Let's also allow to probe other access types. Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20190830100959.26615-3-david@redhat.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			1866 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1866 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Common CPU TLB handling
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "exec/cputlb.h"
 | 
						|
#include "exec/memory-internal.h"
 | 
						|
#include "exec/ram_addr.h"
 | 
						|
#include "tcg/tcg.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "exec/log.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
#include "qemu/atomic128.h"
 | 
						|
 | 
						|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
 | 
						|
/* #define DEBUG_TLB */
 | 
						|
/* #define DEBUG_TLB_LOG */
 | 
						|
 | 
						|
#ifdef DEBUG_TLB
 | 
						|
# define DEBUG_TLB_GATE 1
 | 
						|
# ifdef DEBUG_TLB_LOG
 | 
						|
#  define DEBUG_TLB_LOG_GATE 1
 | 
						|
# else
 | 
						|
#  define DEBUG_TLB_LOG_GATE 0
 | 
						|
# endif
 | 
						|
#else
 | 
						|
# define DEBUG_TLB_GATE 0
 | 
						|
# define DEBUG_TLB_LOG_GATE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define tlb_debug(fmt, ...) do { \
 | 
						|
    if (DEBUG_TLB_LOG_GATE) { \
 | 
						|
        qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
 | 
						|
                      ## __VA_ARGS__); \
 | 
						|
    } else if (DEBUG_TLB_GATE) { \
 | 
						|
        fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
 | 
						|
    } \
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define assert_cpu_is_self(cpu) do {                              \
 | 
						|
        if (DEBUG_TLB_GATE) {                                     \
 | 
						|
            g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
 | 
						|
        }                                                         \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* run_on_cpu_data.target_ptr should always be big enough for a
 | 
						|
 * target_ulong even on 32 bit builds */
 | 
						|
QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
 | 
						|
 | 
						|
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
 | 
						|
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
 | 
						|
 | 
						|
static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
 | 
						|
{
 | 
						|
    return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
 | 
						|
                             size_t max_entries)
 | 
						|
{
 | 
						|
    desc->window_begin_ns = ns;
 | 
						|
    desc->window_max_entries = max_entries;
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_dyn_init(CPUArchState *env)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < NB_MMU_MODES; i++) {
 | 
						|
        CPUTLBDesc *desc = &env_tlb(env)->d[i];
 | 
						|
        size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
 | 
						|
 | 
						|
        tlb_window_reset(desc, get_clock_realtime(), 0);
 | 
						|
        desc->n_used_entries = 0;
 | 
						|
        env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
 | 
						|
        env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries);
 | 
						|
        env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
 | 
						|
 * @env: CPU that owns the TLB
 | 
						|
 * @mmu_idx: MMU index of the TLB
 | 
						|
 *
 | 
						|
 * Called with tlb_lock_held.
 | 
						|
 *
 | 
						|
 * We have two main constraints when resizing a TLB: (1) we only resize it
 | 
						|
 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
 | 
						|
 * the array or unnecessarily flushing it), which means we do not control how
 | 
						|
 * frequently the resizing can occur; (2) we don't have access to the guest's
 | 
						|
 * future scheduling decisions, and therefore have to decide the magnitude of
 | 
						|
 * the resize based on past observations.
 | 
						|
 *
 | 
						|
 * In general, a memory-hungry process can benefit greatly from an appropriately
 | 
						|
 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
 | 
						|
 * we just have to make the TLB as large as possible; while an oversized TLB
 | 
						|
 * results in minimal TLB miss rates, it also takes longer to be flushed
 | 
						|
 * (flushes can be _very_ frequent), and the reduced locality can also hurt
 | 
						|
 * performance.
 | 
						|
 *
 | 
						|
 * To achieve near-optimal performance for all kinds of workloads, we:
 | 
						|
 *
 | 
						|
 * 1. Aggressively increase the size of the TLB when the use rate of the
 | 
						|
 * TLB being flushed is high, since it is likely that in the near future this
 | 
						|
 * memory-hungry process will execute again, and its memory hungriness will
 | 
						|
 * probably be similar.
 | 
						|
 *
 | 
						|
 * 2. Slowly reduce the size of the TLB as the use rate declines over a
 | 
						|
 * reasonably large time window. The rationale is that if in such a time window
 | 
						|
 * we have not observed a high TLB use rate, it is likely that we won't observe
 | 
						|
 * it in the near future. In that case, once a time window expires we downsize
 | 
						|
 * the TLB to match the maximum use rate observed in the window.
 | 
						|
 *
 | 
						|
 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
 | 
						|
 * since in that range performance is likely near-optimal. Recall that the TLB
 | 
						|
 * is direct mapped, so we want the use rate to be low (or at least not too
 | 
						|
 * high), since otherwise we are likely to have a significant amount of
 | 
						|
 * conflict misses.
 | 
						|
 */
 | 
						|
static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
 | 
						|
{
 | 
						|
    CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
 | 
						|
    size_t old_size = tlb_n_entries(env, mmu_idx);
 | 
						|
    size_t rate;
 | 
						|
    size_t new_size = old_size;
 | 
						|
    int64_t now = get_clock_realtime();
 | 
						|
    int64_t window_len_ms = 100;
 | 
						|
    int64_t window_len_ns = window_len_ms * 1000 * 1000;
 | 
						|
    bool window_expired = now > desc->window_begin_ns + window_len_ns;
 | 
						|
 | 
						|
    if (desc->n_used_entries > desc->window_max_entries) {
 | 
						|
        desc->window_max_entries = desc->n_used_entries;
 | 
						|
    }
 | 
						|
    rate = desc->window_max_entries * 100 / old_size;
 | 
						|
 | 
						|
    if (rate > 70) {
 | 
						|
        new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
 | 
						|
    } else if (rate < 30 && window_expired) {
 | 
						|
        size_t ceil = pow2ceil(desc->window_max_entries);
 | 
						|
        size_t expected_rate = desc->window_max_entries * 100 / ceil;
 | 
						|
 | 
						|
        /*
 | 
						|
         * Avoid undersizing when the max number of entries seen is just below
 | 
						|
         * a pow2. For instance, if max_entries == 1025, the expected use rate
 | 
						|
         * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
 | 
						|
         * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
 | 
						|
         * later. Thus, make sure that the expected use rate remains below 70%.
 | 
						|
         * (and since we double the size, that means the lowest rate we'd
 | 
						|
         * expect to get is 35%, which is still in the 30-70% range where
 | 
						|
         * we consider that the size is appropriate.)
 | 
						|
         */
 | 
						|
        if (expected_rate > 70) {
 | 
						|
            ceil *= 2;
 | 
						|
        }
 | 
						|
        new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_size == old_size) {
 | 
						|
        if (window_expired) {
 | 
						|
            tlb_window_reset(desc, now, desc->n_used_entries);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    g_free(env_tlb(env)->f[mmu_idx].table);
 | 
						|
    g_free(env_tlb(env)->d[mmu_idx].iotlb);
 | 
						|
 | 
						|
    tlb_window_reset(desc, now, 0);
 | 
						|
    /* desc->n_used_entries is cleared by the caller */
 | 
						|
    env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | 
						|
    env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
 | 
						|
    env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
 | 
						|
    /*
 | 
						|
     * If the allocations fail, try smaller sizes. We just freed some
 | 
						|
     * memory, so going back to half of new_size has a good chance of working.
