target_phys_addr_t is unwieldly, violates the C standard (_t suffixes are
reserved) and its purpose doesn't match the name (most target_phys_addr_t
addresses are not target specific).  Replace it with a finger-friendly,
standards conformant hwaddr.
Outstanding patchsets can be fixed up with the command
  git rebase -i --exec 'find -name "*.[ch]"
                        | xargs s/target_phys_addr_t/hwaddr/g' origin
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
	
			
		
			
				
	
	
		
			4209 lines
		
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4209 lines
		
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  virtual page mapping and translated block handling
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "config.h"
 | 
						|
#ifdef _WIN32
 | 
						|
#include <windows.h>
 | 
						|
#else
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/mman.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "qemu-common.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "tcg.h"
 | 
						|
#include "hw/hw.h"
 | 
						|
#include "hw/qdev.h"
 | 
						|
#include "osdep.h"
 | 
						|
#include "kvm.h"
 | 
						|
#include "hw/xen.h"
 | 
						|
#include "qemu-timer.h"
 | 
						|
#include "memory.h"
 | 
						|
#include "exec-memory.h"
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
#include <qemu.h>
 | 
						|
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
 | 
						|
#include <sys/param.h>
 | 
						|
#if __FreeBSD_version >= 700104
 | 
						|
#define HAVE_KINFO_GETVMMAP
 | 
						|
#define sigqueue sigqueue_freebsd  /* avoid redefinition */
 | 
						|
#include <sys/time.h>
 | 
						|
#include <sys/proc.h>
 | 
						|
#include <machine/profile.h>
 | 
						|
#define _KERNEL
 | 
						|
#include <sys/user.h>
 | 
						|
#undef _KERNEL
 | 
						|
#undef sigqueue
 | 
						|
#include <libutil.h>
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
#else /* !CONFIG_USER_ONLY */
 | 
						|
#include "xen-mapcache.h"
 | 
						|
#include "trace.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include "cputlb.h"
 | 
						|
 | 
						|
#include "memory-internal.h"
 | 
						|
 | 
						|
//#define DEBUG_TB_INVALIDATE
 | 
						|
//#define DEBUG_FLUSH
 | 
						|
//#define DEBUG_UNASSIGNED
 | 
						|
 | 
						|
/* make various TB consistency checks */
 | 
						|
//#define DEBUG_TB_CHECK
 | 
						|
 | 
						|
//#define DEBUG_IOPORT
 | 
						|
//#define DEBUG_SUBPAGE
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
/* TB consistency checks only implemented for usermode emulation.  */
 | 
						|
#undef DEBUG_TB_CHECK
 | 
						|
#endif
 | 
						|
 | 
						|
#define SMC_BITMAP_USE_THRESHOLD 10
 | 
						|
 | 
						|
static TranslationBlock *tbs;
 | 
						|
static int code_gen_max_blocks;
 | 
						|
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
 | 
						|
static int nb_tbs;
 | 
						|
/* any access to the tbs or the page table must use this lock */
 | 
						|
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
 | 
						|
 | 
						|
uint8_t *code_gen_prologue;
 | 
						|
static uint8_t *code_gen_buffer;
 | 
						|
static size_t code_gen_buffer_size;
 | 
						|
/* threshold to flush the translated code buffer */
 | 
						|
static size_t code_gen_buffer_max_size;
 | 
						|
static uint8_t *code_gen_ptr;
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
int phys_ram_fd;
 | 
						|
static int in_migration;
 | 
						|
 | 
						|
RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
 | 
						|
 | 
						|
static MemoryRegion *system_memory;
 | 
						|
static MemoryRegion *system_io;
 | 
						|
 | 
						|
AddressSpace address_space_io;
 | 
						|
AddressSpace address_space_memory;
 | 
						|
 | 
						|
MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
 | 
						|
static MemoryRegion io_mem_subpage_ram;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
CPUArchState *first_cpu;
 | 
						|
/* current CPU in the current thread. It is only valid inside
 | 
						|
   cpu_exec() */
 | 
						|
DEFINE_TLS(CPUArchState *,cpu_single_env);
 | 
						|
/* 0 = Do not count executed instructions.
 | 
						|
   1 = Precise instruction counting.
 | 
						|
   2 = Adaptive rate instruction counting.  */
 | 
						|
int use_icount = 0;
 | 
						|
 | 
						|
typedef struct PageDesc {
 | 
						|
    /* list of TBs intersecting this ram page */
 | 
						|
    TranslationBlock *first_tb;
 | 
						|
    /* in order to optimize self modifying code, we count the number
 | 
						|
       of lookups we do to a given page to use a bitmap */
 | 
						|
    unsigned int code_write_count;
 | 
						|
    uint8_t *code_bitmap;
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    unsigned long flags;
 | 
						|
#endif
 | 
						|
} PageDesc;
 | 
						|
 | 
						|
/* In system mode we want L1_MAP to be based on ram offsets,
 | 
						|
   while in user mode we want it to be based on virtual addresses.  */
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
 | 
						|
# define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
 | 
						|
#else
 | 
						|
# define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
 | 
						|
#endif
 | 
						|
#else
 | 
						|
# define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
 | 
						|
#endif
 | 
						|
 | 
						|
/* Size of the L2 (and L3, etc) page tables.  */
 | 
						|
#define L2_BITS 10
 | 
						|
#define L2_SIZE (1 << L2_BITS)
 | 
						|
 | 
						|
#define P_L2_LEVELS \
 | 
						|
    (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
 | 
						|
 | 
						|
/* The bits remaining after N lower levels of page tables.  */
 | 
						|
#define V_L1_BITS_REM \
 | 
						|
    ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
 | 
						|
 | 
						|
#if V_L1_BITS_REM < 4
 | 
						|
#define V_L1_BITS  (V_L1_BITS_REM + L2_BITS)
 | 
						|
#else
 | 
						|
#define V_L1_BITS  V_L1_BITS_REM
 | 
						|
#endif
 | 
						|
 | 
						|
#define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)
 | 
						|
 | 
						|
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
 | 
						|
 | 
						|
uintptr_t qemu_real_host_page_size;
 | 
						|
uintptr_t qemu_host_page_size;
 | 
						|
uintptr_t qemu_host_page_mask;
 | 
						|
 | 
						|
/* This is a multi-level map on the virtual address space.
 | 
						|
   The bottom level has pointers to PageDesc.  */
 | 
						|
static void *l1_map[V_L1_SIZE];
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static MemoryRegionSection *phys_sections;
 | 
						|
static unsigned phys_sections_nb, phys_sections_nb_alloc;
 | 
						|
static uint16_t phys_section_unassigned;
 | 
						|
static uint16_t phys_section_notdirty;
 | 
						|
static uint16_t phys_section_rom;
 | 
						|
static uint16_t phys_section_watch;
 | 
						|
 | 
						|
/* Simple allocator for PhysPageEntry nodes */
 | 
						|
static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
 | 
						|
static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
 | 
						|
 | 
						|
#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
 | 
						|
 | 
						|
static void io_mem_init(void);
 | 
						|
static void memory_map_init(void);
 | 
						|
 | 
						|
static MemoryRegion io_mem_watch;
 | 
						|
#endif
 | 
						|
 | 
						|
/* statistics */
 | 
						|
static int tb_flush_count;
 | 
						|
static int tb_phys_invalidate_count;
 | 
						|
 | 
						|
#ifdef _WIN32
 | 
						|
static inline void map_exec(void *addr, long size)
 | 
						|
{
 | 
						|
    DWORD old_protect;
 | 
						|
    VirtualProtect(addr, size,
 | 
						|
                   PAGE_EXECUTE_READWRITE, &old_protect);
 | 
						|
    
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void map_exec(void *addr, long size)
 | 
						|
{
 | 
						|
    unsigned long start, end, page_size;
 | 
						|
    
 | 
						|
    page_size = getpagesize();
 | 
						|
    start = (unsigned long)addr;
 | 
						|
    start &= ~(page_size - 1);
 | 
						|
    
 | 
						|
    end = (unsigned long)addr + size;
 | 
						|
    end += page_size - 1;
 | 
						|
    end &= ~(page_size - 1);
 | 
						|
    
 | 
						|
    mprotect((void *)start, end - start,
 | 
						|
             PROT_READ | PROT_WRITE | PROT_EXEC);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void page_init(void)
 | 
						|
{
 | 
						|
    /* NOTE: we can always suppose that qemu_host_page_size >=
 | 
						|
       TARGET_PAGE_SIZE */
 | 
						|
#ifdef _WIN32
 | 
						|
    {
 | 
						|
        SYSTEM_INFO system_info;
 | 
						|
 | 
						|
        GetSystemInfo(&system_info);
 | 
						|
        qemu_real_host_page_size = system_info.dwPageSize;
 | 
						|
    }
 | 
						|
#else
 | 
						|
    qemu_real_host_page_size = getpagesize();
 | 
						|
#endif
 | 
						|
    if (qemu_host_page_size == 0)
 | 
						|
        qemu_host_page_size = qemu_real_host_page_size;
 | 
						|
    if (qemu_host_page_size < TARGET_PAGE_SIZE)
 | 
						|
        qemu_host_page_size = TARGET_PAGE_SIZE;
 | 
						|
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
 | 
						|
 | 
						|
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 | 
						|
    {
 | 
						|
#ifdef HAVE_KINFO_GETVMMAP
 | 
						|
        struct kinfo_vmentry *freep;
 | 
						|
        int i, cnt;
 | 
						|
 | 
						|
        freep = kinfo_getvmmap(getpid(), &cnt);
 | 
						|
        if (freep) {
 | 
						|
            mmap_lock();
 | 
						|
            for (i = 0; i < cnt; i++) {
 | 
						|
                unsigned long startaddr, endaddr;
 | 
						|
 | 
						|
                startaddr = freep[i].kve_start;
 | 
						|
                endaddr = freep[i].kve_end;
 | 
						|
                if (h2g_valid(startaddr)) {
 | 
						|
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
                    if (h2g_valid(endaddr)) {
 | 
						|
                        endaddr = h2g(endaddr);
 | 
						|
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | 
						|
                    } else {
 | 
						|
#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
 | 
						|
                        endaddr = ~0ul;
 | 
						|
                        page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | 
						|
#endif
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
            free(freep);
 | 
						|
            mmap_unlock();
 | 
						|
        }
 | 
						|
#else
 | 
						|
        FILE *f;
 | 
						|
 | 
						|
        last_brk = (unsigned long)sbrk(0);
 | 
						|
 | 
						|
        f = fopen("/compat/linux/proc/self/maps", "r");
 | 
						|
        if (f) {
 | 
						|
            mmap_lock();
 | 
						|
 | 
						|
            do {
 | 
						|
                unsigned long startaddr, endaddr;
 | 
						|
                int n;
 | 
						|
 | 
						|
                n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
 | 
						|
 | 
						|
                if (n == 2 && h2g_valid(startaddr)) {
 | 
						|
