 e653bc6b0f
			
		
	
	
		e653bc6b0f
		
	
	
	
	
		
			
			Add some notes on the use of the relaxed atomic access helpers and their importance for defined behaviour in C11's multi-threaded memory model. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Message-Id: <20160930213106.20186-3-alex.bennee@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			408 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			408 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Simple interface for atomic operations.
 | |
|  *
 | |
|  * Copyright (C) 2013 Red Hat, Inc.
 | |
|  *
 | |
|  * Author: Paolo Bonzini <pbonzini@redhat.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  * See docs/atomics.txt for discussion about the guarantees each
 | |
|  * atomic primitive is meant to provide.
 | |
|  */
 | |
| 
 | |
| #ifndef QEMU_ATOMIC_H
 | |
| #define QEMU_ATOMIC_H
 | |
| 
 | |
| /* Compiler barrier */
 | |
| #define barrier()   ({ asm volatile("" ::: "memory"); (void)0; })
 | |
| 
 | |
| /* The variable that receives the old value of an atomically-accessed
 | |
|  * variable must be non-qualified, because atomic builtins return values
 | |
|  * through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
 | |
|  *
 | |
|  * This macro has to handle types smaller than int manually, because of
 | |
|  * implicit promotion.  int and larger types, as well as pointers, can be
 | |
|  * converted to a non-qualified type just by applying a binary operator.
 | |
|  */
 | |
| #define typeof_strip_qual(expr)                                                    \
 | |
|   typeof(                                                                          \
 | |
|     __builtin_choose_expr(                                                         \
 | |
|       __builtin_types_compatible_p(typeof(expr), bool) ||                          \
 | |
|         __builtin_types_compatible_p(typeof(expr), const bool) ||                  \
 | |
|         __builtin_types_compatible_p(typeof(expr), volatile bool) ||               \
 | |
|         __builtin_types_compatible_p(typeof(expr), const volatile bool),           \
 | |
|         (bool)1,                                                                   \
 | |
|     __builtin_choose_expr(                                                         \
 | |
|       __builtin_types_compatible_p(typeof(expr), signed char) ||                   \
 | |
|         __builtin_types_compatible_p(typeof(expr), const signed char) ||           \
 | |
|         __builtin_types_compatible_p(typeof(expr), volatile signed char) ||        \
 | |
|         __builtin_types_compatible_p(typeof(expr), const volatile signed char),    \
 | |
|         (signed char)1,                                                            \
 | |
|     __builtin_choose_expr(                                                         \
 | |
|       __builtin_types_compatible_p(typeof(expr), unsigned char) ||                 \
 | |
|         __builtin_types_compatible_p(typeof(expr), const unsigned char) ||         \
 | |
|         __builtin_types_compatible_p(typeof(expr), volatile unsigned char) ||      \
 | |
|         __builtin_types_compatible_p(typeof(expr), const volatile unsigned char),  \
 | |
|         (unsigned char)1,                                                          \
 | |
|     __builtin_choose_expr(                                                         \
 | |
|       __builtin_types_compatible_p(typeof(expr), signed short) ||                  \
 | |
|         __builtin_types_compatible_p(typeof(expr), const signed short) ||          \
 | |
|         __builtin_types_compatible_p(typeof(expr), volatile signed short) ||       \
 | |
|         __builtin_types_compatible_p(typeof(expr), const volatile signed short),   \
 | |
|         (signed short)1,                                                           \
 | |
|     __builtin_choose_expr(                                                         \
 | |
|       __builtin_types_compatible_p(typeof(expr), unsigned short) ||                \
 | |
|         __builtin_types_compatible_p(typeof(expr), const unsigned short) ||        \
 | |
|         __builtin_types_compatible_p(typeof(expr), volatile unsigned short) ||     \
 | |
|         __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
 | |
|         (unsigned short)1,                                                         \
 | |
|       (expr)+0))))))
 | |
| 
 | |
| #ifdef __ATOMIC_RELAXED
 | |
| /* For C11 atomic ops */
 | |
| 
 | |
| /* Manual memory barriers
 | |
|  *
 | |
|  *__atomic_thread_fence does not include a compiler barrier; instead,
 | |
|  * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
 | |
|  * semantics. If smp_wmb() is a no-op, absence of the barrier means that
 | |
|  * the compiler is free to reorder stores on each side of the barrier.