 | 
						|
     * Increased memory pressure elsewhere in the system might cause the
 | 
						|
     * allocations to fail though, so we progressively reduce the allocation
 | 
						|
     * size, aborting if we cannot even allocate the smallest TLB we support.
 | 
						|
     */
 | 
						|
    while (env_tlb(env)->f[mmu_idx].table == NULL ||
 | 
						|
           env_tlb(env)->d[mmu_idx].iotlb == NULL) {
 | 
						|
        if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
 | 
						|
            error_report("%s: %s", __func__, strerror(errno));
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
        new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
 | 
						|
        env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | 
						|
 | 
						|
        g_free(env_tlb(env)->f[mmu_idx].table);
 | 
						|
        g_free(env_tlb(env)->d[mmu_idx].iotlb);
 | 
						|
        env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
 | 
						|
        env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
 | 
						|
{
 | 
						|
    tlb_mmu_resize_locked(env, mmu_idx);
 | 
						|
    memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx));
 | 
						|
    env_tlb(env)->d[mmu_idx].n_used_entries = 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
 | 
						|
{
 | 
						|
    env_tlb(env)->d[mmu_idx].n_used_entries++;
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
 | 
						|
{
 | 
						|
    env_tlb(env)->d[mmu_idx].n_used_entries--;
 | 
						|
}
 | 
						|
 | 
						|
void tlb_init(CPUState *cpu)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
 | 
						|
    qemu_spin_init(&env_tlb(env)->c.lock);
 | 
						|
 | 
						|
    /* Ensure that cpu_reset performs a full flush.  */
 | 
						|
    env_tlb(env)->c.dirty = ALL_MMUIDX_BITS;
 | 
						|
 | 
						|
    tlb_dyn_init(env);
 | 
						|
}
 | 
						|
 | 
						|
/* flush_all_helper: run fn across all cpus
 | 
						|
 *
 | 
						|
 * If the wait flag is set then the src cpu's helper will be queued as
 | 
						|
 * "safe" work and the loop exited creating a synchronisation point
 | 
						|
 * where all queued work will be finished before execution starts
 | 
						|
 * again.
 | 
						|
 */
 | 
						|
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 | 
						|
                             run_on_cpu_data d)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        if (cpu != src) {
 | 
						|
            async_run_on_cpu(cpu, fn, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
    size_t full = 0, part = 0, elide = 0;
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        CPUArchState *env = cpu->env_ptr;
 | 
						|
 | 
						|
        full += atomic_read(&env_tlb(env)->c.full_flush_count);
 | 
						|
        part += atomic_read(&env_tlb(env)->c.part_flush_count);
 | 
						|
        elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
 | 
						|
    }
 | 
						|
    *pfull = full;
 | 
						|
    *ppart = part;
 | 
						|
    *pelide = elide;
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
 | 
						|
{
 | 
						|
    tlb_table_flush_by_mmuidx(env, mmu_idx);
 | 
						|
    env_tlb(env)->d[mmu_idx].large_page_addr = -1;
 | 
						|
    env_tlb(env)->d[mmu_idx].large_page_mask = -1;
 | 
						|
    env_tlb(env)->d[mmu_idx].vindex = 0;
 | 
						|
    memset(env_tlb(env)->d[mmu_idx].vtable, -1,
 | 
						|
           sizeof(env_tlb(env)->d[0].vtable));
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    uint16_t asked = data.host_int;
 | 
						|
    uint16_t all_dirty, work, to_clean;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 | 
						|
 | 
						|
    qemu_spin_lock(&env_tlb(env)->c.lock);
 | 
						|
 | 
						|
    all_dirty = env_tlb(env)->c.dirty;
 | 
						|
    to_clean = asked & all_dirty;
 | 
						|
    all_dirty &= ~to_clean;
 | 
						|
    env_tlb(env)->c.dirty = all_dirty;
 | 
						|
 | 
						|
    for (work = to_clean; work != 0; work &= work - 1) {
 | 
						|
        int mmu_idx = ctz32(work);
 | 
						|
        tlb_flush_one_mmuidx_locked(env, mmu_idx);
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_spin_unlock(&env_tlb(env)->c.lock);
 | 
						|
 | 
						|
    cpu_tb_jmp_cache_clear(cpu);
 | 
						|
 | 
						|
    if (to_clean == ALL_MMUIDX_BITS) {
 | 
						|
        atomic_set(&env_tlb(env)->c.full_flush_count,
 | 
						|
                   env_tlb(env)->c.full_flush_count + 1);
 | 
						|
    } else {
 | 
						|
        atomic_set(&env_tlb(env)->c.part_flush_count,
 | 
						|
                   env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
 | 
						|
        if (to_clean != asked) {
 | 
						|
            atomic_set(&env_tlb(env)->c.elide_flush_count,
 | 
						|
                       env_tlb(env)->c.elide_flush_count +
 | 
						|
                       ctpop16(asked & ~to_clean));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 | 
						|
 | 
						|
    if (cpu->created && !qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 | 
						|
                         RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    } else {
 | 
						|
        tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush(CPUState *cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
 | 
						|
                                        target_ulong page)
 | 
						|
{
 | 
						|
    return tlb_hit_page(tlb_entry->addr_read, page) ||
 | 
						|
           tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
 | 
						|
           tlb_hit_page(tlb_entry->addr_code, page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * tlb_entry_is_empty - return true if the entry is not in use
 | 
						|
 * @te: pointer to CPUTLBEntry
 | 
						|
 */
 | 
						|
static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
 | 
						|
{
 | 
						|
    return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                          target_ulong page)
 | 
						|
{
 | 
						|
    if (tlb_hit_page_anyprot(tlb_entry, page)) {
 | 
						|
        memset(tlb_entry, -1, sizeof(*tlb_entry));
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
 | 
						|
                                              target_ulong page)
 | 
						|
{
 | 
						|
    CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
 | 
						|
    int k;
 | 
						|
 | 
						|
    assert_cpu_is_self(env_cpu(env));
 | 
						|
    for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
        if (tlb_flush_entry_locked(&d->vtable[k], page)) {
 | 
						|
            tlb_n_used_entries_dec(env, mmu_idx);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_page_locked(CPUArchState *env, int midx,
 | 
						|
                                  target_ulong page)
 | 
						|
{
 | 
						|
    target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
 | 
						|
    target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
 | 
						|
 | 
						|
    /* Check if we need to flush due to large pages.  */
 | 
						|
    if ((page & lp_mask) == lp_addr) {
 | 
						|
        tlb_debug("forcing full flush midx %d ("
 | 
						|
                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | 
						|
                  midx, lp_addr, lp_mask);
 | 
						|
        tlb_flush_one_mmuidx_locked(env, midx);
 | 
						|
    } else {
 | 
						|
        if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
 | 
						|
            tlb_n_used_entries_dec(env, midx);
 | 
						|
        }
 | 
						|
        tlb_flush_vtlb_page_locked(env, midx, page);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* As we are going to hijack the bottom bits of the page address for a
 | 
						|
 * mmuidx bit mask we need to fail to build if we can't do that
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
 | 
						|
 | 
						|
static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
 | 
						|
                                                run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
 | 
						|
    target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
 | 
						|
    unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
 | 
						|
              addr, mmu_idx_bitmap);
 | 
						|
 | 
						|
    qemu_spin_lock(&env_tlb(env)->c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
 | 
						|
            tlb_flush_page_locked(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&env_tlb(env)->c.lock);
 | 
						|
 | 
						|
    tb_flush_jmp_cache(cpu, addr);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
 | 
						|
{
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    if (!qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    } else {
 | 
						|
        tlb_flush_page_by_mmuidx_async_work(
 | 
						|
            cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
 | 
						|
                                       uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                              target_ulong addr,
 | 
						|
                                              uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLBs so that writes to code in the virtual page 'addr'
 | 
						|
   can be detected */
 | 
						|
void tlb_protect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
 | 
						|
                                             DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
 | 
						|
   tested for self modifying code */
 | 
						|
void tlb_unprotect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Dirty write flag handling
 | 
						|
 *
 | 
						|
 * When the TCG code writes to a location it looks up the address in
 | 
						|
 * the TLB and uses that data to compute the final address. If any of
 | 
						|
 * the lower bits of the address are set then the slow path is forced.