                    startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
                    if (h2g_valid(endaddr)) {
 | 
						|
                        endaddr = h2g(endaddr);
 | 
						|
                    } else {
 | 
						|
                        endaddr = ~0ul;
 | 
						|
                    }
 | 
						|
                    page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | 
						|
                }
 | 
						|
            } while (!feof(f));
 | 
						|
 | 
						|
            fclose(f);
 | 
						|
            mmap_unlock();
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
 | 
						|
{
 | 
						|
    PageDesc *pd;
 | 
						|
    void **lp;
 | 
						|
    int i;
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    /* We can't use g_malloc because it may recurse into a locked mutex. */
 | 
						|
# define ALLOC(P, SIZE)                                 \
 | 
						|
    do {                                                \
 | 
						|
        P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \
 | 
						|
                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \
 | 
						|
    } while (0)
 | 
						|
#else
 | 
						|
# define ALLOC(P, SIZE) \
 | 
						|
    do { P = g_malloc0(SIZE); } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
    /* Level 1.  Always allocated.  */
 | 
						|
    lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
 | 
						|
 | 
						|
    /* Level 2..N-1.  */
 | 
						|
    for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
 | 
						|
        void **p = *lp;
 | 
						|
 | 
						|
        if (p == NULL) {
 | 
						|
            if (!alloc) {
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            ALLOC(p, sizeof(void *) * L2_SIZE);
 | 
						|
            *lp = p;
 | 
						|
        }
 | 
						|
 | 
						|
        lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
 | 
						|
    }
 | 
						|
 | 
						|
    pd = *lp;
 | 
						|
    if (pd == NULL) {
 | 
						|
        if (!alloc) {
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
 | 
						|
        *lp = pd;
 | 
						|
    }
 | 
						|
 | 
						|
#undef ALLOC
 | 
						|
 | 
						|
    return pd + (index & (L2_SIZE - 1));
 | 
						|
}
 | 
						|
 | 
						|
static inline PageDesc *page_find(tb_page_addr_t index)
 | 
						|
{
 | 
						|
    return page_find_alloc(index, 0);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static void phys_map_node_reserve(unsigned nodes)
 | 
						|
{
 | 
						|
    if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
 | 
						|
        typedef PhysPageEntry Node[L2_SIZE];
 | 
						|
        phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
 | 
						|
        phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
 | 
						|
                                      phys_map_nodes_nb + nodes);
 | 
						|
        phys_map_nodes = g_renew(Node, phys_map_nodes,
 | 
						|
                                 phys_map_nodes_nb_alloc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t phys_map_node_alloc(void)
 | 
						|
{
 | 
						|
    unsigned i;
 | 
						|
    uint16_t ret;
 | 
						|
 | 
						|
    ret = phys_map_nodes_nb++;
 | 
						|
    assert(ret != PHYS_MAP_NODE_NIL);
 | 
						|
    assert(ret != phys_map_nodes_nb_alloc);
 | 
						|
    for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
        phys_map_nodes[ret][i].is_leaf = 0;
 | 
						|
        phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void phys_map_nodes_reset(void)
 | 
						|
{
 | 
						|
    phys_map_nodes_nb = 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
 | 
						|
                                hwaddr *nb, uint16_t leaf,
 | 
						|
                                int level)
 | 
						|
{
 | 
						|
    PhysPageEntry *p;
 | 
						|
    int i;
 | 
						|
    hwaddr step = (hwaddr)1 << (level * L2_BITS);
 | 
						|
 | 
						|
    if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
 | 
						|
        lp->ptr = phys_map_node_alloc();
 | 
						|
        p = phys_map_nodes[lp->ptr];
 | 
						|
        if (level == 0) {
 | 
						|
            for (i = 0; i < L2_SIZE; i++) {
 | 
						|
                p[i].is_leaf = 1;
 | 
						|
                p[i].ptr = phys_section_unassigned;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        p = phys_map_nodes[lp->ptr];
 | 
						|
    }
 | 
						|
    lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
 | 
						|
 | 
						|
    while (*nb && lp < &p[L2_SIZE]) {
 | 
						|
        if ((*index & (step - 1)) == 0 && *nb >= step) {
 | 
						|
            lp->is_leaf = true;
 | 
						|
            lp->ptr = leaf;
 | 
						|
            *index += step;
 | 
						|
            *nb -= step;
 | 
						|
        } else {
 | 
						|
            phys_page_set_level(lp, index, nb, leaf, level - 1);
 | 
						|
        }
 | 
						|
        ++lp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void phys_page_set(AddressSpaceDispatch *d,
 | 
						|
                          hwaddr index, hwaddr nb,
 | 
						|
                          uint16_t leaf)
 | 
						|
{
 | 
						|
    /* Wildly overreserve - it doesn't matter much. */
 | 
						|
    phys_map_node_reserve(3 * P_L2_LEVELS);
 | 
						|
 | 
						|
    phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
 | 
						|
{
 | 
						|
    PhysPageEntry lp = d->phys_map;
 | 
						|
    PhysPageEntry *p;
 | 
						|
    int i;
 | 
						|
    uint16_t s_index = phys_section_unassigned;
 | 
						|
 | 
						|
    for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
 | 
						|
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 | 
						|
            goto not_found;
 | 
						|
        }
 | 
						|
        p = phys_map_nodes[lp.ptr];
 | 
						|
        lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
 | 
						|
    }
 | 
						|
 | 
						|
    s_index = lp.ptr;
 | 
						|
not_found:
 | 
						|
    return &phys_sections[s_index];
 | 
						|
}
 | 
						|
 | 
						|
bool memory_region_is_unassigned(MemoryRegion *mr)
 | 
						|
{
 | 
						|
    return mr != &io_mem_ram && mr != &io_mem_rom
 | 
						|
        && mr != &io_mem_notdirty && !mr->rom_device
 | 
						|
        && mr != &io_mem_watch;
 | 
						|
}
 | 
						|
 | 
						|
#define mmap_lock() do { } while(0)
 | 
						|
#define mmap_unlock() do { } while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
/* Currently it is not recommended to allocate big chunks of data in
 | 
						|
   user mode. It will change when a dedicated libc will be used.  */
 | 
						|
/* ??? 64-bit hosts ought to have no problem mmaping data outside the
 | 
						|
   region in which the guest needs to run.  Revisit this.  */
 | 
						|
#define USE_STATIC_CODE_GEN_BUFFER
 | 
						|
#endif
 | 
						|
 | 
						|
/* ??? Should configure for this, not list operating systems here.  */
 | 
						|
#if (defined(__linux__) \
 | 
						|
    || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
 | 
						|
    || defined(__DragonFly__) || defined(__OpenBSD__) \
 | 
						|
    || defined(__NetBSD__))
 | 
						|
# define USE_MMAP
 | 
						|
#endif
 | 
						|
 | 
						|
/* Minimum size of the code gen buffer.  This number is randomly chosen,
 | 
						|
   but not so small that we can't have a fair number of TB's live.  */
 | 
						|
#define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
 | 
						|
 | 
						|
/* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
 | 
						|
   indicated, this is constrained by the range of direct branches on the
 | 
						|
   host cpu, as used by the TCG implementation of goto_tb.  */
 | 
						|
#if defined(__x86_64__)
 | 
						|
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
 | 
						|
#elif defined(__sparc__)
 | 
						|
# define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
 | 
						|
#elif defined(__arm__)
 | 
						|
# define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024)
 | 
						|
#elif defined(__s390x__)
 | 
						|
  /* We have a +- 4GB range on the branches; leave some slop.  */
 | 
						|
# define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
 | 
						|
#else
 | 
						|
# define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
 | 
						|
#endif
 | 
						|
 | 
						|
#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
 | 
						|
 | 
						|
#define DEFAULT_CODE_GEN_BUFFER_SIZE \
 | 
						|
  (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
 | 
						|
   ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
 | 
						|
 | 
						|
static inline size_t size_code_gen_buffer(size_t tb_size)
 | 
						|
{
 | 
						|
    /* Size the buffer.  */
 | 
						|
    if (tb_size == 0) {
 | 
						|
#ifdef USE_STATIC_CODE_GEN_BUFFER
 | 
						|
        tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | 
						|
#else
 | 
						|
        /* ??? Needs adjustments.  */
 | 
						|
        /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
 | 
						|
           static buffer, we could size this on RESERVED_VA, on the text
 | 
						|
           segment size of the executable, or continue to use the default.  */
 | 
						|
        tb_size = (unsigned long)(ram_size / 4);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
 | 
						|
        tb_size = MIN_CODE_GEN_BUFFER_SIZE;
 | 
						|
    }
 | 
						|
    if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
 | 
						|
        tb_size = MAX_CODE_GEN_BUFFER_SIZE;
 | 
						|
    }
 | 
						|
    code_gen_buffer_size = tb_size;
 | 
						|
    return tb_size;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef USE_STATIC_CODE_GEN_BUFFER
 | 
						|
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
 | 
						|
    __attribute__((aligned(CODE_GEN_ALIGN)));
 | 
						|
 | 
						|
static inline void *alloc_code_gen_buffer(void)
 | 
						|
{
 | 
						|
    map_exec(static_code_gen_buffer, code_gen_buffer_size);
 | 
						|
    return static_code_gen_buffer;
 | 
						|
}
 | 
						|
#elif defined(USE_MMAP)
 | 
						|
static inline void *alloc_code_gen_buffer(void)
 | 
						|
{
 | 
						|
    int flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | 
						|
    uintptr_t start = 0;
 | 
						|
    void *buf;
 | 
						|
 | 
						|
    /* Constrain the position of the buffer based on the host cpu.
 | 
						|
       Note that these addresses are chosen in concert with the
 | 
						|
       addresses assigned in the relevant linker script file.  */
 | 
						|
# if defined(__PIE__) || defined(__PIC__)
 | 
						|
    /* Don't bother setting a preferred location if we're building
 | 
						|
       a position-independent executable.  We're more likely to get
 | 
						|
       an address near the main executable if we let the kernel
 | 
						|
       choose the address.  */
 | 
						|
# elif defined(__x86_64__) && defined(MAP_32BIT)
 | 
						|
    /* Force the memory down into low memory with the executable.
