
 | |
|     stream->avail_out = dest_len;
 | |
|     stream->next_out = dest;
 | |
| 
 | |
|     err = inflate(stream, Z_NO_FLUSH);
 | |
|     if (err != Z_STREAM_END) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return stream->total_out;
 | |
| }
 | |
| 
 | |
| static void *do_data_decompress(void *opaque)
 | |
| {
 | |
|     DecompressParam *param = opaque;
 | |
|     unsigned long pagesize;
 | |
|     uint8_t *des;
 | |
|     int len, ret;
 | |
| 
 | |
|     qemu_mutex_lock(¶m->mutex);
 | |
|     while (!param->quit) {
 | |
|         if (param->des) {
 | |
|             des = param->des;
 | |
|             len = param->len;
 | |
|             param->des = 0;
 | |
|             qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|             pagesize = TARGET_PAGE_SIZE;
 | |
| 
 | |
|             ret = qemu_uncompress_data(¶m->stream, des, pagesize,
 | |
|                                        param->compbuf, len);
 | |
|             if (ret < 0) {
 | |
|                 error_report("decompress data failed");
 | |
|                 qemu_file_set_error(decomp_file, ret);
 | |
|             }
 | |
| 
 | |
|             qemu_mutex_lock(&decomp_done_lock);
 | |
|             param->done = true;
 | |
|             qemu_cond_signal(&decomp_done_cond);
 | |
|             qemu_mutex_unlock(&decomp_done_lock);
 | |
| 
 | |
|             qemu_mutex_lock(¶m->mutex);
 | |
|         } else {
 | |
|             qemu_cond_wait(¶m->cond, ¶m->mutex);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int wait_for_decompress_done(void)
 | |
| {
 | |
|     int idx, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     qemu_mutex_lock(&decomp_done_lock);
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         while (!decomp_param[idx].done) {
 | |
|             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&decomp_done_lock);
 | |
|     return qemu_file_get_error(decomp_file);
 | |
| }
 | |
| 
 | |
| static void compress_threads_load_cleanup(void)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return;
 | |
|     }
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         /*
 | |
|          * we use it as a indicator which shows if the thread is
 | |
|          * properly init'd or not
 | |
|          */
 | |
|         if (!decomp_param[i].compbuf) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         qemu_mutex_lock(&decomp_param[i].mutex);
 | |
|         decomp_param[i].quit = true;
 | |
|         qemu_cond_signal(&decomp_param[i].cond);
 | |
|         qemu_mutex_unlock(&decomp_param[i].mutex);
 | |
|     }
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         if (!decomp_param[i].compbuf) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         qemu_thread_join(decompress_threads + i);
 | |
|         qemu_mutex_destroy(&decomp_param[i].mutex);
 | |
|         qemu_cond_destroy(&decomp_param[i].cond);
 | |
|         inflateEnd(&decomp_param[i].stream);
 | |
|         g_free(decomp_param[i].compbuf);
 | |
|         decomp_param[i].compbuf = NULL;
 | |
|     }
 | |
|     g_free(decompress_threads);
 | |
|     g_free(decomp_param);
 | |
|     decompress_threads = NULL;
 | |
|     decomp_param = NULL;
 | |
|     decomp_file = NULL;
 | |
| }
 | |
| 
 | |
| static int compress_threads_load_setup(QEMUFile *f)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     decompress_threads = g_new0(QemuThread, thread_count);
 | |
|     decomp_param = g_new0(DecompressParam, thread_count);
 | |
|     qemu_mutex_init(&decomp_done_lock);
 | |
|     qemu_cond_init(&decomp_done_cond);
 | |
|     decomp_file = f;
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         if (inflateInit(&decomp_param[i].stream) != Z_OK) {
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
 | |
|         qemu_mutex_init(&decomp_param[i].mutex);
 | |
|         qemu_cond_init(&decomp_param[i].cond);
 | |
|         decomp_param[i].done = true;
 | |
|         decomp_param[i].quit = false;
 | |
|         qemu_thread_create(decompress_threads + i, "decompress",
 | |
|                            do_data_decompress, decomp_param + i,
 | |
|                            QEMU_THREAD_JOINABLE);
 | |
|     }
 | |
|     return 0;
 | |
| exit:
 | |
|     compress_threads_load_cleanup();
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void decompress_data_with_multi_threads(QEMUFile *f,
 | |
|                                                void *host, int len)
 | |
| {
 | |
|     int idx, thread_count;
 | |
| 
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     qemu_mutex_lock(&decomp_done_lock);
 | |
|     while (true) {
 | |
|         for (idx = 0; idx < thread_count; idx++) {