 | 
						|
 * There are a number of reasons to do this but for normal RAM the
 | 
						|
 * most usual is detecting writes to code regions which may invalidate
 | 
						|
 * generated code.
 | 
						|
 *
 | 
						|
 * Other vCPUs might be reading their TLBs during guest execution, so we update
 | 
						|
 * te->addr_write with atomic_set. We don't need to worry about this for
 | 
						|
 * oversized guests as MTTCG is disabled for them.
 | 
						|
 *
 | 
						|
 * Called with tlb_c.lock held.
 | 
						|
 */
 | 
						|
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                         uintptr_t start, uintptr_t length)
 | 
						|
{
 | 
						|
    uintptr_t addr = tlb_entry->addr_write;
 | 
						|
 | 
						|
    if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
        addr += tlb_entry->addend;
 | 
						|
        if ((addr - start) < length) {
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
            tlb_entry->addr_write |= TLB_NOTDIRTY;
 | 
						|
#else
 | 
						|
            atomic_set(&tlb_entry->addr_write,
 | 
						|
                       tlb_entry->addr_write | TLB_NOTDIRTY);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with tlb_c.lock held.
 | 
						|
 * Called only from the vCPU context, i.e. the TLB's owner thread.
 | 
						|
 */
 | 
						|
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
 | 
						|
{
 | 
						|
    *d = *s;
 | 
						|
}
 | 
						|
 | 
						|
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
 | 
						|
 * the target vCPU).
 | 
						|
 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
 | 
						|
 * thing actually updated is the target TLB entry ->addr_write flags.
 | 
						|
 */
 | 
						|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    env = cpu->env_ptr;
 | 
						|
    qemu_spin_lock(&env_tlb(env)->c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        unsigned int i;
 | 
						|
        unsigned int n = tlb_n_entries(env, mmu_idx);
 | 
						|
 | 
						|
        for (i = 0; i < n; i++) {
 | 
						|
            tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
 | 
						|
                                         start1, length);
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | 
						|
            tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
 | 
						|
                                         start1, length);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&env_tlb(env)->c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                         target_ulong vaddr)
 | 
						|
{
 | 
						|
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 | 
						|
        tlb_entry->addr_write = vaddr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB corresponding to virtual page vaddr
 | 
						|
   so that it is no longer dirty */
 | 
						|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    vaddr &= TARGET_PAGE_MASK;
 | 
						|
    qemu_spin_lock(&env_tlb(env)->c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        int k;
 | 
						|
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
            tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&env_tlb(env)->c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Our TLB does not support large pages, so remember the area covered by
 | 
						|
   large pages and trigger a full TLB flush if these are invalidated.  */
 | 
						|
static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
 | 
						|
                               target_ulong vaddr, target_ulong size)
 | 
						|
{
 | 
						|
    target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
 | 
						|
    target_ulong lp_mask = ~(size - 1);
 | 
						|
 | 
						|
    if (lp_addr == (target_ulong)-1) {
 | 
						|
        /* No previous large page.  */
 | 
						|
        lp_addr = vaddr;
 | 
						|
    } else {
 | 
						|
        /* Extend the existing region to include the new page.
 | 
						|
           This is a compromise between unnecessary flushes and
 | 
						|
           the cost of maintaining a full variable size TLB.  */
 | 
						|
        lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
 | 
						|
        while (((lp_addr ^ vaddr) & lp_mask) != 0) {
 | 
						|
            lp_mask <<= 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
 | 
						|
    env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry. At most one entry for a given virtual address
 | 
						|
 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | 
						|
 * supplied size is only used by tlb_flush_page.
 | 
						|
 *
 | 
						|
 * Called from TCG-generated code, which is under an RCU read-side
 | 
						|
 * critical section.
 | 
						|
 */
 | 
						|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 | 
						|
                             hwaddr paddr, MemTxAttrs attrs, int prot,
 | 
						|
                             int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    CPUTLB *tlb = env_tlb(env);
 | 
						|
    CPUTLBDesc *desc = &tlb->d[mmu_idx];
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    unsigned int index;
 | 
						|
    target_ulong address;
 | 
						|
    target_ulong code_address;
 | 
						|
    uintptr_t addend;
 | 
						|
    CPUTLBEntry *te, tn;
 | 
						|
    hwaddr iotlb, xlat, sz, paddr_page;
 | 
						|
    target_ulong vaddr_page;
 | 
						|
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | 
						|
    int wp_flags;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    if (size <= TARGET_PAGE_SIZE) {
 | 
						|
        sz = TARGET_PAGE_SIZE;
 | 
						|
    } else {
 | 
						|
        tlb_add_large_page(env, mmu_idx, vaddr, size);
 | 
						|
        sz = size;
 | 
						|
    }
 | 
						|
    vaddr_page = vaddr & TARGET_PAGE_MASK;
 | 
						|
    paddr_page = paddr & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
 | 
						|
                                                &xlat, &sz, attrs, &prot);
 | 
						|
    assert(sz >= TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | 
						|
              " prot=%x idx=%d\n",
 | 
						|
              vaddr, paddr, prot, mmu_idx);
 | 
						|
 | 
						|
    address = vaddr_page;
 | 
						|
    if (size < TARGET_PAGE_SIZE) {
 | 
						|
        /* Repeat the MMU check and TLB fill on every access.  */
 | 
						|
        address |= TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
    if (attrs.byte_swap) {
 | 
						|
        /* Force the access through the I/O slow path.  */
 | 
						|
        address |= TLB_MMIO;
 | 
						|
    }
 | 
						|
    if (!memory_region_is_ram(section->mr) &&
 | 
						|
        !memory_region_is_romd(section->mr)) {
 | 
						|
        /* IO memory case */
 | 
						|
        address |= TLB_MMIO;
 | 
						|
        addend = 0;
 | 
						|
    } else {
 | 
						|
        /* TLB_MMIO for rom/romd handled below */
 | 
						|
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | 
						|
    }
 | 
						|
 | 
						|
    code_address = address;
 | 
						|
    iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
 | 
						|
                                            paddr_page, xlat, prot, &address);
 | 
						|
    wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
 | 
						|
                                              TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    index = tlb_index(env, mmu_idx, vaddr_page);
 | 
						|
    te = tlb_entry(env, mmu_idx, vaddr_page);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Hold the TLB lock for the rest of the function. We could acquire/release
 | 
						|
     * the lock several times in the function, but it is faster to amortize the
 | 
						|
     * acquisition cost by acquiring it just once. Note that this leads to
 | 
						|
     * a longer critical section, but this is not a concern since the TLB lock
 | 
						|
     * is unlikely to be contended.