 | |
|  * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
 | |
|  */
 | |
| 
 | |
| #define smp_mb()    ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
 | |
| #define smp_wmb()   ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
 | |
| #define smp_rmb()   ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
 | |
| 
 | |
| /* Most compilers currently treat consume and acquire the same, but really
 | |
|  * no processors except Alpha need a barrier here.  Leave it in if
 | |
|  * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
 | |
|  */
 | |
| #if defined(__SANITIZE_THREAD__)
 | |
| #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
 | |
| #elif defined(__alpha__)
 | |
| #define smp_read_barrier_depends()   asm volatile("mb":::"memory")
 | |
| #else
 | |
| #define smp_read_barrier_depends()   barrier()
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Weak atomic operations prevent the compiler moving other
 | |
|  * loads/stores past the atomic operation load/store. However there is
 | |
|  * no explicit memory barrier for the processor.
 | |
|  *
 | |
|  * The C11 memory model says that variables that are accessed from
 | |
|  * different threads should at least be done with __ATOMIC_RELAXED
 | |
|  * primitives or the result is undefined. Generally this has little to
 | |
|  * no effect on the generated code but not using the atomic primitives
 | |
|  * will get flagged by sanitizers as a violation.
 | |
|  */
 | |
| #define atomic_read(ptr)                              \
 | |
|     ({                                                \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 | |
|     __atomic_load_n(ptr, __ATOMIC_RELAXED);           \
 | |
|     })
 | |
| 
 | |
| #define atomic_set(ptr, i)  do {                      \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 | |
|     __atomic_store_n(ptr, i, __ATOMIC_RELAXED);       \
 | |
| } while(0)
 | |
| 
 | |
| /* See above: most compilers currently treat consume and acquire the
 | |
|  * same, but this slows down atomic_rcu_read unnecessarily.
 | |
|  */
 | |
| #ifdef __SANITIZE_THREAD__
 | |
| #define atomic_rcu_read__nocheck(ptr, valptr)           \
 | |
|     __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
 | |
| #else
 | |
| #define atomic_rcu_read__nocheck(ptr, valptr)           \
 | |
|     __atomic_load(ptr, valptr, __ATOMIC_RELAXED);       \
 | |
|     smp_read_barrier_depends();
 | |
| #endif
 | |
| 
 | |
| #define atomic_rcu_read(ptr)                          \
 | |
|     ({                                                \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 | |
|     typeof_strip_qual(*ptr) _val;                     \
 | |
|     atomic_rcu_read__nocheck(ptr, &_val);             \
 | |
|     _val;                                             \
 | |
|     })
 | |
| 
 | |
| #define atomic_rcu_set(ptr, i) do {                   \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
 | |
|     __atomic_store_n(ptr, i, __ATOMIC_RELEASE);       \
 | |
| } while(0)
 | |
| 
 | |
| /* atomic_mb_read/set semantics map Java volatile variables. They are
 | |
|  * less expensive on some platforms (notably POWER & ARMv7) than fully
 | |
|  * sequentially consistent operations.
 | |
|  *
 | |
|  * As long as they are used as paired operations they are safe to
 | |
|  * use. See docs/atomic.txt for more discussion.