 | 
						|
       Leave the choice of exact location with the kernel.  */
 | 
						|
    flags |= MAP_32BIT;
 | 
						|
    /* Cannot expect to map more than 800MB in low memory.  */
 | 
						|
    if (code_gen_buffer_size > 800u * 1024 * 1024) {
 | 
						|
        code_gen_buffer_size = 800u * 1024 * 1024;
 | 
						|
    }
 | 
						|
# elif defined(__sparc__)
 | 
						|
    start = 0x40000000ul;
 | 
						|
# elif defined(__s390x__)
 | 
						|
    start = 0x90000000ul;
 | 
						|
# endif
 | 
						|
 | 
						|
    buf = mmap((void *)start, code_gen_buffer_size,
 | 
						|
               PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
 | 
						|
    return buf == MAP_FAILED ? NULL : buf;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void *alloc_code_gen_buffer(void)
 | 
						|
{
 | 
						|
    void *buf = g_malloc(code_gen_buffer_size);
 | 
						|
    if (buf) {
 | 
						|
        map_exec(buf, code_gen_buffer_size);
 | 
						|
    }
 | 
						|
    return buf;
 | 
						|
}
 | 
						|
#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
 | 
						|
 | 
						|
static inline void code_gen_alloc(size_t tb_size)
 | 
						|
{
 | 
						|
    code_gen_buffer_size = size_code_gen_buffer(tb_size);
 | 
						|
    code_gen_buffer = alloc_code_gen_buffer();
 | 
						|
    if (code_gen_buffer == NULL) {
 | 
						|
        fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Steal room for the prologue at the end of the buffer.  This ensures
 | 
						|
       (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
 | 
						|
       from TB's to the prologue are going to be in range.  It also means
 | 
						|
       that we don't need to mark (additional) portions of the data segment
 | 
						|
       as executable.  */
 | 
						|
    code_gen_prologue = code_gen_buffer + code_gen_buffer_size - 1024;
 | 
						|
    code_gen_buffer_size -= 1024;
 | 
						|
 | 
						|
    code_gen_buffer_max_size = code_gen_buffer_size -
 | 
						|
        (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
 | 
						|
    code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
 | 
						|
    tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
 | 
						|
}
 | 
						|
 | 
						|
/* Must be called before using the QEMU cpus. 'tb_size' is the size
 | 
						|
   (in bytes) allocated to the translation buffer. Zero means default
 | 
						|
   size. */
 | 
						|
void tcg_exec_init(unsigned long tb_size)
 | 
						|
{
 | 
						|
    cpu_gen_init();
 | 
						|
    code_gen_alloc(tb_size);
 | 
						|
    code_gen_ptr = code_gen_buffer;
 | 
						|
    tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
 | 
						|
    page_init();
 | 
						|
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
 | 
						|
    /* There's no guest base to take into account, so go ahead and
 | 
						|
       initialize the prologue now.  */
 | 
						|
    tcg_prologue_init(&tcg_ctx);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
bool tcg_enabled(void)
 | 
						|
{
 | 
						|
    return code_gen_buffer != NULL;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_exec_init_all(void)
 | 
						|
{
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
    memory_map_init();
 | 
						|
    io_mem_init();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static int cpu_common_post_load(void *opaque, int version_id)
 | 
						|
{
 | 
						|
    CPUArchState *env = opaque;
 | 
						|
 | 
						|
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 | 
						|
       version_id is increased. */
 | 
						|
    env->interrupt_request &= ~0x01;
 | 
						|
    tlb_flush(env, 1);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const VMStateDescription vmstate_cpu_common = {
 | 
						|
    .name = "cpu_common",
 | 
						|
    .version_id = 1,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .minimum_version_id_old = 1,
 | 
						|
    .post_load = cpu_common_post_load,
 | 
						|
    .fields      = (VMStateField []) {
 | 
						|
        VMSTATE_UINT32(halted, CPUArchState),
 | 
						|
        VMSTATE_UINT32(interrupt_request, CPUArchState),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    }
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
CPUArchState *qemu_get_cpu(int cpu)
 | 
						|
{
 | 
						|
    CPUArchState *env = first_cpu;
 | 
						|
 | 
						|
    while (env) {
 | 
						|
        if (env->cpu_index == cpu)
 | 
						|
            break;
 | 
						|
        env = env->next_cpu;
 | 
						|
    }
 | 
						|
 | 
						|
    return env;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_exec_init(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUArchState **penv;
 | 
						|
    int cpu_index;
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    cpu_list_lock();
 | 
						|
#endif
 | 
						|
    env->next_cpu = NULL;
 | 
						|
    penv = &first_cpu;
 | 
						|
    cpu_index = 0;
 | 
						|
    while (*penv != NULL) {
 | 
						|
        penv = &(*penv)->next_cpu;
 | 
						|
        cpu_index++;
 | 
						|
    }
 | 
						|
    env->cpu_index = cpu_index;
 | 
						|
    env->numa_node = 0;
 | 
						|
    QTAILQ_INIT(&env->breakpoints);
 | 
						|
    QTAILQ_INIT(&env->watchpoints);
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    env->thread_id = qemu_get_thread_id();
 | 
						|
#endif
 | 
						|
    *penv = env;
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    cpu_list_unlock();
 | 
						|
#endif
 | 
						|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | 
						|
    vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
 | 
						|
    register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
 | 
						|
                    cpu_save, cpu_load, env);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate a new translation block. Flush the translation buffer if
 | 
						|
   too many translation blocks or too much generated code. */
 | 
						|
static TranslationBlock *tb_alloc(target_ulong pc)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
 | 
						|
    if (nb_tbs >= code_gen_max_blocks ||
 | 
						|
        (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
 | 
						|
        return NULL;
 | 
						|
    tb = &tbs[nb_tbs++];
 | 
						|
    tb->pc = pc;
 | 
						|
    tb->cflags = 0;
 | 
						|
    return tb;
 | 
						|
}
 | 
						|
 | 
						|
void tb_free(TranslationBlock *tb)
 | 
						|
{
 | 
						|
    /* In practice this is mostly used for single use temporary TB
 | 
						|
       Ignore the hard cases and just back up if this TB happens to
 | 
						|
       be the last one generated.  */
 | 
						|
    if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
 | 
						|
        code_gen_ptr = tb->tc_ptr;
 | 
						|
        nb_tbs--;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void invalidate_page_bitmap(PageDesc *p)
 | 
						|
{
 | 
						|
    if (p->code_bitmap) {
 | 
						|
        g_free(p->code_bitmap);
 | 
						|
        p->code_bitmap = NULL;
 | 
						|
    }
 | 
						|
    p->code_write_count = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Set to NULL all the 'first_tb' fields in all PageDescs. */
 | 
						|
 | 
						|
static void page_flush_tb_1 (int level, void **lp)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (*lp == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (level == 0) {
 | 
						|
        PageDesc *pd = *lp;
 | 
						|
        for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
            pd[i].first_tb = NULL;
 | 
						|
            invalidate_page_bitmap(pd + i);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        void **pp = *lp;
 | 
						|
        for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
            page_flush_tb_1 (level - 1, pp + i);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void page_flush_tb(void)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    for (i = 0; i < V_L1_SIZE; i++) {
 | 
						|
        page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* flush all the translation blocks */
 | 
						|
/* XXX: tb_flush is currently not thread safe */
 | 
						|
void tb_flush(CPUArchState *env1)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
#if defined(DEBUG_FLUSH)
 | 
						|
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
 | 
						|
           (unsigned long)(code_gen_ptr - code_gen_buffer),
 | 
						|
           nb_tbs, nb_tbs > 0 ?
 | 
						|
           ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
 | 
						|
#endif
 | 
						|
    if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
 | 
						|
        cpu_abort(env1, "Internal error: code buffer overflow\n");
 | 
						|
 | 
						|
    nb_tbs = 0;
 | 
						|
 | 
						|
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | 
						|
    }
 | 
						|
 | 
						|
    memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
 | 
						|
    page_flush_tb();
 | 
						|
 | 
						|
    code_gen_ptr = code_gen_buffer;
 | 
						|
    /* XXX: flush processor icache at this point if cache flush is
 | 
						|
       expensive */
 | 
						|
    tb_flush_count++;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DEBUG_TB_CHECK
 | 
						|
 | 
						|
static void tb_invalidate_check(target_ulong address)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
    int i;
 | 
						|
    address &= TARGET_PAGE_MASK;
 | 
						|
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | 
						|
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | 
						|
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
 | 
						|
                  address >= tb->pc + tb->size)) {
 | 
						|
                printf("ERROR invalidate: address=" TARGET_FMT_lx
 | 
						|
                       " PC=%08lx size=%04x\n",
 | 
						|
                       address, (long)tb->pc, tb->size);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* verify that all the pages have correct rights for code */
 | 
						|
static void tb_page_check(void)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
    int i, flags1, flags2;
 | 
						|
 | 
						|
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | 
						|
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | 
						|
            flags1 = page_get_flags(tb->pc);
 | 
						|
            flags2 = page_get_flags(tb->pc + tb->size - 1);
 | 
						|
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
 | 
						|
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
 | 
						|
                       (long)tb->pc, tb->size, flags1, flags2);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* invalidate one TB */
 | 
						|
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
 | 
						|
                             int next_offset)
 | 
						|
{
 | 
						|
    TranslationBlock *tb1;
 | 
						|
    for(;;) {
 | 
						|
        tb1 = *ptb;
 | 
						|
        if (tb1 == tb) {
 | 
						|
            *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        ptb = (TranslationBlock **)((char *)tb1 + next_offset);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
 | 
						|
{
 | 
						|
    TranslationBlock *tb1;
 | 
						|
    unsigned int n1;
 | 
						|
 | 
						|
    for(;;) {
 | 
						|
        tb1 = *ptb;
 | 
						|
        n1 = (uintptr_t)tb1 & 3;
 | 
						|
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | 
						|
        if (tb1 == tb) {
 | 
						|
            *ptb = tb1->page_next[n1];
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        ptb = &tb1->page_next[n1];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
 | 
						|
{
 | 
						|
    TranslationBlock *tb1, **ptb;
 | 
						|
    unsigned int n1;
 | 
						|
 | 
						|
    ptb = &tb->jmp_next[n];
 | 
						|
    tb1 = *ptb;
 | 
						|
    if (tb1) {
 | 
						|
        /* find tb(n) in circular list */
 | 
						|
        for(;;) {
 | 
						|
            tb1 = *ptb;
 | 
						|
            n1 = (uintptr_t)tb1 & 3;
 | 
						|
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | 
						|
            if (n1 == n && tb1 == tb)
 | 
						|
                break;
 | 
						|
            if (n1 == 2) {
 | 
						|
                ptb = &tb1->jmp_first;
 | 
						|
            } else {
 | 
						|
                ptb = &tb1->jmp_next[n1];
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* now we can suppress tb(n) from the list */
 | 
						|
        *ptb = tb->jmp_next[n];
 | 
						|
 | 
						|
        tb->jmp_next[n] = NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* reset the jump entry 'n' of a TB so that it is not chained to
 | 
						|
   another TB */
 | 
						|
static inline void tb_reset_jump(TranslationBlock *tb, int n)
 | 
						|
{
 | 
						|
    tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
 | 
						|
}
 | 
						|
 | 
						|
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
    PageDesc *p;
 | 
						|
    unsigned int h, n1;
 | 
						|
    tb_page_addr_t phys_pc;
 | 
						|
    TranslationBlock *tb1, *tb2;
 | 
						|
 | 
						|
    /* remove the TB from the hash list */
 | 
						|
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | 
						|
    h = tb_phys_hash_func(phys_pc);
 | 
						|
    tb_remove(&tb_phys_hash[h], tb,
 | 
						|
              offsetof(TranslationBlock, phys_hash_next));
 | 
						|
 | 
						|
    /* remove the TB from the page list */
 | 
						|
    if (tb->page_addr[0] != page_addr) {
 | 
						|
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | 
						|
        tb_page_remove(&p->first_tb, tb);
 | 
						|
        invalidate_page_bitmap(p);
 | 
						|
    }
 | 
						|
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
 | 
						|
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | 
						|
        tb_page_remove(&p->first_tb, tb);
 | 
						|
        invalidate_page_bitmap(p);
 | 
						|
    }
 | 
						|
 | 
						|
    tb_invalidated_flag = 1;
 | 
						|
 | 
						|
    /* remove the TB from the hash list */
 | 
						|
    h = tb_jmp_cache_hash_func(tb->pc);
 | 
						|
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        if (env->tb_jmp_cache[h] == tb)
 | 
						|
            env->tb_jmp_cache[h] = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* suppress this TB from the two jump lists */