 | 
						|
     */
 | 
						|
    qemu_spin_lock(&tlb->c.lock);
 | 
						|
 | 
						|
    /* Note that the tlb is no longer clean.  */
 | 
						|
    tlb->c.dirty |= 1 << mmu_idx;
 | 
						|
 | 
						|
    /* Make sure there's no cached translation for the new page.  */
 | 
						|
    tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Only evict the old entry to the victim tlb if it's for a
 | 
						|
     * different page; otherwise just overwrite the stale data.
 | 
						|
     */
 | 
						|
    if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
 | 
						|
        unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
 | 
						|
        CPUTLBEntry *tv = &desc->vtable[vidx];
 | 
						|
 | 
						|
        /* Evict the old entry into the victim tlb.  */
 | 
						|
        copy_tlb_helper_locked(tv, te);
 | 
						|
        desc->viotlb[vidx] = desc->iotlb[index];
 | 
						|
        tlb_n_used_entries_dec(env, mmu_idx);
 | 
						|
    }
 | 
						|
 | 
						|
    /* refill the tlb */
 | 
						|
    /*
 | 
						|
     * At this point iotlb contains a physical section number in the lower
 | 
						|
     * TARGET_PAGE_BITS, and either
 | 
						|
     *  + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
 | 
						|
     *  + the offset within section->mr of the page base (otherwise)
 | 
						|
     * We subtract the vaddr_page (which is page aligned and thus won't
 | 
						|
     * disturb the low bits) to give an offset which can be added to the
 | 
						|
     * (non-page-aligned) vaddr of the eventual memory access to get
 | 
						|
     * the MemoryRegion offset for the access. Note that the vaddr we
 | 
						|
     * subtract here is that of the page base, and not the same as the
 | 
						|
     * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
 | 
						|
     */
 | 
						|
    desc->iotlb[index].addr = iotlb - vaddr_page;
 | 
						|
    desc->iotlb[index].attrs = attrs;
 | 
						|
 | 
						|
    /* Now calculate the new entry */
 | 
						|
    tn.addend = addend - vaddr_page;
 | 
						|
    if (prot & PAGE_READ) {
 | 
						|
        tn.addr_read = address;
 | 
						|
        if (wp_flags & BP_MEM_READ) {
 | 
						|
            tn.addr_read |= TLB_WATCHPOINT;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        tn.addr_read = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (prot & PAGE_EXEC) {
 | 
						|
        tn.addr_code = code_address;
 | 
						|
    } else {
 | 
						|
        tn.addr_code = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    tn.addr_write = -1;
 | 
						|
    if (prot & PAGE_WRITE) {
 | 
						|
        if ((memory_region_is_ram(section->mr) && section->readonly)
 | 
						|
            || memory_region_is_romd(section->mr)) {
 | 
						|
            /* Write access calls the I/O callback.  */
 | 
						|
            tn.addr_write = address | TLB_MMIO;
 | 
						|
        } else if (memory_region_is_ram(section->mr)
 | 
						|
                   && cpu_physical_memory_is_clean(
 | 
						|
                       memory_region_get_ram_addr(section->mr) + xlat)) {
 | 
						|
            tn.addr_write = address | TLB_NOTDIRTY;
 | 
						|
        } else {
 | 
						|
            tn.addr_write = address;
 | 
						|
        }
 | 
						|
        if (prot & PAGE_WRITE_INV) {
 | 
						|
            tn.addr_write |= TLB_INVALID_MASK;
 | 
						|
        }
 | 
						|
        if (wp_flags & BP_MEM_WRITE) {
 | 
						|
            tn.addr_write |= TLB_WATCHPOINT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    copy_tlb_helper_locked(te, &tn);
 | 
						|
    tlb_n_used_entries_inc(env, mmu_idx);
 | 
						|
    qemu_spin_unlock(&tlb->c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry, but without specifying the memory
 | 
						|
 * transaction attributes to be used.
 | 
						|
 */
 | 
						|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 | 
						|
                  hwaddr paddr, int prot,
 | 
						|
                  int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
 | 
						|
                            prot, mmu_idx, size);
 | 
						|
}
 | 
						|
 | 
						|
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
 | 
						|
    ram_addr = qemu_ram_addr_from_host(ptr);
 | 
						|
    if (ram_addr == RAM_ADDR_INVALID) {
 | 
						|
        error_report("Bad ram pointer %p", ptr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    return ram_addr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
 | 
						|
 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
 | 
						|
 * be discarded and looked up again (e.g. via tlb_entry()).
 | 
						|
 */
 | 
						|
static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
 | 
						|
                     MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
    bool ok;
 | 
						|
 | 
						|
    /*
 | 
						|
     * This is not a probe, so only valid return is success; failure
 | 
						|
     * should result in exception + longjmp to the cpu loop.