 | |
|  */
 | |
| 
 | |
| #if defined(_ARCH_PPC)
 | |
| #define atomic_mb_read(ptr)                             \
 | |
|     ({                                                  \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));   \
 | |
|     typeof_strip_qual(*ptr) _val;                       \
 | |
|      __atomic_load(ptr, &_val, __ATOMIC_RELAXED);       \
 | |
|      smp_rmb();                                         \
 | |
|     _val;                                               \
 | |
|     })
 | |
| 
 | |
| #define atomic_mb_set(ptr, i)  do {                     \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));   \
 | |
|     smp_wmb();                                          \
 | |
|     __atomic_store_n(ptr, i, __ATOMIC_RELAXED);         \
 | |
|     smp_mb();                                           \
 | |
| } while(0)
 | |
| #else
 | |
| #define atomic_mb_read(ptr)                             \
 | |
|     ({                                                  \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));   \
 | |
|     typeof_strip_qual(*ptr) _val;                       \
 | |
|     __atomic_load(ptr, &_val, __ATOMIC_SEQ_CST);        \
 | |
|     _val;                                               \
 | |
|     })
 | |
| 
 | |
| #define atomic_mb_set(ptr, i)  do {                     \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));   \
 | |
|     __atomic_store_n(ptr, i, __ATOMIC_SEQ_CST);         \
 | |
| } while(0)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* All the remaining operations are fully sequentially consistent */
 | |
| 
 | |
| #define atomic_xchg(ptr, i)    ({                           \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));       \
 | |
|     __atomic_exchange_n(ptr, i, __ATOMIC_SEQ_CST);          \
 | |
| })
 | |
| 
 | |
| /* Returns the eventual value, failed or not */
 | |
| #define atomic_cmpxchg(ptr, old, new)                                   \
 | |
|     ({                                                                  \
 | |
|     QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *));                   \
 | |
|     typeof_strip_qual(*ptr) _old = (old);                               \
 | |
|     __atomic_compare_exchange_n(ptr, &_old, new, false,                 \
 | |
|                               __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);      \
 | |
|     _old;                                                               \
 | |
|     })
 | |
| 
 | |
| /* Provide shorter names for GCC atomic builtins, return old value */
 | |
| #define atomic_fetch_inc(ptr)  __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
 | |
| #define atomic_fetch_dec(ptr)  __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
 | |
| #define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
 | |
| #define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
 | |
| #define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
 | |
| #define atomic_fetch_or(ptr, n)  __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
 | |
| 
 | |
| /* And even shorter names that return void.  */
 | |
| #define atomic_inc(ptr)    ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
 | |
| #define atomic_dec(ptr)    ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
 | |
| #define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
 | |
| #define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
 | |
| #define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
 | |
| #define atomic_or(ptr, n)  ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
 | |
| 
 | |
| #else /* __ATOMIC_RELAXED */
 | |
| 
 | |
| /*
 | |
|  * We use GCC builtin if it's available, as that can use mfence on
 | |
|  * 32-bit as well, e.g. if built with -march=pentium-m. However, on
 | |
|  * i386 the spec is buggy, and the implementation followed it until
 | |
|  * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
 | |
|  */
 | |
| #if defined(__i386__) || defined(__x86_64__)
 | |
| #if !QEMU_GNUC_PREREQ(4, 4)
 | |
| #if defined __x86_64__
 | |
| #define smp_mb()    ({ asm volatile("mfence" ::: "memory"); (void)0; })
 | |
| #else
 | |
| #define smp_mb()    ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef __alpha__
 | |
| #define smp_read_barrier_depends()   asm volatile("mb":::"memory")
 | |
| #endif
 | |
| 
 | |
| #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
 | |
| 
 | |
| /*
 | |
|  * Because of the strongly ordered storage model, wmb() and rmb() are nops
 | |
|  * here (a compiler barrier only).  QEMU doesn't do accesses to write-combining
 | |
|  * qemu memory or non-temporal load/stores from C code.
 | |
|  */
 | |
| #define smp_wmb()   barrier()
 | |
| #define smp_rmb()   barrier()
 | |
| 
 | |
| /*
 | |
|  * __sync_lock_test_and_set() is documented to be an acquire barrier only,
 | |
|  * but it is a full barrier at the hardware level.  Add a compiler barrier
 | |
|  * to make it a full barrier also at the compiler level.
