 f650305967
			
		
	
	
		f650305967
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3984 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			596 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			596 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU MC146818 RTC emulation
 | |
|  *
 | |
|  * Copyright (c) 2003-2004 Fabrice Bellard
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "hw.h"
 | |
| #include "qemu-timer.h"
 | |
| #include "sysemu.h"
 | |
| #include "pc.h"
 | |
| #include "isa.h"
 | |
| 
 | |
| //#define DEBUG_CMOS
 | |
| 
 | |
| #define RTC_SECONDS             0
 | |
| #define RTC_SECONDS_ALARM       1
 | |
| #define RTC_MINUTES             2
 | |
| #define RTC_MINUTES_ALARM       3
 | |
| #define RTC_HOURS               4
 | |
| #define RTC_HOURS_ALARM         5
 | |
| #define RTC_ALARM_DONT_CARE    0xC0
 | |
| 
 | |
| #define RTC_DAY_OF_WEEK         6
 | |
| #define RTC_DAY_OF_MONTH        7
 | |
| #define RTC_MONTH               8
 | |
| #define RTC_YEAR                9
 | |
| 
 | |
| #define RTC_REG_A               10
 | |
| #define RTC_REG_B               11
 | |
| #define RTC_REG_C               12
 | |
| #define RTC_REG_D               13
 | |
| 
 | |
| #define REG_A_UIP 0x80
 | |
| 
 | |
| #define REG_B_SET 0x80
 | |
| #define REG_B_PIE 0x40
 | |
| #define REG_B_AIE 0x20
 | |
| #define REG_B_UIE 0x10
 | |
| 
 | |
| struct RTCState {
 | |
|     uint8_t cmos_data[128];
 | |
|     uint8_t cmos_index;
 | |
|     struct tm current_tm;
 | |
|     qemu_irq irq;
 | |
|     target_phys_addr_t base;
 | |
|     int it_shift;
 | |
|     /* periodic timer */
 | |
|     QEMUTimer *periodic_timer;
 | |
|     int64_t next_periodic_time;
 | |
|     /* second update */
 | |
|     int64_t next_second_time;
 | |
|     QEMUTimer *second_timer;
 | |
|     QEMUTimer *second_timer2;
 | |
| };
 | |
| 
 | |
| static void rtc_set_time(RTCState *s);
 | |
| static void rtc_copy_date(RTCState *s);
 | |
| 
 | |
| static void rtc_timer_update(RTCState *s, int64_t current_time)
 | |
| {
 | |
|     int period_code, period;
 | |
|     int64_t cur_clock, next_irq_clock;
 | |
| 
 | |
|     period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 | |
|     if (period_code != 0 &&
 | |
|         (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 | |
|         if (period_code <= 2)
 | |
|             period_code += 7;
 | |
|         /* period in 32 Khz cycles */
 | |
|         period = 1 << (period_code - 1);
 | |
|         /* compute 32 khz clock */
 | |
|         cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
 | |
|         next_irq_clock = (cur_clock & ~(period - 1)) + period;
 | |
|         s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
 | |
|         qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
 | |
|     } else {
 | |
|         qemu_del_timer(s->periodic_timer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rtc_periodic_timer(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     rtc_timer_update(s, s->next_periodic_time);
 | |
|     s->cmos_data[RTC_REG_C] |= 0xc0;
 | |
|     qemu_irq_raise(s->irq);
 | |
| }
 | |
| 
 | |
| static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     if ((addr & 1) == 0) {
 | |
|         s->cmos_index = data & 0x7f;
 | |
|     } else {
 | |
| #ifdef DEBUG_CMOS
 | |
|         printf("cmos: write index=0x%02x val=0x%02x\n",
 | |
|                s->cmos_index, data);
 | |
| #endif
 | |
|         switch(s->cmos_index) {
 | |
|         case RTC_SECONDS_ALARM:
 | |
|         case RTC_MINUTES_ALARM:
 | |
|         case RTC_HOURS_ALARM:
 | |
|             /* XXX: not supported */
 | |
|             s->cmos_data[s->cmos_index] = data;
 | |
|             break;
 | |
|         case RTC_SECONDS:
 | |
|         case RTC_MINUTES:
 | |
|         case RTC_HOURS:
 | |
|         case RTC_DAY_OF_WEEK:
 | |
|         case RTC_DAY_OF_MONTH:
 | |
|         case RTC_MONTH:
 | |
|         case RTC_YEAR:
 | |
|             s->cmos_data[s->cmos_index] = data;
 | |
|             /* if in set mode, do not update the time */
 | |
|             if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | |
|                 rtc_set_time(s);
 | |
|             }
 | |
|             break;
 | |
|         case RTC_REG_A:
 | |
|             /* UIP bit is read only */
 | |
|             s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 | |
|                 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 | |
|             rtc_timer_update(s, qemu_get_clock(vm_clock));
 | |
|             break;
 | |
|         case RTC_REG_B:
 | |
|             if (data & REG_B_SET) {
 | |
|                 /* set mode: reset UIP mode */
 | |
|                 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | |
|                 data &= ~REG_B_UIE;
 | |
|             } else {
 | |
|                 /* if disabling set mode, update the time */
 | |
|                 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
 | |
|                     rtc_set_time(s);
 | |
|                 }
 | |
|             }
 | |
|             s->cmos_data[RTC_REG_B] = data;
 | |
|             rtc_timer_update(s, qemu_get_clock(vm_clock));
 | |
|             break;
 | |
|         case RTC_REG_C:
 | |
|         case RTC_REG_D:
 | |
|             /* cannot write to them */
 | |
|             break;
 | |
|         default:
 | |
|             s->cmos_data[s->cmos_index] = data;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int to_bcd(RTCState *s, int a)
 | |
| {
 | |
|     if (s->cmos_data[RTC_REG_B] & 0x04) {
 | |
|         return a;
 | |
|     } else {
 | |
|         return ((a / 10) << 4) | (a % 10);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int from_bcd(RTCState *s, int a)
 | |
| {
 | |
|     if (s->cmos_data[RTC_REG_B] & 0x04) {
 | |
|         return a;
 | |
|     } else {
 | |
|         return ((a >> 4) * 10) + (a & 0x0f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rtc_set_time(RTCState *s)
 | |
| {
 | |
|     struct tm *tm = &s->current_tm;
 | |
| 
 | |
|     tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | |
|     tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | |
|     tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 | |
|     if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
 | |
|         (s->cmos_data[RTC_HOURS] & 0x80)) {
 | |
|         tm->tm_hour += 12;
 | |
|     }
 | |
|     tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
 | |
|     tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 | |
|     tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 | |
|     tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
 | |
| }
 | |
| 
 | |
| static void rtc_copy_date(RTCState *s)
 | |
| {
 | |
|     const struct tm *tm = &s->current_tm;
 | |
| 
 | |
|     s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
 | |
|     s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
 | |
|     if (s->cmos_data[RTC_REG_B] & 0x02) {
 | |
|         /* 24 hour format */
 | |
|         s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
 | |
|     } else {
 | |
|         /* 12 hour format */
 | |
|         s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
 | |
|         if (tm->tm_hour >= 12)
 | |
|             s->cmos_data[RTC_HOURS] |= 0x80;
 | |
|     }
 | |
|     s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
 | |
|     s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
 | |
|     s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
 | |
|     s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
 | |
| }
 | |
| 
 | |
| /* month is between 0 and 11. */
 | |
| static int get_days_in_month(int month, int year)
 | |
| {
 | |
|     static const int days_tab[12] = {
 | |
|         31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 | |
|     };
 | |
|     int d;
 | |
|     if ((unsigned )month >= 12)
 | |
|         return 31;
 | |