 | 
						|
     */
 | 
						|
    ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
 | 
						|
    assert(ok);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | 
						|
                         int mmu_idx, target_ulong addr, uintptr_t retaddr,
 | 
						|
                         MMUAccessType access_type, MemOp op)
 | 
						|
{
 | 
						|
    CPUState *cpu = env_cpu(env);
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    uint64_t val;
 | 
						|
    bool locked = false;
 | 
						|
    MemTxResult r;
 | 
						|
 | 
						|
    if (iotlbentry->attrs.byte_swap) {
 | 
						|
        op ^= MO_BSWAP;
 | 
						|
    }
 | 
						|
 | 
						|
    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | 
						|
    mr = section->mr;
 | 
						|
    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    cpu->mem_io_vaddr = addr;
 | 
						|
    cpu->mem_io_access_type = access_type;
 | 
						|
 | 
						|
    if (mr->global_locking && !qemu_mutex_iothread_locked()) {
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        locked = true;
 | 
						|
    }
 | 
						|
    r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
 | 
						|
    if (r != MEMTX_OK) {
 | 
						|
        hwaddr physaddr = mr_offset +
 | 
						|
            section->offset_within_address_space -
 | 
						|
            section->offset_within_region;
 | 
						|
 | 
						|
        cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
 | 
						|
                               mmu_idx, iotlbentry->attrs, r, retaddr);
 | 
						|
    }
 | 
						|
    if (locked) {
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | 
						|
                      int mmu_idx, uint64_t val, target_ulong addr,
 | 
						|
                      uintptr_t retaddr, MemOp op)
 | 
						|
{
 | 
						|
    CPUState *cpu = env_cpu(env);
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    bool locked = false;
 | 
						|
    MemTxResult r;
 | 
						|
 | 
						|
    if (iotlbentry->attrs.byte_swap) {
 | 
						|
        op ^= MO_BSWAP;
 | 
						|
    }
 | 
						|
 | 
						|
    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | 
						|
    mr = section->mr;
 | 
						|
    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | 
						|
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
    cpu->mem_io_vaddr = addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
 | 
						|
    if (mr->global_locking && !qemu_mutex_iothread_locked()) {
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        locked = true;
 | 
						|
    }
 | 
						|
    r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
 | 
						|
    if (r != MEMTX_OK) {
 | 
						|
        hwaddr physaddr = mr_offset +
 | 
						|
            section->offset_within_address_space -
 | 
						|
            section->offset_within_region;
 | 
						|
 | 
						|
        cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
 | 
						|
                               MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
 | 
						|
                               retaddr);
 | 
						|
    }
 | 
						|
    if (locked) {
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
 | 
						|
{
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
    return *(target_ulong *)((uintptr_t)entry + ofs);
 | 
						|
#else
 | 
						|
    /* ofs might correspond to .addr_write, so use atomic_read */
 | 
						|
    return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if ADDR is present in the victim tlb, and has been copied
 | 
						|
   back to the main tlb.  */
 | 
						|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
 | 
						|
                           size_t elt_ofs, target_ulong page)
 | 
						|
{
 | 
						|
    size_t vidx;
 | 
						|
 | 
						|
    assert_cpu_is_self(env_cpu(env));
 | 
						|
    for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
 | 
						|
        CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
 | 
						|
        target_ulong cmp;
 | 
						|
 | 
						|
        /* elt_ofs might correspond to .addr_write, so use atomic_read */
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
        cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
 | 
						|
#else
 | 
						|
        cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
 | 
						|
#endif
 | 
						|
 | 
						|
        if (cmp == page) {
 | 
						|
            /* Found entry in victim tlb, swap tlb and iotlb.  */
 | 
						|
            CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
 | 
						|
 | 
						|
            qemu_spin_lock(&env_tlb(env)->c.lock);
 | 
						|
            copy_tlb_helper_locked(&tmptlb, tlb);
 | 
						|
            copy_tlb_helper_locked(tlb, vtlb);
 | 
						|
            copy_tlb_helper_locked(vtlb, &tmptlb);
 | 
						|
            qemu_spin_unlock(&env_tlb(env)->c.lock);
 | 
						|
 | 
						|
            CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | 
						|
            CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
 | 
						|
            tmpio = *io; *io = *vio; *vio = tmpio;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Macro to call the above, with local variables from the use context.  */
 | 
						|
#define VICTIM_TLB_HIT(TY, ADDR) \
 | 
						|
  victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
 | 
						|
                 (ADDR) & TARGET_PAGE_MASK)
 | 
						|
 | 
						|
/*
 | 
						|
 * Return a ram_addr_t for the virtual address for execution.
 | 
						|
 *
 | 
						|
 * Return -1 if we can't translate and execute from an entire page
 | 
						|
 * of RAM.  This will force us to execute by loading and translating
 | 
						|
 * one insn at a time, without caching.
 | 
						|
 *
 | 
						|
 * NOTE: This function will trigger an exception if the page is
 | 
						|
 * not executable.
 | 
						|
 */
 | 
						|
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
 | 
						|
{
 | 
						|
    uintptr_t mmu_idx = cpu_mmu_index(env, true);
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
    void *p;
 | 
						|
 | 
						|
    if (unlikely(!tlb_hit(entry->addr_code, addr))) {
 | 
						|
        if (!VICTIM_TLB_HIT(addr_code, addr)) {
 | 
						|
            tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
 | 
						|
            index = tlb_index(env, mmu_idx, addr);
 | 
						|
            entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
 | 
						|
            if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
 | 
						|
                /*
 | 
						|
                 * The MMU protection covers a smaller range than a target
 | 
						|
                 * page, so we must redo the MMU check for every insn.
 | 
						|
                 */
 | 
						|
                return -1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        assert(tlb_hit(entry->addr_code, addr));
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(entry->addr_code & TLB_MMIO)) {
 | 
						|
        /* The region is not backed by RAM.  */
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    p = (void *)((uintptr_t)addr + entry->addend);
 | 
						|
    return qemu_ram_addr_from_host_nofail(p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Probe for whether the specified guest access is permitted. If it is not
 | 
						|
 * permitted then an exception will be taken in the same way as if this
 | 
						|
 * were a real access (and we will not return).
 | 
						|
 * If the size is 0 or the page requires I/O access, returns NULL; otherwise,
 | 
						|
 * returns the address of the host page similar to tlb_vaddr_to_host().