 | 
						|
    tb_jmp_remove(tb, 0);
 | 
						|
    tb_jmp_remove(tb, 1);
 | 
						|
 | 
						|
    /* suppress any remaining jumps to this TB */
 | 
						|
    tb1 = tb->jmp_first;
 | 
						|
    for(;;) {
 | 
						|
        n1 = (uintptr_t)tb1 & 3;
 | 
						|
        if (n1 == 2)
 | 
						|
            break;
 | 
						|
        tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | 
						|
        tb2 = tb1->jmp_next[n1];
 | 
						|
        tb_reset_jump(tb1, n1);
 | 
						|
        tb1->jmp_next[n1] = NULL;
 | 
						|
        tb1 = tb2;
 | 
						|
    }
 | 
						|
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
 | 
						|
 | 
						|
    tb_phys_invalidate_count++;
 | 
						|
}
 | 
						|
 | 
						|
static inline void set_bits(uint8_t *tab, int start, int len)
 | 
						|
{
 | 
						|
    int end, mask, end1;
 | 
						|
 | 
						|
    end = start + len;
 | 
						|
    tab += start >> 3;
 | 
						|
    mask = 0xff << (start & 7);
 | 
						|
    if ((start & ~7) == (end & ~7)) {
 | 
						|
        if (start < end) {
 | 
						|
            mask &= ~(0xff << (end & 7));
 | 
						|
            *tab |= mask;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        *tab++ |= mask;
 | 
						|
        start = (start + 8) & ~7;
 | 
						|
        end1 = end & ~7;
 | 
						|
        while (start < end1) {
 | 
						|
            *tab++ = 0xff;
 | 
						|
            start += 8;
 | 
						|
        }
 | 
						|
        if (start < end) {
 | 
						|
            mask = ~(0xff << (end & 7));
 | 
						|
            *tab |= mask;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void build_page_bitmap(PageDesc *p)
 | 
						|
{
 | 
						|
    int n, tb_start, tb_end;
 | 
						|
    TranslationBlock *tb;
 | 
						|
 | 
						|
    p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
 | 
						|
 | 
						|
    tb = p->first_tb;
 | 
						|
    while (tb != NULL) {
 | 
						|
        n = (uintptr_t)tb & 3;
 | 
						|
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
 | 
						|
        /* NOTE: this is subtle as a TB may span two physical pages */
 | 
						|
        if (n == 0) {
 | 
						|
            /* NOTE: tb_end may be after the end of the page, but
 | 
						|
               it is not a problem */
 | 
						|
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
 | 
						|
            tb_end = tb_start + tb->size;
 | 
						|
            if (tb_end > TARGET_PAGE_SIZE)
 | 
						|
                tb_end = TARGET_PAGE_SIZE;
 | 
						|
        } else {
 | 
						|
            tb_start = 0;
 | 
						|
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | 
						|
        }
 | 
						|
        set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
 | 
						|
        tb = tb->page_next[n];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
TranslationBlock *tb_gen_code(CPUArchState *env,
 | 
						|
                              target_ulong pc, target_ulong cs_base,
 | 
						|
                              int flags, int cflags)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
    uint8_t *tc_ptr;
 | 
						|
    tb_page_addr_t phys_pc, phys_page2;
 | 
						|
    target_ulong virt_page2;
 | 
						|
    int code_gen_size;
 | 
						|
 | 
						|
    phys_pc = get_page_addr_code(env, pc);
 | 
						|
    tb = tb_alloc(pc);
 | 
						|
    if (!tb) {
 | 
						|
        /* flush must be done */
 | 
						|
        tb_flush(env);
 | 
						|
        /* cannot fail at this point */
 | 
						|
        tb = tb_alloc(pc);
 | 
						|
        /* Don't forget to invalidate previous TB info.  */
 | 
						|
        tb_invalidated_flag = 1;
 | 
						|
    }
 | 
						|
    tc_ptr = code_gen_ptr;
 | 
						|
    tb->tc_ptr = tc_ptr;
 | 
						|
    tb->cs_base = cs_base;
 | 
						|
    tb->flags = flags;
 | 
						|
    tb->cflags = cflags;
 | 
						|
    cpu_gen_code(env, tb, &code_gen_size);
 | 
						|
    code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
 | 
						|
                             CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
 | 
						|
 | 
						|
    /* check next page if needed */
 | 
						|
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | 
						|
    phys_page2 = -1;
 | 
						|
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | 
						|
        phys_page2 = get_page_addr_code(env, virt_page2);
 | 
						|
    }
 | 
						|
    tb_link_page(tb, phys_pc, phys_page2);
 | 
						|
    return tb;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invalidate all TBs which intersect with the target physical address range
 | 
						|
 * [start;end[. NOTE: start and end may refer to *different* physical pages.
 | 
						|
 * 'is_cpu_write_access' should be true if called from a real cpu write
 | 
						|
 * access: the virtual CPU will exit the current TB if code is modified inside
 | 
						|
 * this TB.
 | 
						|
 */
 | 
						|
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
 | 
						|
                              int is_cpu_write_access)
 | 
						|
{
 | 
						|
    while (start < end) {
 | 
						|
        tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
 | 
						|
        start &= TARGET_PAGE_MASK;
 | 
						|
        start += TARGET_PAGE_SIZE;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invalidate all TBs which intersect with the target physical address range
 | 
						|
 * [start;end[. NOTE: start and end must refer to the *same* physical page.
 | 
						|
 * 'is_cpu_write_access' should be true if called from a real cpu write
 | 
						|
 * access: the virtual CPU will exit the current TB if code is modified inside
 | 
						|
 * this TB.
 | 
						|
 */
 | 
						|
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
 | 
						|
                                   int is_cpu_write_access)
 | 
						|
{
 | 
						|
    TranslationBlock *tb, *tb_next, *saved_tb;
 | 
						|
    CPUArchState *env = cpu_single_env;
 | 
						|
    tb_page_addr_t tb_start, tb_end;
 | 
						|
    PageDesc *p;
 | 
						|
    int n;
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
    int current_tb_not_found = is_cpu_write_access;
 | 
						|
    TranslationBlock *current_tb = NULL;
 | 
						|
    int current_tb_modified = 0;
 | 
						|
    target_ulong current_pc = 0;
 | 
						|
    target_ulong current_cs_base = 0;
 | 
						|
    int current_flags = 0;
 | 
						|
#endif /* TARGET_HAS_PRECISE_SMC */
 | 
						|
 | 
						|
    p = page_find(start >> TARGET_PAGE_BITS);
 | 
						|
    if (!p)
 | 
						|
        return;
 | 
						|
    if (!p->code_bitmap &&
 | 
						|
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
 | 
						|
        is_cpu_write_access) {
 | 
						|
        /* build code bitmap */
 | 
						|
        build_page_bitmap(p);
 | 
						|
    }
 | 
						|
 | 
						|
    /* we remove all the TBs in the range [start, end[ */
 | 
						|
    /* XXX: see if in some cases it could be faster to invalidate all the code */
 | 
						|
    tb = p->first_tb;
 | 
						|
    while (tb != NULL) {
 | 
						|
        n = (uintptr_t)tb & 3;
 | 
						|
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
 | 
						|
        tb_next = tb->page_next[n];
 | 
						|
        /* NOTE: this is subtle as a TB may span two physical pages */
 | 
						|
        if (n == 0) {
 | 
						|
            /* NOTE: tb_end may be after the end of the page, but
 | 
						|
               it is not a problem */
 | 
						|
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | 
						|
            tb_end = tb_start + tb->size;
 | 
						|
        } else {
 | 
						|
            tb_start = tb->page_addr[1];
 | 
						|
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | 
						|
        }
 | 
						|
        if (!(tb_end <= start || tb_start >= end)) {
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
            if (current_tb_not_found) {
 | 
						|
                current_tb_not_found = 0;
 | 
						|
                current_tb = NULL;
 | 
						|
                if (env->mem_io_pc) {
 | 
						|
                    /* now we have a real cpu fault */
 | 
						|
                    current_tb = tb_find_pc(env->mem_io_pc);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (current_tb == tb &&
 | 
						|
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | 
						|
                /* If we are modifying the current TB, we must stop
 | 
						|
                its execution. We could be more precise by checking
 | 
						|
                that the modification is after the current PC, but it
 | 
						|
                would require a specialized function to partially
 | 
						|
                restore the CPU state */
 | 
						|
 | 
						|
                current_tb_modified = 1;
 | 
						|
                cpu_restore_state(current_tb, env, env->mem_io_pc);
 | 
						|
                cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | 
						|
                                     ¤t_flags);
 | 
						|
            }
 | 
						|
#endif /* TARGET_HAS_PRECISE_SMC */
 | 
						|
            /* we need to do that to handle the case where a signal
 | 
						|
               occurs while doing tb_phys_invalidate() */
 | 
						|
            saved_tb = NULL;
 | 
						|
            if (env) {
 | 
						|
                saved_tb = env->current_tb;
 | 
						|
                env->current_tb = NULL;
 | 
						|
            }
 | 
						|
            tb_phys_invalidate(tb, -1);
 | 
						|
            if (env) {
 | 
						|
                env->current_tb = saved_tb;
 | 
						|
                if (env->interrupt_request && env->current_tb)
 | 
						|
                    cpu_interrupt(env, env->interrupt_request);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        tb = tb_next;
 | 
						|
    }
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
    /* if no code remaining, no need to continue to use slow writes */
 | 
						|
    if (!p->first_tb) {
 | 
						|
        invalidate_page_bitmap(p);
 | 
						|
        if (is_cpu_write_access) {
 | 
						|
            tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
    if (current_tb_modified) {
 | 
						|
        /* we generate a block containing just the instruction
 | 
						|
           modifying the memory. It will ensure that it cannot modify
 | 
						|
           itself */
 | 
						|
        env->current_tb = NULL;
 | 
						|
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | 
						|
        cpu_resume_from_signal(env, NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* len must be <= 8 and start must be a multiple of len */
 | 
						|
static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
 | 
						|
{
 | 
						|
    PageDesc *p;
 | 
						|
    int offset, b;
 | 
						|
#if 0
 | 
						|
    if (1) {
 | 
						|
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
 | 
						|
                  cpu_single_env->mem_io_vaddr, len,
 | 
						|
                  cpu_single_env->eip,
 | 
						|
                  cpu_single_env->eip +
 | 
						|
                  (intptr_t)cpu_single_env->segs[R_CS].base);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    p = page_find(start >> TARGET_PAGE_BITS);
 | 
						|
    if (!p)
 | 
						|
        return;
 | 
						|
    if (p->code_bitmap) {
 | 
						|
        offset = start & ~TARGET_PAGE_MASK;
 | 
						|
        b = p->code_bitmap[offset >> 3] >> (offset & 7);
 | 
						|
        if (b & ((1 << len) - 1))
 | 
						|
            goto do_invalidate;
 | 
						|
    } else {
 | 
						|
    do_invalidate:
 | 
						|
        tb_invalidate_phys_page_range(start, start + len, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_SOFTMMU)
 | 
						|
static void tb_invalidate_phys_page(tb_page_addr_t addr,
 | 
						|
                                    uintptr_t pc, void *puc)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
    PageDesc *p;
 | 
						|
    int n;
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
    TranslationBlock *current_tb = NULL;
 | 
						|
    CPUArchState *env = cpu_single_env;
 | 
						|
    int current_tb_modified = 0;
 | 
						|
    target_ulong current_pc = 0;
 | 
						|
    target_ulong current_cs_base = 0;
 | 
						|
    int current_flags = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
    p = page_find(addr >> TARGET_PAGE_BITS);
 | 
						|
    if (!p)
 | 
						|
        return;
 | 
						|
    tb = p->first_tb;
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
    if (tb && pc != 0) {
 | 
						|
        current_tb = tb_find_pc(pc);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    while (tb != NULL) {
 | 
						|
        n = (uintptr_t)tb & 3;
 | 
						|
        tb = (TranslationBlock *)((uintptr_t)tb & ~3);
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
        if (current_tb == tb &&
 | 
						|
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | 
						|
                /* If we are modifying the current TB, we must stop
 | 
						|
                   its execution. We could be more precise by checking
 | 
						|
                   that the modification is after the current PC, but it
 | 
						|
                   would require a specialized function to partially
 | 
						|
                   restore the CPU state */
 | 
						|
 | 
						|
            current_tb_modified = 1;
 | 
						|
            cpu_restore_state(current_tb, env, pc);
 | 
						|
            cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | 
						|
                                 ¤t_flags);
 | 
						|
        }
 | 
						|
#endif /* TARGET_HAS_PRECISE_SMC */
 | 
						|
        tb_phys_invalidate(tb, addr);
 | 
						|
        tb = tb->page_next[n];
 | 
						|
    }
 | 
						|
    p->first_tb = NULL;
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
    if (current_tb_modified) {
 | 
						|
        /* we generate a block containing just the instruction
 | 
						|
           modifying the memory. It will ensure that it cannot modify
 | 
						|
           itself */
 | 
						|
        env->current_tb = NULL;
 | 
						|
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | 
						|
        cpu_resume_from_signal(env, puc);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* add the tb in the target page and protect it if necessary */