|     d = days_tab[month];
 | |
|     if (month == 1) {
 | |
|         if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
 | |
|             d++;
 | |
|     }
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| /* update 'tm' to the next second */
 | |
| static void rtc_next_second(struct tm *tm)
 | |
| {
 | |
|     int days_in_month;
 | |
| 
 | |
|     tm->tm_sec++;
 | |
|     if ((unsigned)tm->tm_sec >= 60) {
 | |
|         tm->tm_sec = 0;
 | |
|         tm->tm_min++;
 | |
|         if ((unsigned)tm->tm_min >= 60) {
 | |
|             tm->tm_min = 0;
 | |
|             tm->tm_hour++;
 | |
|             if ((unsigned)tm->tm_hour >= 24) {
 | |
|                 tm->tm_hour = 0;
 | |
|                 /* next day */
 | |
|                 tm->tm_wday++;
 | |
|                 if ((unsigned)tm->tm_wday >= 7)
 | |
|                     tm->tm_wday = 0;
 | |
|                 days_in_month = get_days_in_month(tm->tm_mon,
 | |
|                                                   tm->tm_year + 1900);
 | |
|                 tm->tm_mday++;
 | |
|                 if (tm->tm_mday < 1) {
 | |
|                     tm->tm_mday = 1;
 | |
|                 } else if (tm->tm_mday > days_in_month) {
 | |
|                     tm->tm_mday = 1;
 | |
|                     tm->tm_mon++;
 | |
|                     if (tm->tm_mon >= 12) {
 | |
|                         tm->tm_mon = 0;
 | |
|                         tm->tm_year++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static void rtc_update_second(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     int64_t delay;
 | |
| 
 | |
|     /* if the oscillator is not in normal operation, we do not update */
 | |
|     if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
 | |
|         s->next_second_time += ticks_per_sec;
 | |
|         qemu_mod_timer(s->second_timer, s->next_second_time);
 | |
|     } else {
 | |
|         rtc_next_second(&s->current_tm);
 | |
| 
 | |
|         if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | |
|             /* update in progress bit */
 | |
|             s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 | |
|         }
 | |
|         /* should be 244 us = 8 / 32768 seconds, but currently the
 | |
|            timers do not have the necessary resolution. */
 | |
|         delay = (ticks_per_sec * 1) / 100;
 | |
|         if (delay < 1)
 | |
|             delay = 1;
 | |
|         qemu_mod_timer(s->second_timer2,
 | |
|                        s->next_second_time + delay);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void rtc_update_second2(void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | |
|         rtc_copy_date(s);
 | |
|     }
 | |
| 
 | |
|     /* check alarm */
 | |
|     if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 | |
|         if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
 | |
|              s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
 | |
|             ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
 | |
|              s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
 | |
|             ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
 | |
|              s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
 | |
| 
 | |
|             s->cmos_data[RTC_REG_C] |= 0xa0;
 | |
|             qemu_irq_raise(s->irq);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* update ended interrupt */
 | |
|     if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
 | |
|         s->cmos_data[RTC_REG_C] |= 0x90;
 | |
|         qemu_irq_raise(s->irq);
 | |
|     }
 | |
| 
 | |
|     /* clear update in progress bit */
 | |
|     s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | |
| 
 | |
|     s->next_second_time += ticks_per_sec;
 | |
|     qemu_mod_timer(s->second_timer, s->next_second_time);
 | |
| }
 | |
| 
 | |
| static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     int ret;
 | |