 | 
						|
 */
 | 
						|
void *probe_access(CPUArchState *env, target_ulong addr, int size,
 | 
						|
                   MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
    target_ulong tlb_addr;
 | 
						|
    size_t elt_ofs;
 | 
						|
    int wp_access;
 | 
						|
 | 
						|
    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | 
						|
 | 
						|
    switch (access_type) {
 | 
						|
    case MMU_DATA_LOAD:
 | 
						|
        elt_ofs = offsetof(CPUTLBEntry, addr_read);
 | 
						|
        wp_access = BP_MEM_READ;
 | 
						|
        break;
 | 
						|
    case MMU_DATA_STORE:
 | 
						|
        elt_ofs = offsetof(CPUTLBEntry, addr_write);
 | 
						|
        wp_access = BP_MEM_WRITE;
 | 
						|
        break;
 | 
						|
    case MMU_INST_FETCH:
 | 
						|
        elt_ofs = offsetof(CPUTLBEntry, addr_code);
 | 
						|
        wp_access = BP_MEM_READ;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
    tlb_addr = tlb_read_ofs(entry, elt_ofs);
 | 
						|
 | 
						|
    if (unlikely(!tlb_hit(tlb_addr, addr))) {
 | 
						|
        if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs,
 | 
						|
                            addr & TARGET_PAGE_MASK)) {
 | 
						|
            tlb_fill(env_cpu(env), addr, size, access_type, mmu_idx, retaddr);
 | 
						|
            /* TLB resize via tlb_fill may have moved the entry. */
 | 
						|
            index = tlb_index(env, mmu_idx, addr);
 | 
						|
            entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_read_ofs(entry, elt_ofs);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!size) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Handle watchpoints.  */
 | 
						|
    if (tlb_addr & TLB_WATCHPOINT) {
 | 
						|
        cpu_check_watchpoint(env_cpu(env), addr, size,
 | 
						|
                             env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
 | 
						|
                             wp_access, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (tlb_addr & (TLB_NOTDIRTY | TLB_MMIO)) {
 | 
						|
        /* I/O access */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return (void *)((uintptr_t)addr + entry->addend);
 | 
						|
}
 | 
						|
 | 
						|
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
 | 
						|
                        MMUAccessType access_type, int mmu_idx)
 | 
						|
{
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
    uintptr_t tlb_addr, page;
 | 
						|
    size_t elt_ofs;
 | 
						|
 | 
						|
    switch (access_type) {
 | 
						|
    case MMU_DATA_LOAD:
 | 
						|
        elt_ofs = offsetof(CPUTLBEntry, addr_read);
 | 
						|
        break;
 | 
						|
    case MMU_DATA_STORE:
 | 
						|
        elt_ofs = offsetof(CPUTLBEntry, addr_write);
 | 
						|
        break;
 | 
						|
    case MMU_INST_FETCH:
 | 
						|
        elt_ofs = offsetof(CPUTLBEntry, addr_code);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    page = addr & TARGET_PAGE_MASK;
 | 
						|
    tlb_addr = tlb_read_ofs(entry, elt_ofs);
 | 
						|
 | 
						|
    if (!tlb_hit_page(tlb_addr, page)) {
 | 
						|
        uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
 | 
						|
        if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) {
 | 
						|
            CPUState *cs = env_cpu(env);
 | 
						|
            CPUClass *cc = CPU_GET_CLASS(cs);
 | 
						|
 | 
						|
            if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) {
 | 
						|
                /* Non-faulting page table read failed.  */
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
 | 
						|
            /* TLB resize via tlb_fill may have moved the entry.  */
 | 
						|
            entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_read_ofs(entry, elt_ofs);
 | 
						|
    }
 | 
						|
 | 
						|
    if (tlb_addr & ~TARGET_PAGE_MASK) {
 | 
						|
        /* IO access */
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return (void *)((uintptr_t)addr + entry->addend);
 | 
						|
}
 | 
						|
 | 
						|
/* Probe for a read-modify-write atomic operation.  Do not allow unaligned
 | 
						|
 * operations, or io operations to proceed.  Return the host address.  */
 | 
						|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
 | 
						|
                               TCGMemOpIdx oi, uintptr_t retaddr,
 | 
						|
                               NotDirtyInfo *ndi)
 | 
						|
{
 | 
						|
    size_t mmu_idx = get_mmuidx(oi);
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
 | 
						|
    target_ulong tlb_addr = tlb_addr_write(tlbe);
 | 
						|
    MemOp mop = get_memop(oi);
 | 
						|
    int a_bits = get_alignment_bits(mop);
 | 
						|
    int s_bits = mop & MO_SIZE;
 | 
						|
    void *hostaddr;
 | 
						|
 | 
						|
    /* Adjust the given return address.  */
 | 
						|
    retaddr -= GETPC_ADJ;
 | 
						|
 | 
						|
    /* Enforce guest required alignment.  */
 | 
						|
    if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
 | 
						|
        /* ??? Maybe indicate atomic op to cpu_unaligned_access */
 | 
						|
        cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
 | 
						|
                             mmu_idx, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Enforce qemu required alignment.  */
 | 
						|
    if (unlikely(addr & ((1 << s_bits) - 1))) {
 | 
						|
        /* We get here if guest alignment was not requested,
 | 
						|
           or was not enforced by cpu_unaligned_access above.
 | 
						|
           We might widen the access and emulate, but for now
 | 
						|
           mark an exception and exit the cpu loop.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check TLB entry and enforce page permissions.  */
 | 
						|
    if (!tlb_hit(tlb_addr, addr)) {
 | 
						|
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | 
						|
            tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
 | 
						|
                     mmu_idx, retaddr);
 | 
						|
            index = tlb_index(env, mmu_idx, addr);
 | 
						|
            tlbe = tlb_entry(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Notice an IO access or a needs-MMU-lookup access */
 | 
						|
    if (unlikely(tlb_addr & TLB_MMIO)) {
 | 
						|
        /* There's really nothing that can be done to
 | 
						|
           support this apart from stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Let the guest notice RMW on a write-only page.  */
 | 
						|
    if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
 | 
						|
        tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
 | 
						|
                 mmu_idx, retaddr);
 | 
						|
        /* Since we don't support reads and writes to different addresses,
 | 
						|
           and we do have the proper page loaded for write, this shouldn't
 | 
						|
           ever return.  But just in case, handle via stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
 | 
						|
 | 
						|
    ndi->active = false;
 | 
						|
    if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
 | 
						|
        ndi->active = true;
 | 
						|
        memory_notdirty_write_prepare(ndi, env_cpu(env), addr,
 | 
						|
                                      qemu_ram_addr_from_host_nofail(hostaddr),
 | 
						|
                                      1 << s_bits);
 | 
						|
    }
 | 
						|
 | 
						|
    return hostaddr;
 | 
						|
 | 
						|
 stop_the_world:
 | 
						|
    cpu_loop_exit_atomic(env_cpu(env), retaddr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load Helpers
 | 
						|
 *
 | 
						|
 * We support two different access types. SOFTMMU_CODE_ACCESS is
 | 
						|
 * specifically for reading instructions from system memory. It is
 | 
						|
 * called by the translation loop and in some helpers where the code
 | 
						|
 * is disassembled. It shouldn't be called directly by guest code.
 | 
						|
 */
 | 
						|
 | 
						|
typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
 | 
						|
                                TCGMemOpIdx oi, uintptr_t retaddr);
 | 
						|
 | 
						|
static inline uint64_t __attribute__((always_inline))
 | 
						|
load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
 | 
						|
            uintptr_t retaddr, MemOp op, bool code_read,
 | 
						|
            FullLoadHelper *full_load)
 | 
						|
{
 | 
						|
    uintptr_t mmu_idx = get_mmuidx(oi);
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
    target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
 | 
						|
    const size_t tlb_off = code_read ?