 | 
						|
static inline void tb_alloc_page(TranslationBlock *tb,
 | 
						|
                                 unsigned int n, tb_page_addr_t page_addr)
 | 
						|
{
 | 
						|
    PageDesc *p;
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    bool page_already_protected;
 | 
						|
#endif
 | 
						|
 | 
						|
    tb->page_addr[n] = page_addr;
 | 
						|
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
 | 
						|
    tb->page_next[n] = p->first_tb;
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    page_already_protected = p->first_tb != NULL;
 | 
						|
#endif
 | 
						|
    p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
 | 
						|
    invalidate_page_bitmap(p);
 | 
						|
 | 
						|
#if defined(TARGET_HAS_SMC) || 1
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    if (p->flags & PAGE_WRITE) {
 | 
						|
        target_ulong addr;
 | 
						|
        PageDesc *p2;
 | 
						|
        int prot;
 | 
						|
 | 
						|
        /* force the host page as non writable (writes will have a
 | 
						|
           page fault + mprotect overhead) */
 | 
						|
        page_addr &= qemu_host_page_mask;
 | 
						|
        prot = 0;
 | 
						|
        for(addr = page_addr; addr < page_addr + qemu_host_page_size;
 | 
						|
            addr += TARGET_PAGE_SIZE) {
 | 
						|
 | 
						|
            p2 = page_find (addr >> TARGET_PAGE_BITS);
 | 
						|
            if (!p2)
 | 
						|
                continue;
 | 
						|
            prot |= p2->flags;
 | 
						|
            p2->flags &= ~PAGE_WRITE;
 | 
						|
          }
 | 
						|
        mprotect(g2h(page_addr), qemu_host_page_size,
 | 
						|
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
 | 
						|
#ifdef DEBUG_TB_INVALIDATE
 | 
						|
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
 | 
						|
               page_addr);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
#else
 | 
						|
    /* if some code is already present, then the pages are already
 | 
						|
       protected. So we handle the case where only the first TB is
 | 
						|
       allocated in a physical page */
 | 
						|
    if (!page_already_protected) {
 | 
						|
        tlb_protect_code(page_addr);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* TARGET_HAS_SMC */
 | 
						|
}
 | 
						|
 | 
						|
/* add a new TB and link it to the physical page tables. phys_page2 is
 | 
						|
   (-1) to indicate that only one page contains the TB. */
 | 
						|
void tb_link_page(TranslationBlock *tb,
 | 
						|
                  tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
 | 
						|
{
 | 
						|
    unsigned int h;
 | 
						|
    TranslationBlock **ptb;
 | 
						|
 | 
						|
    /* Grab the mmap lock to stop another thread invalidating this TB
 | 
						|
       before we are done.  */
 | 
						|
    mmap_lock();
 | 
						|
    /* add in the physical hash table */
 | 
						|
    h = tb_phys_hash_func(phys_pc);
 | 
						|
    ptb = &tb_phys_hash[h];
 | 
						|
    tb->phys_hash_next = *ptb;
 | 
						|
    *ptb = tb;
 | 
						|
 | 
						|
    /* add in the page list */
 | 
						|
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
 | 
						|
    if (phys_page2 != -1)
 | 
						|
        tb_alloc_page(tb, 1, phys_page2);
 | 
						|
    else
 | 
						|
        tb->page_addr[1] = -1;
 | 
						|
 | 
						|
    tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
 | 
						|
    tb->jmp_next[0] = NULL;
 | 
						|
    tb->jmp_next[1] = NULL;
 | 
						|
 | 
						|
    /* init original jump addresses */
 | 
						|
    if (tb->tb_next_offset[0] != 0xffff)
 | 
						|
        tb_reset_jump(tb, 0);
 | 
						|
    if (tb->tb_next_offset[1] != 0xffff)
 | 
						|
        tb_reset_jump(tb, 1);
 | 
						|
 | 
						|
#ifdef DEBUG_TB_CHECK
 | 
						|
    tb_page_check();
 | 
						|
#endif
 | 
						|
    mmap_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
 | 
						|
   tb[1].tc_ptr. Return NULL if not found */
 | 
						|
TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
 | 
						|
{
 | 
						|
    int m_min, m_max, m;
 | 
						|
    uintptr_t v;
 | 
						|
    TranslationBlock *tb;
 | 
						|
 | 
						|
    if (nb_tbs <= 0)
 | 
						|
        return NULL;
 | 
						|
    if (tc_ptr < (uintptr_t)code_gen_buffer ||
 | 
						|
        tc_ptr >= (uintptr_t)code_gen_ptr) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    /* binary search (cf Knuth) */
 | 
						|
    m_min = 0;
 | 
						|
    m_max = nb_tbs - 1;
 | 
						|
    while (m_min <= m_max) {
 | 
						|
        m = (m_min + m_max) >> 1;
 | 
						|
        tb = &tbs[m];
 | 
						|
        v = (uintptr_t)tb->tc_ptr;
 | 
						|
        if (v == tc_ptr)
 | 
						|
            return tb;
 | 
						|
        else if (tc_ptr < v) {
 | 
						|
            m_max = m - 1;
 | 
						|
        } else {
 | 
						|
            m_min = m + 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return &tbs[m_max];
 | 
						|
}
 | 
						|
 | 
						|
static void tb_reset_jump_recursive(TranslationBlock *tb);
 | 
						|
 | 
						|
static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
 | 
						|
{
 | 
						|
    TranslationBlock *tb1, *tb_next, **ptb;
 | 
						|
    unsigned int n1;
 | 
						|
 | 
						|
    tb1 = tb->jmp_next[n];
 | 
						|
    if (tb1 != NULL) {
 | 
						|
        /* find head of list */
 | 
						|
        for(;;) {
 | 
						|
            n1 = (uintptr_t)tb1 & 3;
 | 
						|
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | 
						|
            if (n1 == 2)
 | 
						|
                break;
 | 
						|
            tb1 = tb1->jmp_next[n1];
 | 
						|
        }
 | 
						|
        /* we are now sure now that tb jumps to tb1 */
 | 
						|
        tb_next = tb1;
 | 
						|
 | 
						|
        /* remove tb from the jmp_first list */
 | 
						|
        ptb = &tb_next->jmp_first;
 | 
						|
        for(;;) {
 | 
						|
            tb1 = *ptb;
 | 
						|
            n1 = (uintptr_t)tb1 & 3;
 | 
						|
            tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
 | 
						|
            if (n1 == n && tb1 == tb)
 | 
						|
                break;
 | 
						|
            ptb = &tb1->jmp_next[n1];
 | 
						|
        }
 | 
						|
        *ptb = tb->jmp_next[n];
 | 
						|
        tb->jmp_next[n] = NULL;
 | 
						|
 | 
						|
        /* suppress the jump to next tb in generated code */
 | 
						|
        tb_reset_jump(tb, n);
 | 
						|
 | 
						|
        /* suppress jumps in the tb on which we could have jumped */
 | 
						|
        tb_reset_jump_recursive(tb_next);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tb_reset_jump_recursive(TranslationBlock *tb)
 | 
						|
{
 | 
						|
    tb_reset_jump_recursive2(tb, 0);
 | 
						|
    tb_reset_jump_recursive2(tb, 1);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 | 
						|
{
 | 
						|
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
 | 
						|
}
 | 
						|
#else
 | 
						|
void tb_invalidate_phys_addr(hwaddr addr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
    if (!(memory_region_is_ram(section->mr)
 | 
						|
          || (section->mr->rom_device && section->mr->readable))) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
        + memory_region_section_addr(section, addr);
 | 
						|
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 | 
						|
{
 | 
						|
    tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
 | 
						|
            (pc & ~TARGET_PAGE_MASK));
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif /* TARGET_HAS_ICE */
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | 
						|
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | 
						|
                          int flags, CPUWatchpoint **watchpoint)
 | 
						|
{
 | 
						|
    return -ENOSYS;
 | 
						|
}
 | 
						|
#else
 | 
						|
/* Add a watchpoint.  */
 | 
						|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | 
						|
                          int flags, CPUWatchpoint **watchpoint)
 | 
						|
{
 | 
						|
    target_ulong len_mask = ~(len - 1);
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
 | 
						|
    if ((len & (len - 1)) || (addr & ~len_mask) ||
 | 
						|
            len == 0 || len > TARGET_PAGE_SIZE) {
 | 
						|
        fprintf(stderr, "qemu: tried to set invalid watchpoint at "
 | 
						|
                TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
    wp = g_malloc(sizeof(*wp));
 | 
						|
 | 
						|
    wp->vaddr = addr;
 | 
						|
    wp->len_mask = len_mask;
 | 
						|
    wp->flags = flags;
 | 
						|
 | 
						|
    /* keep all GDB-injected watchpoints in front */
 | 
						|
    if (flags & BP_GDB)
 | 
						|
        QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
 | 
						|
    else
 | 
						|
        QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
 | 
						|
 | 
						|
    tlb_flush_page(env, addr);
 | 
						|
 | 
						|
    if (watchpoint)
 | 
						|
        *watchpoint = wp;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific watchpoint.  */
 | 
						|
int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
 | 
						|
                          int flags)
 | 
						|
{
 | 
						|
    target_ulong len_mask = ~(len - 1);
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        if (addr == wp->vaddr && len_mask == wp->len_mask
 | 
						|
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 | 
						|
            cpu_watchpoint_remove_by_ref(env, wp);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -ENOENT;
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific watchpoint by reference.  */
 | 
						|
void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
 | 
						|
{
 | 
						|
    QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
 | 
						|
 | 
						|
    tlb_flush_page(env, watchpoint->vaddr);
 | 
						|
 | 
						|
    g_free(watchpoint);
 | 
						|
}
 | 
						|
 | 
						|
/* Remove all matching watchpoints.  */
 | 
						|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
    CPUWatchpoint *wp, *next;
 | 
						|
 | 
						|
    QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
 | 
						|
        if (wp->flags & mask)
 | 
						|
            cpu_watchpoint_remove_by_ref(env, wp);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Add a breakpoint.  */
 | 
						|
int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
 | 
						|
                          CPUBreakpoint **breakpoint)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp;
 | 
						|
 | 
						|
    bp = g_malloc(sizeof(*bp));
 | 
						|
 | 
						|
    bp->pc = pc;
 | 
						|
    bp->flags = flags;
 | 
						|
 | 
						|
    /* keep all GDB-injected breakpoints in front */
 | 
						|
    if (flags & BP_GDB)
 | 
						|
        QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
 | 
						|
    else
 | 
						|
        QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
 | 
						|
 | 
						|
    breakpoint_invalidate(env, pc);
 | 
						|
 | 
						|
    if (breakpoint)
 | 
						|
        *breakpoint = bp;
 | 
						|
    return 0;
 | 
						|
#else
 | 
						|
    return -ENOSYS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific breakpoint.  */
 | 
						|
int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | 
						|
        if (bp->pc == pc && bp->flags == flags) {
 | 
						|
            cpu_breakpoint_remove_by_ref(env, bp);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -ENOENT;
 | 
						|
#else
 | 
						|
    return -ENOSYS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific breakpoint by reference.  */
 | 
						|
void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
 | 
						|
 | 
						|
    breakpoint_invalidate(env, breakpoint->pc);
 | 
						|
 | 
						|
    g_free(breakpoint);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Remove all matching breakpoints. */
 | 
						|
void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp, *next;
 | 
						|
 | 
						|
    QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
 | 
						|
        if (bp->flags & mask)
 | 
						|
            cpu_breakpoint_remove_by_ref(env, bp);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
 | 
						|
   CPU loop after each instruction */
 | 
						|
void cpu_single_step(CPUArchState *env, int enabled)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    if (env->singlestep_enabled != enabled) {
 | 
						|
        env->singlestep_enabled = enabled;
 | 
						|
        if (kvm_enabled())
 | 
						|
            kvm_update_guest_debug(env, 0);
 | 
						|
        else {
 | 
						|
            /* must flush all the translated code to avoid inconsistencies */
 | 
						|
            /* XXX: only flush what is necessary */
 | 
						|
            tb_flush(env);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_unlink_tb(CPUArchState *env)
 | 
						|
{
 | 
						|
    /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
 | 
						|
       problem and hope the cpu will stop of its own accord.  For userspace
 | 
						|
       emulation this often isn't actually as bad as it sounds.  Often
 | 
						|
       signals are used primarily to interrupt blocking syscalls.  */
 | 
						|
    TranslationBlock *tb;
 | 
						|
    static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
 | 
						|
 | 
						|
    spin_lock(&interrupt_lock);
 | 
						|
    tb = env->current_tb;
 | 
						|
    /* if the cpu is currently executing code, we must unlink it and
 | 
						|
       all the potentially executing TB */
 | 
						|
    if (tb) {
 | 
						|
        env->current_tb = NULL;
 | 
						|
        tb_reset_jump_recursive(tb);
 | 
						|
    }
 | 
						|
    spin_unlock(&interrupt_lock);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
/* mask must never be zero, except for A20 change call */
 | 
						|
static void tcg_handle_interrupt(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
    int old_mask;
 | 
						|
 | 
						|
    old_mask = env->interrupt_request;
 | 
						|
    env->interrupt_request |= mask;
 | 
						|
 | 
						|
    /*
 | 
						|
     * If called from iothread context, wake the target cpu in
 | 
						|
     * case its halted.