 | |
|             if (decomp_param[idx].done) {
 | |
|                 decomp_param[idx].done = false;
 | |
|                 qemu_mutex_lock(&decomp_param[idx].mutex);
 | |
|                 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
 | |
|                 decomp_param[idx].des = host;
 | |
|                 decomp_param[idx].len = len;
 | |
|                 qemu_cond_signal(&decomp_param[idx].cond);
 | |
|                 qemu_mutex_unlock(&decomp_param[idx].mutex);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (idx < thread_count) {
 | |
|             break;
 | |
|         } else {
 | |
|             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&decomp_done_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_load_setup: Setup RAM for migration incoming side
 | |
|  *
 | |
|  * Returns zero to indicate success and negative for error
 | |
|  *
 | |
|  * @f: QEMUFile where to receive the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_load_setup(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     if (compress_threads_load_setup(f)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     xbzrle_load_setup();
 | |
|     ramblock_recv_map_init();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ram_load_cleanup(void *opaque)
 | |
| {
 | |
|     RAMBlock *rb;
 | |
|     xbzrle_load_cleanup();
 | |
|     compress_threads_load_cleanup();
 | |
| 
 | |
|     RAMBLOCK_FOREACH(rb) {
 | |
|         g_free(rb->receivedmap);
 | |
|         rb->receivedmap = NULL;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_postcopy_incoming_init: allocate postcopy data structures
 | |
|  *
 | |
|  * Returns 0 for success and negative if there was one error
 | |
|  *
 | |
|  * @mis: current migration incoming state
 | |
|  *
 | |
|  * Allocate data structures etc needed by incoming migration with
 | |
|  * postcopy-ram. postcopy-ram's similarly names
 | |
|  * postcopy_ram_incoming_init does the work.
 | |
|  */
 | |
| int ram_postcopy_incoming_init(MigrationIncomingState *mis)
 | |
| {
 | |
|     unsigned long ram_pages = last_ram_page();
 | |
| 
 | |
|     return postcopy_ram_incoming_init(mis, ram_pages);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_load_postcopy: load a page in postcopy case
 | |
|  *
 | |
|  * Returns 0 for success or -errno in case of error
 | |
|  *
 | |
|  * Called in postcopy mode by ram_load().
 | |
|  * rcu_read_lock is taken prior to this being called.
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  */
 | |
| static int ram_load_postcopy(QEMUFile *f)
 | |
| {
 | |
|     int flags = 0, ret = 0;
 | |
|     bool place_needed = false;
 | |
|     bool matching_page_sizes = false;
 | |
|     MigrationIncomingState *mis = migration_incoming_get_current();
 | |
|     /* Temporary page that is later 'placed' */
 | |
|     void *postcopy_host_page = postcopy_get_tmp_page(mis);
 | |
|     void *last_host = NULL;
 | |
|     bool all_zero = false;
 | |
| 
 | |
|     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
 | |
|         ram_addr_t addr;
 | |
|         void *host = NULL;
 | |
|         void *page_buffer = NULL;
 | |
|         void *place_source = NULL;
 | |
|         RAMBlock *block = NULL;
 | |
|         uint8_t ch;
 | |
| 
 | |
|         addr = qemu_get_be64(f);
 | |
| 
 | |
|         /*
 | |
|          * If qemu file error, we should stop here, and then "addr"
 | |
|          * may be invalid
 | |
|          */
 | |
|         ret = qemu_file_get_error(f);
 | |
|         if (ret) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         flags = addr & ~TARGET_PAGE_MASK;
 | |
|         addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|         trace_ram_load_postcopy_loop((uint64_t)addr, flags);
 | |
|         place_needed = false;
 | |
|         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
 | |
|             block = ram_block_from_stream(f, flags);
 | |
| 
 | |
|             host = host_from_ram_block_offset(block, addr);
 | |
|             if (!host) {
 | |
|                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
 | |
|             /*
 | |
|              * Postcopy requires that we place whole host pages atomically;
 | |
|              * these may be huge pages for RAMBlocks that are backed by
 | |
|              * hugetlbfs.
 | |
|              * To make it atomic, the data is read into a temporary page
 | |
|              * that's moved into place later.
 | |
|              * The migration protocol uses,  possibly smaller, target-pages
 | |
|              * however the source ensures it always sends all the components
 | |
|              * of a host page in order.