 | 
						|
        offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
 | 
						|
    const MMUAccessType access_type =
 | 
						|
        code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
 | 
						|
    unsigned a_bits = get_alignment_bits(get_memop(oi));
 | 
						|
    void *haddr;
 | 
						|
    uint64_t res;
 | 
						|
    size_t size = memop_size(op);
 | 
						|
 | 
						|
    /* Handle CPU specific unaligned behaviour */
 | 
						|
    if (addr & ((1 << a_bits) - 1)) {
 | 
						|
        cpu_unaligned_access(env_cpu(env), addr, access_type,
 | 
						|
                             mmu_idx, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* If the TLB entry is for a different page, reload and try again.  */
 | 
						|
    if (!tlb_hit(tlb_addr, addr)) {
 | 
						|
        if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
 | 
						|
                            addr & TARGET_PAGE_MASK)) {
 | 
						|
            tlb_fill(env_cpu(env), addr, size,
 | 
						|
                     access_type, mmu_idx, retaddr);
 | 
						|
            index = tlb_index(env, mmu_idx, addr);
 | 
						|
            entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = code_read ? entry->addr_code : entry->addr_read;
 | 
						|
        tlb_addr &= ~TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Handle anything that isn't just a straight memory access.  */
 | 
						|
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | 
						|
        CPUIOTLBEntry *iotlbentry;
 | 
						|
 | 
						|
        /* For anything that is unaligned, recurse through full_load.  */
 | 
						|
        if ((addr & (size - 1)) != 0) {
 | 
						|
            goto do_unaligned_access;
 | 
						|
        }
 | 
						|
 | 
						|
        iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | 
						|
 | 
						|
        /* Handle watchpoints.  */
 | 
						|
        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
 | 
						|
            /* On watchpoint hit, this will longjmp out.  */
 | 
						|
            cpu_check_watchpoint(env_cpu(env), addr, size,
 | 
						|
                                 iotlbentry->attrs, BP_MEM_READ, retaddr);
 | 
						|
 | 
						|
            /* The backing page may or may not require I/O.  */
 | 
						|
            tlb_addr &= ~TLB_WATCHPOINT;
 | 
						|
            if ((tlb_addr & ~TARGET_PAGE_MASK) == 0) {
 | 
						|
                goto do_aligned_access;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Handle I/O access.  */
 | 
						|
        return io_readx(env, iotlbentry, mmu_idx, addr,
 | 
						|
                        retaddr, access_type, op);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Handle slow unaligned access (it spans two pages or IO).  */
 | 
						|
    if (size > 1
 | 
						|
        && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
 | 
						|
                    >= TARGET_PAGE_SIZE)) {
 | 
						|
        target_ulong addr1, addr2;
 | 
						|
        uint64_t r1, r2;
 | 
						|
        unsigned shift;
 | 
						|
    do_unaligned_access:
 | 
						|
        addr1 = addr & ~((target_ulong)size - 1);
 | 
						|
        addr2 = addr1 + size;
 | 
						|
        r1 = full_load(env, addr1, oi, retaddr);
 | 
						|
        r2 = full_load(env, addr2, oi, retaddr);
 | 
						|
        shift = (addr & (size - 1)) * 8;
 | 
						|
 | 
						|
        if (memop_big_endian(op)) {
 | 
						|
            /* Big-endian combine.  */
 | 
						|
            res = (r1 << shift) | (r2 >> ((size * 8) - shift));
 | 
						|
        } else {
 | 
						|
            /* Little-endian combine.  */
 | 
						|
            res = (r1 >> shift) | (r2 << ((size * 8) - shift));
 | 
						|
        }
 | 
						|
        return res & MAKE_64BIT_MASK(0, size * 8);
 | 
						|
    }
 | 
						|
 | 
						|
 do_aligned_access:
 | 
						|
    haddr = (void *)((uintptr_t)addr + entry->addend);
 | 
						|
    switch (op) {
 | 
						|
    case MO_UB:
 | 
						|
        res = ldub_p(haddr);
 | 
						|
        break;
 | 
						|
    case MO_BEUW:
 | 
						|
        res = lduw_be_p(haddr);
 | 
						|
        break;
 | 
						|
    case MO_LEUW:
 | 
						|
        res = lduw_le_p(haddr);
 | 
						|
        break;
 | 
						|
    case MO_BEUL:
 | 
						|
        res = (uint32_t)ldl_be_p(haddr);
 | 
						|
        break;
 | 
						|
    case MO_LEUL:
 | 
						|
        res = (uint32_t)ldl_le_p(haddr);
 | 
						|
        break;
 | 
						|
    case MO_BEQ:
 | 
						|
        res = ldq_be_p(haddr);
 | 
						|
        break;
 | 
						|
    case MO_LEQ:
 | 
						|
        res = ldq_le_p(haddr);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For the benefit of TCG generated code, we want to avoid the
 | 
						|
 * complication of ABI-specific return type promotion and always
 | 
						|
 * return a value extended to the register size of the host. This is
 | 
						|
 * tcg_target_long, except in the case of a 32-bit host and 64-bit
 | 
						|
 * data, and for that we always have uint64_t.
 | 
						|
 *
 | 
						|
 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
 | 
						|
 */
 | 
						|
 | 
						|
static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                              TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_ldub_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                 TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
 | 
						|
                       full_le_lduw_mmu);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_le_lduw_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                 TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
 | 
						|
                       full_be_lduw_mmu);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_be_lduw_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                 TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
 | 
						|
                       full_le_ldul_mmu);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_le_ldul_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                 TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
 | 
						|
                       full_be_ldul_mmu);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_be_ldul_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                           TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
 | 
						|
                       helper_le_ldq_mmu);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                           TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
 | 
						|
                       helper_be_ldq_mmu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Provide signed versions of the load routines as well.  We can of course
 | 
						|
 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                    TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Store Helpers
 | 
						|
 */
 | 
						|
 | 
						|
static inline void __attribute__((always_inline))
 | 
						|
store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
 | 
						|
             TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
 | 
						|
{
 | 
						|
    uintptr_t mmu_idx = get_mmuidx(oi);
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
    target_ulong tlb_addr = tlb_addr_write(entry);
 | 
						|
    const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
 | 
						|
    unsigned a_bits = get_alignment_bits(get_memop(oi));
 | 
						|
    void *haddr;
 | 
						|
    size_t size = memop_size(op);
 | 
						|
 | 
						|
    /* Handle CPU specific unaligned behaviour */
 | 
						|
    if (addr & ((1 << a_bits) - 1)) {
 | 
						|
        cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
 | 
						|
                             mmu_idx, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* If the TLB entry is for a different page, reload and try again.  */
 | 
						|
    if (!tlb_hit(tlb_addr, addr)) {
 | 
						|
        if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
 | 
						|
            addr & TARGET_PAGE_MASK)) {
 | 
						|
            tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
 | 
						|
                     mmu_idx, retaddr);
 | 
						|
            index = tlb_index(env, mmu_idx, addr);
 | 
						|
            entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Handle anything that isn't just a straight memory access.  */
 | 
						|
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | 
						|
        CPUIOTLBEntry *iotlbentry;
 | 
						|
 | 
						|
        /* For anything that is unaligned, recurse through byte stores.  */
 | 
						|
        if ((addr & (size - 1)) != 0) {
 | 
						|
            goto do_unaligned_access;
 | 
						|
        }
 | 
						|
 | 
						|
        iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | 
						|
 | 
						|
        /* Handle watchpoints.  */
 | 
						|
        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
 | 
						|
            /* On watchpoint hit, this will longjmp out.  */
 | 
						|
            cpu_check_watchpoint(env_cpu(env), addr, size,
 | 
						|
                                 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
 | 
						|
 | 
						|
            /* The backing page may or may not require I/O.  */
 | 
						|
            tlb_addr &= ~TLB_WATCHPOINT;
 | 
						|
            if ((tlb_addr & ~TARGET_PAGE_MASK) == 0) {
 | 
						|
                goto do_aligned_access;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Handle I/O access.  */
 | 
						|
        io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, op);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Handle slow unaligned access (it spans two pages or IO).  */
 | 
						|
    if (size > 1
 | 
						|
        && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
 | 
						|
                     >= TARGET_PAGE_SIZE)) {
 | 
						|
        int i;
 | 
						|
        uintptr_t index2;
 | 
						|
        CPUTLBEntry *entry2;
 | 
						|
        target_ulong page2, tlb_addr2;
 | 
						|
        size_t size2;
 | 
						|
 | 
						|
    do_unaligned_access:
 | 
						|
        /*
 | 
						|
         * Ensure the second page is in the TLB.  Note that the first page
 | 
						|
         * is already guaranteed to be filled, and that the second page
 | 
						|
         * cannot evict the first.