|     if ((addr & 1) == 0) {
 | |
|         return 0xff;
 | |
|     } else {
 | |
|         switch(s->cmos_index) {
 | |
|         case RTC_SECONDS:
 | |
|         case RTC_MINUTES:
 | |
|         case RTC_HOURS:
 | |
|         case RTC_DAY_OF_WEEK:
 | |
|         case RTC_DAY_OF_MONTH:
 | |
|         case RTC_MONTH:
 | |
|         case RTC_YEAR:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             break;
 | |
|         case RTC_REG_A:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             break;
 | |
|         case RTC_REG_C:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             qemu_irq_lower(s->irq);
 | |
|             s->cmos_data[RTC_REG_C] = 0x00;
 | |
|             break;
 | |
|         default:
 | |
|             ret = s->cmos_data[s->cmos_index];
 | |
|             break;
 | |
|         }
 | |
| #ifdef DEBUG_CMOS
 | |
|         printf("cmos: read index=0x%02x val=0x%02x\n",
 | |
|                s->cmos_index, ret);
 | |
| #endif
 | |
|         return ret;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void rtc_set_memory(RTCState *s, int addr, int val)
 | |
| {
 | |
|     if (addr >= 0 && addr <= 127)
 | |
|         s->cmos_data[addr] = val;
 | |
| }
 | |
| 
 | |
| void rtc_set_date(RTCState *s, const struct tm *tm)
 | |
| {
 | |
|     s->current_tm = *tm;
 | |
|     rtc_copy_date(s);
 | |
| }
 | |
| 
 | |
| /* PC cmos mappings */
 | |
| #define REG_IBM_CENTURY_BYTE        0x32
 | |
| #define REG_IBM_PS2_CENTURY_BYTE    0x37
 | |
| 
 | |
| static void rtc_set_date_from_host(RTCState *s)
 | |
| {
 | |
|     struct tm tm;
 | |
|     int val;
 | |
| 
 | |
|     /* set the CMOS date */
 | |
|     qemu_get_timedate(&tm, 0);
 | |
|     rtc_set_date(s, &tm);
 | |
| 
 | |
|     val = to_bcd(s, (tm.tm_year / 100) + 19);
 | |
|     rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
 | |
|     rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
 | |
| }
 | |
| 
 | |
| static void rtc_save(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     qemu_put_buffer(f, s->cmos_data, 128);
 | |
|     qemu_put_8s(f, &s->cmos_index);
 | |
| 
 | |
|     qemu_put_be32(f, s->current_tm.tm_sec);
 | |
|     qemu_put_be32(f, s->current_tm.tm_min);
 | |
|     qemu_put_be32(f, s->current_tm.tm_hour);
 | |
|     qemu_put_be32(f, s->current_tm.tm_wday);
 | |
|     qemu_put_be32(f, s->current_tm.tm_mday);
 | |
|     qemu_put_be32(f, s->current_tm.tm_mon);
 | |
|     qemu_put_be32(f, s->current_tm.tm_year);
 | |
| 
 | |
|     qemu_put_timer(f, s->periodic_timer);
 | |
|     qemu_put_be64(f, s->next_periodic_time);
 | |
| 
 | |
|     qemu_put_be64(f, s->next_second_time);
 | |
|     qemu_put_timer(f, s->second_timer);
 | |
|     qemu_put_timer(f, s->second_timer2);
 | |
| }
 | |
| 
 | |
| static int rtc_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     if (version_id != 1)
 | |
|         return -EINVAL;
 | |
| 
 | |
|     qemu_get_buffer(f, s->cmos_data, 128);
 | |
|     qemu_get_8s(f, &s->cmos_index);
 | |
| 
 | |
|     s->current_tm.tm_sec=qemu_get_be32(f);
 | |
|     s->current_tm.tm_min=qemu_get_be32(f);
 | |
|     s->current_tm.tm_hour=qemu_get_be32(f);
 | |
|     s->current_tm.tm_wday=qemu_get_be32(f);
 | |
|     s->current_tm.tm_mday=qemu_get_be32(f);
 | |
|     s->current_tm.tm_mon=qemu_get_be32(f);
 | |
|     s->current_tm.tm_year=qemu_get_be32(f);
 | |
| 
 | |
|     qemu_get_timer(f, s->periodic_timer);
 | |
|     s->next_periodic_time=qemu_get_be64(f);
 | |
| 
 | |
|     s->next_second_time=qemu_get_be64(f);
 | |
|     qemu_get_timer(f, s->second_timer);
 | |
|     qemu_get_timer(f, s->second_timer2);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| RTCState *rtc_init(int base, qemu_irq irq)
 | |
| {
 | |
|     RTCState *s;
 | |
| 
 | |
|     s = qemu_mallocz(sizeof(RTCState));
 | |
|     if (!s)
 | |
|         return NULL;
 | |
| 
 | |
|     s->irq = irq;
 | |
|     s->cmos_data[RTC_REG_A] = 0x26;
 | |
|     s->cmos_data[RTC_REG_B] = 0x02;