 | |
|              */
 | |
|             page_buffer = postcopy_host_page +
 | |
|                           ((uintptr_t)host & (block->page_size - 1));
 | |
|             /* If all TP are zero then we can optimise the place */
 | |
|             if (!((uintptr_t)host & (block->page_size - 1))) {
 | |
|                 all_zero = true;
 | |
|             } else {
 | |
|                 /* not the 1st TP within the HP */
 | |
|                 if (host != (last_host + TARGET_PAGE_SIZE)) {
 | |
|                     error_report("Non-sequential target page %p/%p",
 | |
|                                   host, last_host);
 | |
|                     ret = -EINVAL;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
| 
 | |
|             /*
 | |
|              * If it's the last part of a host page then we place the host
 | |
|              * page
 | |
|              */
 | |
|             place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
 | |
|                                      (block->page_size - 1)) == 0;
 | |
|             place_source = postcopy_host_page;
 | |
|         }
 | |
|         last_host = host;
 | |
| 
 | |
|         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
 | |
|         case RAM_SAVE_FLAG_ZERO:
 | |
|             ch = qemu_get_byte(f);
 | |
|             memset(page_buffer, ch, TARGET_PAGE_SIZE);
 | |
|             if (ch) {
 | |
|                 all_zero = false;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_PAGE:
 | |
|             all_zero = false;
 | |
|             if (!place_needed || !matching_page_sizes) {
 | |
|                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
 | |
|             } else {
 | |
|                 /* Avoids the qemu_file copy during postcopy, which is
 | |
|                  * going to do a copy later; can only do it when we
 | |
|                  * do this read in one go (matching page sizes)
 | |
|                  */
 | |
|                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
 | |
|                                          TARGET_PAGE_SIZE);
 | |
|             }
 | |
|             break;
 | |
|         case RAM_SAVE_FLAG_EOS:
 | |
|             /* normal exit */
 | |
|             break;
 | |
|         default:
 | |
|             error_report("Unknown combination of migration flags: %#x"
 | |
|                          " (postcopy mode)", flags);
 | |
|             ret = -EINVAL;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Detect for any possible file errors */
 | |
|         if (!ret && qemu_file_get_error(f)) {
 | |
|             ret = qemu_file_get_error(f);
 | |
|         }
 | |
| 
 | |
|         if (!ret && place_needed) {
 | |
|             /* This gets called at the last target page in the host page */
 | |
|             void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
 | |
| 
 | |
|             if (all_zero) {
 | |
|                 ret = postcopy_place_page_zero(mis, place_dest,
 | |
|                                                block);
 | |
|             } else {
 | |
|                 ret = postcopy_place_page(mis, place_dest,
 | |
|                                           place_source, block);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static bool postcopy_is_advised(void)
 | |
| {
 | |
|     PostcopyState ps = postcopy_state_get();
 | |
|     return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
 | |
| }
 | |
| 
 | |
| static bool postcopy_is_running(void)
 | |
| {
 | |
|     PostcopyState ps = postcopy_state_get();
 | |
|     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
 | |
| }
 | |
| 
 | |
| static int ram_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     int flags = 0, ret = 0, invalid_flags = 0;
 | |
|     static uint64_t seq_iter;
 | |
|     int len = 0;
 | |
|     /*
 | |
|      * If system is running in postcopy mode, page inserts to host memory must
 | |
|      * be atomic
 | |
|      */
 | |
|     bool postcopy_running = postcopy_is_running();
 | |
|     /* ADVISE is earlier, it shows the source has the postcopy capability on */
 | |
|     bool postcopy_advised = postcopy_is_advised();
 | |
| 
 | |
|     seq_iter++;
 | |
| 
 | |
|     if (version_id != 4) {
 | |
|         ret = -EINVAL;
 | |
|     }
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
 | |
|     }
 | |
|     /* This RCU critical section can be very long running.
 | |
|      * When RCU reclaims in the code start to become numerous,
 | |
|      * it will be necessary to reduce the granularity of this
 | |
|      * critical section.