 | |
|  */
 | |
| #define atomic_xchg(ptr, i)    (barrier(), __sync_lock_test_and_set(ptr, i))
 | |
| 
 | |
| /*
 | |
|  * Load/store with Java volatile semantics.
 | |
|  */
 | |
| #define atomic_mb_set(ptr, i)  ((void)atomic_xchg(ptr, i))
 | |
| 
 | |
| #elif defined(_ARCH_PPC)
 | |
| 
 | |
| /*
 | |
|  * We use an eieio() for wmb() on powerpc.  This assumes we don't
 | |
|  * need to order cacheable and non-cacheable stores with respect to
 | |
|  * each other.
 | |
|  *
 | |
|  * smp_mb has the same problem as on x86 for not-very-new GCC
 | |
|  * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
 | |
|  */
 | |
| #define smp_wmb()   ({ asm volatile("eieio" ::: "memory"); (void)0; })
 | |
| #if defined(__powerpc64__)
 | |
| #define smp_rmb()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
 | |
| #else
 | |
| #define smp_rmb()   ({ asm volatile("sync" ::: "memory"); (void)0; })
 | |
| #endif
 | |
| #define smp_mb()    ({ asm volatile("sync" ::: "memory"); (void)0; })
 | |
| 
 | |
| #endif /* _ARCH_PPC */
 | |
| 
 | |
| /*
 | |
|  * For (host) platforms we don't have explicit barrier definitions
 | |
|  * for, we use the gcc __sync_synchronize() primitive to generate a
 | |
|  * full barrier.  This should be safe on all platforms, though it may
 | |
|  * be overkill for smp_wmb() and smp_rmb().
 | |
|  */
 | |
| #ifndef smp_mb
 | |
| #define smp_mb()    __sync_synchronize()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_wmb
 | |
| #define smp_wmb()   __sync_synchronize()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_rmb
 | |
| #define smp_rmb()   __sync_synchronize()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_read_barrier_depends
 | |
| #define smp_read_barrier_depends()   barrier()
 | |
| #endif
 | |
| 
 | |
| /* These will only be atomic if the processor does the fetch or store
 | |
|  * in a single issue memory operation
 | |
|  */
 | |
| #define atomic_read(ptr)       (*(__typeof__(*ptr) volatile*) (ptr))
 | |
| #define atomic_set(ptr, i)     ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
 | |
| 
 | |
| /**
 | |
|  * atomic_rcu_read - reads a RCU-protected pointer to a local variable
 | |
|  * into a RCU read-side critical section. The pointer can later be safely
 | |
|  * dereferenced within the critical section.
 | |
|  *
 | |
|  * This ensures that the pointer copy is invariant thorough the whole critical
 | |
|  * section.
 | |
|  *
 | |
|  * Inserts memory barriers on architectures that require them (currently only
 | |
|  * Alpha) and documents which pointers are protected by RCU.
 | |
|  *
 | |
|  * atomic_rcu_read also includes a compiler barrier to ensure that
 | |
|  * value-speculative optimizations (e.g. VSS: Value Speculation
 | |
|  * Scheduling) does not perform the data read before the pointer read
 | |
|  * by speculating the value of the pointer.
 | |
|  *
 | |
|  * Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
 | |
|  */
 | |
| #define atomic_rcu_read(ptr)    ({                \
 | |
|     typeof(*ptr) _val = atomic_read(ptr);         \
 | |
|     smp_read_barrier_depends();                   \
 | |
|     _val;                                         \
 | |
| })
 | |
| 
 | |
| /**
 | |
|  * atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
 | |
|  * meant to be read by RCU read-side critical sections.
 | |
|  *
 | |
|  * Documents which pointers will be dereferenced by RCU read-side critical
 | |
|  * sections and adds the required memory barriers on architectures requiring
 | |
|  * them. It also makes sure the compiler does not reorder code initializing the
 | |
|  * data structure before its publication.
 | |
|  *
 | |
|  * Should match atomic_rcu_read().