 | 
						|
         */
 | 
						|
        page2 = (addr + size) & TARGET_PAGE_MASK;
 | 
						|
        size2 = (addr + size) & ~TARGET_PAGE_MASK;
 | 
						|
        index2 = tlb_index(env, mmu_idx, page2);
 | 
						|
        entry2 = tlb_entry(env, mmu_idx, page2);
 | 
						|
        tlb_addr2 = tlb_addr_write(entry2);
 | 
						|
        if (!tlb_hit_page(tlb_addr2, page2)) {
 | 
						|
            if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
 | 
						|
                tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
 | 
						|
                         mmu_idx, retaddr);
 | 
						|
                index2 = tlb_index(env, mmu_idx, page2);
 | 
						|
                entry2 = tlb_entry(env, mmu_idx, page2);
 | 
						|
            }
 | 
						|
            tlb_addr2 = tlb_addr_write(entry2);
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * Handle watchpoints.  Since this may trap, all checks
 | 
						|
         * must happen before any store.
 | 
						|
         */
 | 
						|
        if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
 | 
						|
            cpu_check_watchpoint(env_cpu(env), addr, size - size2,
 | 
						|
                                 env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
 | 
						|
                                 BP_MEM_WRITE, retaddr);
 | 
						|
        }
 | 
						|
        if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
 | 
						|
            cpu_check_watchpoint(env_cpu(env), page2, size2,
 | 
						|
                                 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
 | 
						|
                                 BP_MEM_WRITE, retaddr);
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * XXX: not efficient, but simple.
 | 
						|
         * This loop must go in the forward direction to avoid issues
 | 
						|
         * with self-modifying code in Windows 64-bit.
 | 
						|
         */
 | 
						|
        for (i = 0; i < size; ++i) {
 | 
						|
            uint8_t val8;
 | 
						|
            if (memop_big_endian(op)) {
 | 
						|
                /* Big-endian extract.  */
 | 
						|
                val8 = val >> (((size - 1) * 8) - (i * 8));
 | 
						|
            } else {
 | 
						|
                /* Little-endian extract.  */
 | 
						|
                val8 = val >> (i * 8);
 | 
						|
            }
 | 
						|
            helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
 do_aligned_access:
 | 
						|
    haddr = (void *)((uintptr_t)addr + entry->addend);
 | 
						|
    switch (op) {
 | 
						|
    case MO_UB:
 | 
						|
        stb_p(haddr, val);
 | 
						|
        break;
 | 
						|
    case MO_BEUW:
 | 
						|
        stw_be_p(haddr, val);
 | 
						|
        break;
 | 
						|
    case MO_LEUW:
 | 
						|
        stw_le_p(haddr, val);
 | 
						|
        break;
 | 
						|
    case MO_BEUL:
 | 
						|
        stl_be_p(haddr, val);
 | 
						|
        break;
 | 
						|
    case MO_LEUL:
 | 
						|
        stl_le_p(haddr, val);
 | 
						|
        break;
 | 
						|
    case MO_BEQ:
 | 
						|
        stq_be_p(haddr, val);
 | 
						|
        break;
 | 
						|
    case MO_LEQ:
 | 
						|
        stq_le_p(haddr, val);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
 | 
						|
                        TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_UB);
 | 
						|
}
 | 
						|
 | 
						|
void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
 | 
						|
                       TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_LEUW);
 | 
						|
}
 | 
						|
 | 
						|
void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
 | 
						|
                       TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_BEUW);
 | 
						|
}
 | 
						|
 | 
						|
void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
 | 
						|
                       TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_LEUL);
 | 
						|
}
 | 
						|
 | 
						|
void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
 | 
						|
                       TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_BEUL);
 | 
						|
}
 | 
						|
 | 
						|
void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
 | 
						|
                       TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_LEQ);
 | 
						|
}
 | 
						|
 | 
						|
void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
 | 
						|
                       TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    store_helper(env, addr, val, oi, retaddr, MO_BEQ);
 | 
						|
}
 | 
						|
 | 
						|
/* First set of helpers allows passing in of OI and RETADDR.  This makes
 | 
						|
   them callable from other helpers.  */
 | 
						|
 | 
						|
#define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
 | 
						|
#define ATOMIC_NAME(X) \
 | 
						|
    HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
 | 
						|
#define ATOMIC_MMU_DECLS NotDirtyInfo ndi
 | 
						|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
 | 
						|
#define ATOMIC_MMU_CLEANUP                              \
 | 
						|
    do {                                                \
 | 
						|
        if (unlikely(ndi.active)) {                     \
 | 
						|
            memory_notdirty_write_complete(&ndi);       \
 | 
						|
        }                                               \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
 | 
						|
#define DATA_SIZE 16
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Second set of helpers are directly callable from TCG as helpers.  */
 | 
						|
 | 
						|
#undef EXTRA_ARGS
 | 
						|
#undef ATOMIC_NAME
 | 
						|
#undef ATOMIC_MMU_LOOKUP
 | 
						|
#define EXTRA_ARGS         , TCGMemOpIdx oi
 | 
						|
#define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
 | 
						|
#define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Code access functions.  */
 | 
						|
 | 
						|
static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                               TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_cmmu);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_ldub_cmmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_LEUW, true,
 | 
						|
                       full_le_lduw_cmmu);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_le_lduw_cmmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_BEUW, true,
 | 
						|
                       full_be_lduw_cmmu);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_be_lduw_cmmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_LEUL, true,
 | 
						|
                       full_le_ldul_cmmu);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_le_ldul_cmmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_BEUL, true,
 | 
						|
                       full_be_ldul_cmmu);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return full_be_ldul_cmmu(env, addr, oi, retaddr);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_LEQ, true,
 | 
						|
                       helper_le_ldq_cmmu);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
 | 
						|
                            TCGMemOpIdx oi, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    return load_helper(env, addr, oi, retaddr, MO_BEQ, true,
 | 
						|
                       helper_be_ldq_cmmu);
 | 
						|
}
 |