 | |
|      */
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     if (postcopy_running) {
 | |
|         ret = ram_load_postcopy(f);
 | |
|     }
 | |
| 
 | |
|     while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
 | |
|         ram_addr_t addr, total_ram_bytes;
 | |
|         void *host = NULL;
 | |
|         uint8_t ch;
 | |
| 
 | |
|         addr = qemu_get_be64(f);
 | |
|         flags = addr & ~TARGET_PAGE_MASK;
 | |
|         addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|         if (flags & invalid_flags) {
 | |
|             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
 | |
|                 error_report("Received an unexpected compressed page");
 | |
|             }
 | |
| 
 | |
|             ret = -EINVAL;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
 | |
|                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
 | |
|             RAMBlock *block = ram_block_from_stream(f, flags);
 | |
| 
 | |
|             host = host_from_ram_block_offset(block, addr);
 | |
|             if (!host) {
 | |
|                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             ramblock_recv_bitmap_set(block, host);
 | |
|             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
 | |
|         }
 | |
| 
 | |
|         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
 | |
|         case RAM_SAVE_FLAG_MEM_SIZE:
 | |
|             /* Synchronize RAM block list */
 | |
|             total_ram_bytes = addr;
 | |
|             while (!ret && total_ram_bytes) {
 | |
|                 RAMBlock *block;
 | |
|                 char id[256];
 | |
|                 ram_addr_t length;
 | |
| 
 | |
|                 len = qemu_get_byte(f);
 | |
|                 qemu_get_buffer(f, (uint8_t *)id, len);
 | |
|                 id[len] = 0;
 | |
|                 length = qemu_get_be64(f);
 | |
| 
 | |
|                 block = qemu_ram_block_by_name(id);
 | |
|                 if (block) {
 | |
|                     if (length != block->used_length) {
 | |
|                         Error *local_err = NULL;
 | |
| 
 | |
|                         ret = qemu_ram_resize(block, length,
 | |
|                                               &local_err);
 | |
|                         if (local_err) {
 | |
|                             error_report_err(local_err);
 | |
|                         }
 | |
|                     }
 | |
|                     /* For postcopy we need to check hugepage sizes match */
 | |
|                     if (postcopy_advised &&
 | |
|                         block->page_size != qemu_host_page_size) {
 | |
|                         uint64_t remote_page_size = qemu_get_be64(f);
 | |
|                         if (remote_page_size != block->page_size) {
 | |
|                             error_report("Mismatched RAM page size %s "
 | |
|                                          "(local) %zd != %" PRId64,
 | |
|                                          id, block->page_size,
 | |
|                                          remote_page_size);
 | |
|                             ret = -EINVAL;
 | |
|                         }
 | |
|                     }
 | |
|                     ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
 | |
|                                           block->idstr);
 | |
|                 } else {
 | |
|                     error_report("Unknown ramblock \"%s\", cannot "
 | |
|                                  "accept migration", id);
 | |
|                     ret = -EINVAL;
 | |
|                 }
 | |
| 
 | |
|                 total_ram_bytes -= length;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_ZERO:
 | |
|             ch = qemu_get_byte(f);
 | |
|             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_PAGE:
 | |
|             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_COMPRESS_PAGE:
 | |
|             len = qemu_get_be32(f);
 | |
|             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
 | |
|                 error_report("Invalid compressed data length: %d", len);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             decompress_data_with_multi_threads(f, host, len);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_XBZRLE:
 | |
|             if (load_xbzrle(f, addr, host) < 0) {
 | |
|                 error_report("Failed to decompress XBZRLE page at "
 | |
|                              RAM_ADDR_FMT, addr);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             break;
 | |
|         case RAM_SAVE_FLAG_EOS:
 | |
|             /* normal exit */
 | |
|             break;
 | |
|         default:
 | |
|             if (flags & RAM_SAVE_FLAG_HOOK) {
 | |
|                 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
 | |
|             } else {
 | |
|                 error_report("Unknown combination of migration flags: %#x",
 | |
|                              flags);
 | |
|                 ret = -EINVAL;
 | |
|             }
 | |
|         }
 | |
|         if (!ret) {
 | |
|             ret = qemu_file_get_error(f);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret |= wait_for_decompress_done();
 | |
|     rcu_read_unlock();
 | |
|     trace_ram_load_complete(ret, seq_iter);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static bool ram_has_postcopy(void *opaque)
 | |
| {
 | |
|     return migrate_postcopy_ram();
 | |
| }
 | |
| 
 | |
| static SaveVMHandlers savevm_ram_handlers = {
 | |
|     .save_setup = ram_save_setup,
 | |
|     .save_live_iterate = ram_save_iterate,
 | |
|     .save_live_complete_postcopy = ram_save_complete,
 | |
|     .save_live_complete_precopy = ram_save_complete,
 | |
|     .has_postcopy = ram_has_postcopy,
 | |
|     .save_live_pending = ram_save_pending,
 | |
|     .load_state = ram_load,
 | |
|     .save_cleanup = ram_save_cleanup,
 | |
|     .load_setup = ram_load_setup,
 | |
|     .load_cleanup = ram_load_cleanup,
 | |
| };
 | |
| 
 | |
| void ram_mig_init(void)
 | |
| {
 | |
|     qemu_mutex_init(&XBZRLE.lock);
 | |
|     register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
 | |
| }
 |