 | |
|  */
 | |
| #define atomic_rcu_set(ptr, i)  do {              \
 | |
|     smp_wmb();                                    \
 | |
|     atomic_set(ptr, i);                           \
 | |
| } while (0)
 | |
| 
 | |
| /* These have the same semantics as Java volatile variables.
 | |
|  * See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
 | |
|  * "1. Issue a StoreStore barrier (wmb) before each volatile store."
 | |
|  *  2. Issue a StoreLoad barrier after each volatile store.
 | |
|  *     Note that you could instead issue one before each volatile load, but
 | |
|  *     this would be slower for typical programs using volatiles in which
 | |
|  *     reads greatly outnumber writes. Alternatively, if available, you
 | |
|  *     can implement volatile store as an atomic instruction (for example
 | |
|  *     XCHG on x86) and omit the barrier. This may be more efficient if
 | |
|  *     atomic instructions are cheaper than StoreLoad barriers.
 | |
|  *  3. Issue LoadLoad and LoadStore barriers after each volatile load."
 | |
|  *
 | |
|  * If you prefer to think in terms of "pairing" of memory barriers,
 | |
|  * an atomic_mb_read pairs with an atomic_mb_set.
 | |
|  *
 | |
|  * And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq,
 | |
|  * while an atomic_mb_set is a st.rel followed by a memory barrier.
 | |
|  *
 | |
|  * These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST
 | |
|  * (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
 | |
|  * Just always use the barriers manually by the rules above.
 | |
|  */
 | |
| #define atomic_mb_read(ptr)    ({           \
 | |
|     typeof(*ptr) _val = atomic_read(ptr);   \
 | |
|     smp_rmb();                              \
 | |
|     _val;                                   \
 | |
| })
 | |
| 
 | |
| #ifndef atomic_mb_set
 | |
| #define atomic_mb_set(ptr, i)  do {         \
 | |
|     smp_wmb();                              \
 | |
|     atomic_set(ptr, i);                     \
 | |
|     smp_mb();                               \
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef atomic_xchg
 | |
| #if defined(__clang__)
 | |
| #define atomic_xchg(ptr, i)    __sync_swap(ptr, i)
 | |
| #else
 | |
| /* __sync_lock_test_and_set() is documented to be an acquire barrier only.  */
 | |
| #define atomic_xchg(ptr, i)    (smp_mb(), __sync_lock_test_and_set(ptr, i))
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* Provide shorter names for GCC atomic builtins.  */
 | |
| #define atomic_fetch_inc(ptr)  __sync_fetch_and_add(ptr, 1)
 | |
| #define atomic_fetch_dec(ptr)  __sync_fetch_and_add(ptr, -1)
 | |
| #define atomic_fetch_add       __sync_fetch_and_add
 | |
| #define atomic_fetch_sub       __sync_fetch_and_sub
 | |
| #define atomic_fetch_and       __sync_fetch_and_and
 | |
| #define atomic_fetch_or        __sync_fetch_and_or
 | |
| #define atomic_cmpxchg         __sync_val_compare_and_swap
 | |
| 
 | |
| /* And even shorter names that return void.  */
 | |
| #define atomic_inc(ptr)        ((void) __sync_fetch_and_add(ptr, 1))
 | |
| #define atomic_dec(ptr)        ((void) __sync_fetch_and_add(ptr, -1))
 | |
| #define atomic_add(ptr, n)     ((void) __sync_fetch_and_add(ptr, n))
 | |
| #define atomic_sub(ptr, n)     ((void) __sync_fetch_and_sub(ptr, n))
 | |
| #define atomic_and(ptr, n)     ((void) __sync_fetch_and_and(ptr, n))
 | |
| #define atomic_or(ptr, n)      ((void) __sync_fetch_and_or(ptr, n))
 | |
| 
 | |
| #endif /* __ATOMIC_RELAXED */
 | |
| #endif /* QEMU_ATOMIC_H */
 |