 | 
						|
     */
 | 
						|
    if (!qemu_cpu_is_self(env)) {
 | 
						|
        qemu_cpu_kick(env);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (use_icount) {
 | 
						|
        env->icount_decr.u16.high = 0xffff;
 | 
						|
        if (!can_do_io(env)
 | 
						|
            && (mask & ~old_mask) != 0) {
 | 
						|
            cpu_abort(env, "Raised interrupt while not in I/O function");
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        cpu_unlink_tb(env);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
 | 
						|
 | 
						|
#else /* CONFIG_USER_ONLY */
 | 
						|
 | 
						|
void cpu_interrupt(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
    env->interrupt_request |= mask;
 | 
						|
    cpu_unlink_tb(env);
 | 
						|
}
 | 
						|
#endif /* CONFIG_USER_ONLY */
 | 
						|
 | 
						|
void cpu_reset_interrupt(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
    env->interrupt_request &= ~mask;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_exit(CPUArchState *env)
 | 
						|
{
 | 
						|
    env->exit_request = 1;
 | 
						|
    cpu_unlink_tb(env);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_abort(CPUArchState *env, const char *fmt, ...)
 | 
						|
{
 | 
						|
    va_list ap;
 | 
						|
    va_list ap2;
 | 
						|
 | 
						|
    va_start(ap, fmt);
 | 
						|
    va_copy(ap2, ap);
 | 
						|
    fprintf(stderr, "qemu: fatal: ");
 | 
						|
    vfprintf(stderr, fmt, ap);
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | 
						|
    if (qemu_log_enabled()) {
 | 
						|
        qemu_log("qemu: fatal: ");
 | 
						|
        qemu_log_vprintf(fmt, ap2);
 | 
						|
        qemu_log("\n");
 | 
						|
        log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | 
						|
        qemu_log_flush();
 | 
						|
        qemu_log_close();
 | 
						|
    }
 | 
						|
    va_end(ap2);
 | 
						|
    va_end(ap);
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    {
 | 
						|
        struct sigaction act;
 | 
						|
        sigfillset(&act.sa_mask);
 | 
						|
        act.sa_handler = SIG_DFL;
 | 
						|
        sigaction(SIGABRT, &act, NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
CPUArchState *cpu_copy(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUArchState *new_env = cpu_init(env->cpu_model_str);
 | 
						|
    CPUArchState *next_cpu = new_env->next_cpu;
 | 
						|
    int cpu_index = new_env->cpu_index;
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp;
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
#endif
 | 
						|
 | 
						|
    memcpy(new_env, env, sizeof(CPUArchState));
 | 
						|
 | 
						|
    /* Preserve chaining and index. */
 | 
						|
    new_env->next_cpu = next_cpu;
 | 
						|
    new_env->cpu_index = cpu_index;
 | 
						|
 | 
						|
    /* Clone all break/watchpoints.
 | 
						|
       Note: Once we support ptrace with hw-debug register access, make sure
 | 
						|
       BP_CPU break/watchpoints are handled correctly on clone. */
 | 
						|
    QTAILQ_INIT(&env->breakpoints);
 | 
						|
    QTAILQ_INIT(&env->watchpoints);
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | 
						|
        cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
 | 
						|
    }
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
 | 
						|
                              wp->flags, NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return new_env;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
 | 
						|
{
 | 
						|
    unsigned int i;
 | 
						|
 | 
						|
    /* Discard jump cache entries for any tb which might potentially
 | 
						|
       overlap the flushed page.  */
 | 
						|
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
 | 
						|
    memset (&env->tb_jmp_cache[i], 0, 
 | 
						|
            TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | 
						|
 | 
						|
    i = tb_jmp_cache_hash_page(addr);
 | 
						|
    memset (&env->tb_jmp_cache[i], 0, 
 | 
						|
            TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
 | 
						|
                                      uintptr_t length)
 | 
						|
{
 | 
						|
    uintptr_t start1;
 | 
						|
 | 
						|
    /* we modify the TLB cache so that the dirty bit will be set again
 | 
						|
       when accessing the range */
 | 
						|
    start1 = (uintptr_t)qemu_safe_ram_ptr(start);
 | 
						|
    /* Check that we don't span multiple blocks - this breaks the
 | 
						|
       address comparisons below.  */
 | 
						|
    if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
 | 
						|
            != (end - 1) - start) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    cpu_tlb_reset_dirty_all(start1, length);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Note: start and end must be within the same ram block.  */
 | 
						|
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | 
						|
                                     int dirty_flags)
 | 
						|
{
 | 
						|
    uintptr_t length;
 | 
						|
 | 
						|
    start &= TARGET_PAGE_MASK;
 | 
						|
    end = TARGET_PAGE_ALIGN(end);
 | 
						|
 | 
						|
    length = end - start;
 | 
						|
    if (length == 0)
 | 
						|
        return;
 | 
						|
    cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
 | 
						|
 | 
						|
    if (tcg_enabled()) {
 | 
						|
        tlb_reset_dirty_range_all(start, end, length);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int cpu_physical_memory_set_dirty_tracking(int enable)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    in_migration = enable;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
hwaddr memory_region_section_get_iotlb(CPUArchState *env,
 | 
						|
                                                   MemoryRegionSection *section,
 | 
						|
                                                   target_ulong vaddr,
 | 
						|
                                                   hwaddr paddr,
 | 
						|
                                                   int prot,
 | 
						|
                                                   target_ulong *address)
 | 
						|
{
 | 
						|
    hwaddr iotlb;
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    if (memory_region_is_ram(section->mr)) {
 | 
						|
        /* Normal RAM.  */
 | 
						|
        iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, paddr);
 | 
						|
        if (!section->readonly) {
 | 
						|
            iotlb |= phys_section_notdirty;
 | 
						|
        } else {
 | 
						|
            iotlb |= phys_section_rom;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* IO handlers are currently passed a physical address.
 | 
						|
           It would be nice to pass an offset from the base address
 | 
						|
           of that region.  This would avoid having to special case RAM,
 | 
						|
           and avoid full address decoding in every device.
 | 
						|
           We can't use the high bits of pd for this because
 | 
						|
           IO_MEM_ROMD uses these as a ram address.  */
 | 
						|
        iotlb = section - phys_sections;
 | 
						|
        iotlb += memory_region_section_addr(section, paddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make accesses to pages with watchpoints go via the
 | 
						|
       watchpoint trap routines.  */
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
 | 
						|
            /* Avoid trapping reads of pages with a write breakpoint. */
 | 
						|
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
 | 
						|
                iotlb = phys_section_watch + paddr;
 | 
						|
                *address |= TLB_MMIO;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return iotlb;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
/*
 | 
						|
 * Walks guest process memory "regions" one by one
 | 
						|
 * and calls callback function 'fn' for each region.