 | |
|     s->cmos_data[RTC_REG_C] = 0x00;
 | |
|     s->cmos_data[RTC_REG_D] = 0x80;
 | |
| 
 | |
|     rtc_set_date_from_host(s);
 | |
| 
 | |
|     s->periodic_timer = qemu_new_timer(vm_clock,
 | |
|                                        rtc_periodic_timer, s);
 | |
|     s->second_timer = qemu_new_timer(vm_clock,
 | |
|                                      rtc_update_second, s);
 | |
|     s->second_timer2 = qemu_new_timer(vm_clock,
 | |
|                                       rtc_update_second2, s);
 | |
| 
 | |
|     s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
 | |
|     qemu_mod_timer(s->second_timer2, s->next_second_time);
 | |
| 
 | |
|     register_ioport_write(base, 2, 1, cmos_ioport_write, s);
 | |
|     register_ioport_read(base, 2, 1, cmos_ioport_read, s);
 | |
| 
 | |
|     register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| /* Memory mapped interface */
 | |
| static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
 | |
| }
 | |
| 
 | |
| static void cmos_mm_writeb (void *opaque,
 | |
|                             target_phys_addr_t addr, uint32_t value)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| 
 | |
|     cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
 | |
| }
 | |
| 
 | |
| static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     uint32_t val;
 | |
| 
 | |
|     val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|     val = bswap16(val);
 | |
| #endif
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static void cmos_mm_writew (void *opaque,
 | |
|                             target_phys_addr_t addr, uint32_t value)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|     value = bswap16(value);
 | |
| #endif
 | |
|     cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
 | |
| }
 | |
| 
 | |
| static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
|     uint32_t val;
 | |
| 
 | |
|     val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|     val = bswap32(val);
 | |
| #endif
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static void cmos_mm_writel (void *opaque,
 | |
|                             target_phys_addr_t addr, uint32_t value)
 | |
| {
 | |
|     RTCState *s = opaque;
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|     value = bswap32(value);
 | |
| #endif
 | |
|     cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *rtc_mm_read[] = {
 | |
|     &cmos_mm_readb,
 | |
|     &cmos_mm_readw,
 | |
|     &cmos_mm_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *rtc_mm_write[] = {
 | |
|     &cmos_mm_writeb,
 | |
|     &cmos_mm_writew,
 | |
|     &cmos_mm_writel,
 | |
| };
 | |
| 
 | |
| RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
 | |
| {
 | |
|     RTCState *s;
 | |
|     int io_memory;
 | |
| 
 | |
|     s = qemu_mallocz(sizeof(RTCState));
 | |
|     if (!s)
 | |
|         return NULL;
 | |
| 
 | |
|     s->irq = irq;
 | |
|     s->cmos_data[RTC_REG_A] = 0x26;
 | |
|     s->cmos_data[RTC_REG_B] = 0x02;
 | |
|     s->cmos_data[RTC_REG_C] = 0x00;
 | |
|     s->cmos_data[RTC_REG_D] = 0x80;
 | |
|     s->base = base;
 | |
| 
 | |
|     rtc_set_date_from_host(s);
 | |
| 
 | |
|     s->periodic_timer = qemu_new_timer(vm_clock,
 | |
|                                        rtc_periodic_timer, s);
 | |
|     s->second_timer = qemu_new_timer(vm_clock,
 | |
|                                      rtc_update_second, s);
 | |
|     s->second_timer2 = qemu_new_timer(vm_clock,
 | |
|                                       rtc_update_second2, s);
 | |
| 
 | |
|     s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
 | |
|     qemu_mod_timer(s->second_timer2, s->next_second_time);
 | |
| 
 | |
|     io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
 | |
|     cpu_register_physical_memory(base, 2 << it_shift, io_memory);
 | |
| 
 | |
|     register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
 | |
|     return s;
 | |
| }
 |