 | 
						|
 */
 | 
						|
 | 
						|
struct walk_memory_regions_data
 | 
						|
{
 | 
						|
    walk_memory_regions_fn fn;
 | 
						|
    void *priv;
 | 
						|
    uintptr_t start;
 | 
						|
    int prot;
 | 
						|
};
 | 
						|
 | 
						|
static int walk_memory_regions_end(struct walk_memory_regions_data *data,
 | 
						|
                                   abi_ulong end, int new_prot)
 | 
						|
{
 | 
						|
    if (data->start != -1ul) {
 | 
						|
        int rc = data->fn(data->priv, data->start, end, data->prot);
 | 
						|
        if (rc != 0) {
 | 
						|
            return rc;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    data->start = (new_prot ? end : -1ul);
 | 
						|
    data->prot = new_prot;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int walk_memory_regions_1(struct walk_memory_regions_data *data,
 | 
						|
                                 abi_ulong base, int level, void **lp)
 | 
						|
{
 | 
						|
    abi_ulong pa;
 | 
						|
    int i, rc;
 | 
						|
 | 
						|
    if (*lp == NULL) {
 | 
						|
        return walk_memory_regions_end(data, base, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (level == 0) {
 | 
						|
        PageDesc *pd = *lp;
 | 
						|
        for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
            int prot = pd[i].flags;
 | 
						|
 | 
						|
            pa = base | (i << TARGET_PAGE_BITS);
 | 
						|
            if (prot != data->prot) {
 | 
						|
                rc = walk_memory_regions_end(data, pa, prot);
 | 
						|
                if (rc != 0) {
 | 
						|
                    return rc;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        void **pp = *lp;
 | 
						|
        for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
            pa = base | ((abi_ulong)i <<
 | 
						|
                (TARGET_PAGE_BITS + L2_BITS * level));
 | 
						|
            rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
 | 
						|
            if (rc != 0) {
 | 
						|
                return rc;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
 | 
						|
{
 | 
						|
    struct walk_memory_regions_data data;
 | 
						|
    uintptr_t i;
 | 
						|
 | 
						|
    data.fn = fn;
 | 
						|
    data.priv = priv;
 | 
						|
    data.start = -1ul;
 | 
						|
    data.prot = 0;
 | 
						|
 | 
						|
    for (i = 0; i < V_L1_SIZE; i++) {
 | 
						|
        int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
 | 
						|
                                       V_L1_SHIFT / L2_BITS - 1, l1_map + i);
 | 
						|
        if (rc != 0) {
 | 
						|
            return rc;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return walk_memory_regions_end(&data, 0, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int dump_region(void *priv, abi_ulong start,
 | 
						|
    abi_ulong end, unsigned long prot)
 | 
						|
{
 | 
						|
    FILE *f = (FILE *)priv;
 | 
						|
 | 
						|
    (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
 | 
						|
        " "TARGET_ABI_FMT_lx" %c%c%c\n",
 | 
						|
        start, end, end - start,
 | 
						|
        ((prot & PAGE_READ) ? 'r' : '-'),
 | 
						|
        ((prot & PAGE_WRITE) ? 'w' : '-'),
 | 
						|
        ((prot & PAGE_EXEC) ? 'x' : '-'));
 | 
						|
 | 
						|
    return (0);
 | 
						|
}
 | 
						|
 | 
						|
/* dump memory mappings */
 | 
						|
void page_dump(FILE *f)
 | 
						|
{
 | 
						|
    (void) fprintf(f, "%-8s %-8s %-8s %s\n",
 | 
						|
            "start", "end", "size", "prot");
 | 
						|
    walk_memory_regions(f, dump_region);
 | 
						|
}
 | 
						|
 | 
						|
int page_get_flags(target_ulong address)
 | 
						|
{
 | 
						|
    PageDesc *p;
 | 
						|
 | 
						|
    p = page_find(address >> TARGET_PAGE_BITS);
 | 
						|
    if (!p)
 | 
						|
        return 0;
 | 
						|
    return p->flags;
 | 
						|
}
 | 
						|
 | 
						|
/* Modify the flags of a page and invalidate the code if necessary.
 | 
						|
   The flag PAGE_WRITE_ORG is positioned automatically depending
 | 
						|
   on PAGE_WRITE.  The mmap_lock should already be held.  */
 | 
						|
void page_set_flags(target_ulong start, target_ulong end, int flags)
 | 
						|
{
 | 
						|
    target_ulong addr, len;
 | 
						|
 | 
						|
    /* This function should never be called with addresses outside the
 | 
						|
       guest address space.  If this assert fires, it probably indicates
 | 
						|
       a missing call to h2g_valid.  */
 | 
						|
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | 
						|
    assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | 
						|
#endif
 | 
						|
    assert(start < end);
 | 
						|
 | 
						|
    start = start & TARGET_PAGE_MASK;
 | 
						|
    end = TARGET_PAGE_ALIGN(end);
 | 
						|
 | 
						|
    if (flags & PAGE_WRITE) {
 | 
						|
        flags |= PAGE_WRITE_ORG;
 | 
						|
    }
 | 
						|
 | 
						|
    for (addr = start, len = end - start;
 | 
						|
         len != 0;
 | 
						|
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | 
						|
        PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | 
						|
 | 
						|
        /* If the write protection bit is set, then we invalidate
 | 
						|
           the code inside.  */
 | 
						|
        if (!(p->flags & PAGE_WRITE) &&
 | 
						|
            (flags & PAGE_WRITE) &&
 | 
						|
            p->first_tb) {
 | 
						|
            tb_invalidate_phys_page(addr, 0, NULL);
 | 
						|
        }
 | 
						|
        p->flags = flags;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int page_check_range(target_ulong start, target_ulong len, int flags)
 | 
						|
{
 | 
						|
    PageDesc *p;
 | 
						|
    target_ulong end;
 | 
						|
    target_ulong addr;
 | 
						|
 | 
						|
    /* This function should never be called with addresses outside the
 | 
						|
       guest address space.  If this assert fires, it probably indicates
 | 
						|
       a missing call to h2g_valid.  */
 | 
						|
#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | 
						|
    assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | 
						|
#endif
 | 
						|
 | 
						|
    if (len == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (start + len - 1 < start) {
 | 
						|
        /* We've wrapped around.  */
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
 | 
						|
    start = start & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    for (addr = start, len = end - start;
 | 
						|
         len != 0;
 | 
						|
         len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | 
						|
        p = page_find(addr >> TARGET_PAGE_BITS);
 | 
						|
        if( !p )
 | 
						|
            return -1;
 | 
						|
        if( !(p->flags & PAGE_VALID) )
 | 
						|
            return -1;
 | 
						|
 | 
						|
        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
 | 
						|
            return -1;
 | 
						|
        if (flags & PAGE_WRITE) {
 | 
						|
            if (!(p->flags & PAGE_WRITE_ORG))
 | 
						|
                return -1;
 | 
						|
            /* unprotect the page if it was put read-only because it
 | 
						|
               contains translated code */
 | 
						|
            if (!(p->flags & PAGE_WRITE)) {
 | 
						|
                if (!page_unprotect(addr, 0, NULL))
 | 
						|
                    return -1;
 | 
						|
            }
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* called from signal handler: invalidate the code and unprotect the
 | 
						|
   page. Return TRUE if the fault was successfully handled. */
 | 
						|
int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
 | 
						|
{
 | 
						|
    unsigned int prot;
 | 
						|
    PageDesc *p;
 | 
						|
    target_ulong host_start, host_end, addr;
 | 
						|
 | 
						|
    /* Technically this isn't safe inside a signal handler.  However we
 | 
						|
       know this only ever happens in a synchronous SEGV handler, so in
 | 
						|
       practice it seems to be ok.  */
 | 
						|
    mmap_lock();
 | 
						|
 | 
						|
    p = page_find(address >> TARGET_PAGE_BITS);
 | 
						|
    if (!p) {
 | 
						|
        mmap_unlock();
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* if the page was really writable, then we change its
 | 
						|
       protection back to writable */
 | 
						|
    if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
 | 
						|
        host_start = address & qemu_host_page_mask;
 | 
						|
        host_end = host_start + qemu_host_page_size;
 | 
						|
 | 
						|
        prot = 0;
 | 
						|
        for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
 | 
						|
            p = page_find(addr >> TARGET_PAGE_BITS);
 | 
						|
            p->flags |= PAGE_WRITE;
 | 
						|
            prot |= p->flags;
 | 
						|
 | 
						|
            /* and since the content will be modified, we must invalidate
 | 
						|
               the corresponding translated code. */
 | 
						|
            tb_invalidate_phys_page(addr, pc, puc);
 | 
						|
#ifdef DEBUG_TB_CHECK
 | 
						|
            tb_invalidate_check(addr);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
        mprotect((void *)g2h(host_start), qemu_host_page_size,
 | 
						|
                 prot & PAGE_BITS);
 | 
						|
 | 
						|
        mmap_unlock();
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    mmap_unlock();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif /* defined(CONFIG_USER_ONLY) */
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | 
						|
typedef struct subpage_t {
 | 
						|
    MemoryRegion iomem;
 | 
						|
    hwaddr base;
 | 
						|
    uint16_t sub_section[TARGET_PAGE_SIZE];
 | 
						|
} subpage_t;
 | 
						|
 | 
						|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | 
						|
                             uint16_t section);
 | 
						|
static subpage_t *subpage_init(hwaddr base);
 | 
						|
static void destroy_page_desc(uint16_t section_index)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section = &phys_sections[section_index];
 | 
						|
    MemoryRegion *mr = section->mr;
 | 
						|
 | 
						|
    if (mr->subpage) {
 | 
						|
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
 | 
						|
        memory_region_destroy(&subpage->iomem);
 | 
						|
        g_free(subpage);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
 | 
						|
{
 | 
						|
    unsigned i;
 | 
						|
    PhysPageEntry *p;
 | 
						|
 | 
						|
    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    p = phys_map_nodes[lp->ptr];
 | 
						|
    for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
        if (!p[i].is_leaf) {
 | 
						|
            destroy_l2_mapping(&p[i], level - 1);
 | 
						|
        } else {
 | 
						|
            destroy_page_desc(p[i].ptr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    lp->is_leaf = 0;
 | 
						|
    lp->ptr = PHYS_MAP_NODE_NIL;
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_all_mappings(AddressSpaceDispatch *d)
 | 
						|
{
 | 
						|
    destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
 | 
						|
    phys_map_nodes_reset();
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t phys_section_add(MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    if (phys_sections_nb == phys_sections_nb_alloc) {
 | 
						|
        phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
 | 
						|
        phys_sections = g_renew(MemoryRegionSection, phys_sections,
 | 
						|
                                phys_sections_nb_alloc);
 | 
						|
    }
 | 
						|
    phys_sections[phys_sections_nb] = *section;
 | 
						|
    return phys_sections_nb++;
 | 
						|
}
 | 
						|
 | 
						|
static void phys_sections_clear(void)
 | 
						|
{
 | 
						|
    phys_sections_nb = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    subpage_t *subpage;
 | 
						|
    hwaddr base = section->offset_within_address_space
 | 
						|
        & TARGET_PAGE_MASK;
 | 
						|
    MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
 | 
						|
    MemoryRegionSection subsection = {
 | 
						|
        .offset_within_address_space = base,
 | 
						|
        .size = TARGET_PAGE_SIZE,
 | 
						|
    };
 | 
						|
    hwaddr start, end;
 | 
						|
 | 
						|
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 | 
						|
 | 
						|
    if (!(existing->mr->subpage)) {
 | 
						|
        subpage = subpage_init(base);
 | 
						|
        subsection.mr = &subpage->iomem;
 | 
						|
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
 | 
						|
                      phys_section_add(&subsection));
 | 
						|
    } else {
 | 
						|
        subpage = container_of(existing->mr, subpage_t, iomem);
 | 
						|
    }
 | 
						|
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
 | 
						|
    end = start + section->size - 1;
 | 
						|
    subpage_register(subpage, start, end, phys_section_add(section));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    hwaddr start_addr = section->offset_within_address_space;
 | 
						|
    ram_addr_t size = section->size;
 | 
						|
    hwaddr addr;
 | 
						|
    uint16_t section_index = phys_section_add(section);
 | 
						|
 | 
						|
    assert(size);
 | 
						|
 | 
						|
    addr = start_addr;
 | 
						|
    phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
 | 
						|
                  section_index);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
 | 
						|
    MemoryRegionSection now = *section, remain = *section;
 | 
						|
 | 
						|
    if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
 | 
						|
        || (now.size < TARGET_PAGE_SIZE)) {
 | 
						|
        now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
 | 
						|
                       - now.offset_within_address_space,
 | 
						|
                       now.size);
 | 
						|
        register_subpage(d, &now);
 | 
						|
        remain.size -= now.size;
 | 
						|
        remain.offset_within_address_space += now.size;
 | 
						|
        remain.offset_within_region += now.size;
 | 
						|
    }
 | 
						|
    while (remain.size >= TARGET_PAGE_SIZE) {
 | 
						|
        now = remain;
 | 
						|
        if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
 | 
						|
            now.size = TARGET_PAGE_SIZE;
 | 
						|
            register_subpage(d, &now);
 | 
						|
        } else {
 | 
						|
            now.size &= TARGET_PAGE_MASK;
 | 
						|
            register_multipage(d, &now);
 | 
						|
        }
 | 
						|
        remain.size -= now.size;
 | 
						|
        remain.offset_within_address_space += now.size;
 | 
						|
        remain.offset_within_region += now.size;
 | 
						|
    }
 | 
						|
    now = remain;
 | 
						|
    if (now.size) {
 | 
						|
        register_subpage(d, &now);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_flush_coalesced_mmio_buffer(void)
 | 
						|
{
 | 
						|
    if (kvm_enabled())
 | 
						|
        kvm_flush_coalesced_mmio_buffer();
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__linux__) && !defined(TARGET_S390X)
 | 
						|
 | 
						|
#include <sys/vfs.h>
 | 
						|
 | 
						|
#define HUGETLBFS_MAGIC       0x958458f6
 | 
						|
 | 
						|
static long gethugepagesize(const char *path)
 | 
						|
{
 | 
						|
    struct statfs fs;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    do {
 | 
						|
        ret = statfs(path, &fs);
 | 
						|
    } while (ret != 0 && errno == EINTR);
 | 
						|
 | 
						|
    if (ret != 0) {
 | 
						|
        perror(path);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (fs.f_type != HUGETLBFS_MAGIC)
 | 
						|
        fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
 | 
						|
 | 
						|
    return fs.f_bsize;
 | 
						|
}
 | 
						|
 | 
						|
static void *file_ram_alloc(RAMBlock *block,
 | 
						|
                            ram_addr_t memory,
 | 
						|
                            const char *path)
 | 
						|
{
 | 
						|
    char *filename;
 | 
						|
    void *area;
 | 
						|
    int fd;
 | 
						|
#ifdef MAP_POPULATE
 | 
						|
    int flags;
 | 
						|
#endif
 | 
						|
    unsigned long hpagesize;
 | 
						|
 | 
						|
    hpagesize = gethugepagesize(path);
 | 
						|
    if (!hpagesize) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (memory < hpagesize) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | 
						|
        fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    fd = mkstemp(filename);
 | 
						|
    if (fd < 0) {
 | 
						|
        perror("unable to create backing store for hugepages");
 | 
						|
        free(filename);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    unlink(filename);
 | 
						|
    free(filename);
 | 
						|
 | 
						|
    memory = (memory+hpagesize-1) & ~(hpagesize-1);
 | 
						|
 | 
						|
    /*
 | 
						|
     * ftruncate is not supported by hugetlbfs in older
 | 
						|
     * hosts, so don't bother bailing out on errors.
 | 
						|
     * If anything goes wrong with it under other filesystems,
 | 
						|
     * mmap will fail.
 | 
						|
     */
 | 
						|
    if (ftruncate(fd, memory))
 | 
						|
        perror("ftruncate");
 | 
						|
 | 
						|
#ifdef MAP_POPULATE
 | 
						|
    /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
 | 
						|
     * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED
 | 
						|
     * to sidestep this quirk.
 | 
						|
     */
 | 
						|
    flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
 | 
						|
    area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
 | 
						|
#else
 | 
						|
    area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
 | 
						|
#endif
 | 
						|
    if (area == MAP_FAILED) {
 | 
						|
        perror("file_ram_alloc: can't mmap RAM pages");
 | 
						|
        close(fd);
 | 
						|
        return (NULL);
 | 
						|
    }
 | 
						|
    block->fd = fd;
 | 
						|
    return area;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static ram_addr_t find_ram_offset(ram_addr_t size)
 | 
						|
{
 | 
						|
    RAMBlock *block, *next_block;
 | 
						|
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 | 
						|
 | 
						|
    if (QLIST_EMPTY(&ram_list.blocks))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        ram_addr_t end, next = RAM_ADDR_MAX;
 | 
						|
 | 
						|
        end = block->offset + block->length;
 | 
						|
 | 
						|
        QLIST_FOREACH(next_block, &ram_list.blocks, next) {
 | 
						|
            if (next_block->offset >= end) {
 | 
						|
                next = MIN(next, next_block->offset);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (next - end >= size && next - end < mingap) {
 | 
						|
            offset = end;
 | 
						|
            mingap = next - end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (offset == RAM_ADDR_MAX) {
 | 
						|
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
 | 
						|
                (uint64_t)size);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
 | 
						|
    return offset;
 | 
						|
}
 | 
						|
 | 
						|
ram_addr_t last_ram_offset(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    ram_addr_t last = 0;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next)
 | 
						|
        last = MAX(last, block->offset + block->length);
 | 
						|
 | 
						|
    return last;
 | 
						|
}
 | 
						|
 | 
						|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    QemuOpts *machine_opts;
 | 
						|
 | 
						|
    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
 | 
						|
    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
 | 
						|
    if (machine_opts &&
 | 
						|
        !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
 | 
						|
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
 | 
						|
        if (ret) {
 | 
						|
            perror("qemu_madvise");
 | 
						|
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
 | 
						|
                            "but dump_guest_core=off specified\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
 | 
						|
{
 | 
						|
    RAMBlock *new_block, *block;
 | 
						|
 | 
						|
    new_block = NULL;
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (block->offset == addr) {
 | 
						|
            new_block = block;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    assert(new_block);
 | 
						|
    assert(!new_block->idstr[0]);
 | 
						|
 | 
						|
    if (dev) {
 | 
						|
        char *id = qdev_get_dev_path(dev);
 | 
						|
        if (id) {
 | 
						|
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | 
						|
            g_free(id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
 | 
						|
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | 
						|
                    new_block->idstr);
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int memory_try_enable_merging(void *addr, size_t len)
 | 
						|
{
 | 
						|
    QemuOpts *opts;
 | 
						|
 | 
						|
    opts = qemu_opts_find(qemu_find_opts("machine"), 0);
 | 
						|
    if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
 | 
						|
        /* disabled by the user */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
 | 
						|
}
 | 
						|
 | 
						|
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 | 
						|
                                   MemoryRegion *mr)
 | 
						|
{
 | 
						|
    RAMBlock *new_block;
 | 
						|
 | 
						|
    size = TARGET_PAGE_ALIGN(size);
 | 
						|
    new_block = g_malloc0(sizeof(*new_block));
 | 
						|
 | 
						|
    new_block->mr = mr;
 | 
						|
    new_block->offset = find_ram_offset(size);
 | 
						|
    if (host) {
 | 
						|
        new_block->host = host;
 | 
						|
        new_block->flags |= RAM_PREALLOC_MASK;
 | 
						|
    } else {
 | 
						|
        if (mem_path) {
 | 
						|
#if defined (__linux__) && !defined(TARGET_S390X)
 | 
						|
            new_block->host = file_ram_alloc(new_block, size, mem_path);
 | 
						|
            if (!new_block->host) {
 | 
						|
                new_block->host = qemu_vmalloc(size);
 | 
						|
                memory_try_enable_merging(new_block->host, size);
 | 
						|
            }
 | 
						|
#else
 | 
						|
            fprintf(stderr, "-mem-path option unsupported\n");
 | 
						|
            exit(1);
 | 
						|
#endif
 | 
						|
        } else {
 | 
						|
            if (xen_enabled()) {
 | 
						|
                xen_ram_alloc(new_block->offset, size, mr);
 | 
						|
            } else if (kvm_enabled()) {
 | 
						|
                /* some s390/kvm configurations have special constraints */
 | 
						|
                new_block->host = kvm_vmalloc(size);
 | 
						|
            } else {
 | 
						|
                new_block->host = qemu_vmalloc(size);
 | 
						|
            }
 | 
						|
            memory_try_enable_merging(new_block->host, size);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    new_block->length = size;
 | 
						|
 | 
						|
    QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
 | 
						|
 | 
						|
    ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
 | 
						|
                                       last_ram_offset() >> TARGET_PAGE_BITS);
 | 
						|
    memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
 | 
						|
           0, size >> TARGET_PAGE_BITS);
 | 
						|
    cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
 | 
						|
 | 
						|
    qemu_ram_setup_dump(new_block->host, size);
 | 
						|
    qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
 | 
						|
 | 
						|
    if (kvm_enabled())
 | 
						|
        kvm_setup_guest_memory(new_block->host, size);
 | 
						|
 | 
						|
    return new_block->offset;
 | 
						|
}
 | 
						|
 | 
						|
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
 | 
						|
{
 | 
						|
    return qemu_ram_alloc_from_ptr(size, NULL, mr);
 | 
						|
}
 | 
						|
 | 
						|
void qemu_ram_free_from_ptr(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr == block->offset) {
 | 
						|
            QLIST_REMOVE(block, next);
 | 
						|
            g_free(block);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_ram_free(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr == block->offset) {
 | 
						|
            QLIST_REMOVE(block, next);
 | 
						|
            if (block->flags & RAM_PREALLOC_MASK) {
 | 
						|
                ;
 | 
						|
            } else if (mem_path) {
 | 
						|
#if defined (__linux__) && !defined(TARGET_S390X)
 | 
						|
                if (block->fd) {
 | 
						|
                    munmap(block->host, block->length);
 | 
						|
                    close(block->fd);
 | 
						|
                } else {
 | 
						|
                    qemu_vfree(block->host);
 | 
						|
                }
 | 
						|
#else
 | 
						|
                abort();
 | 
						|
#endif
 | 
						|
            } else {
 | 
						|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | 
						|
                munmap(block->host, block->length);
 | 
						|
#else
 | 
						|
                if (xen_enabled()) {
 | 
						|
                    xen_invalidate_map_cache_entry(block->host);
 | 
						|
                } else {
 | 
						|
                    qemu_vfree(block->host);
 | 
						|
                }
 | 
						|
#endif
 | 
						|
            }
 | 
						|
            g_free(block);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifndef _WIN32
 | 
						|
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    ram_addr_t offset;
 | 
						|
    int flags;
 | 
						|
    void *area, *vaddr;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        offset = addr - block->offset;
 | 
						|
        if (offset < block->length) {
 | 
						|
            vaddr = block->host + offset;
 | 
						|
            if (block->flags & RAM_PREALLOC_MASK) {
 | 
						|
                ;
 | 
						|
            } else {
 | 
						|
                flags = MAP_FIXED;
 | 
						|
                munmap(vaddr, length);
 | 
						|
                if (mem_path) {
 | 
						|
#if defined(__linux__) && !defined(TARGET_S390X)
 | 
						|
                    if (block->fd) {
 | 
						|
#ifdef MAP_POPULATE
 | 
						|
                        flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
 | 
						|
                            MAP_PRIVATE;
 | 
						|
#else
 | 
						|
                        flags |= MAP_PRIVATE;
 | 
						|
#endif
 | 
						|
                        area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | 
						|
                                    flags, block->fd, offset);
 | 
						|
                    } else {
 | 
						|
                        flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | 
						|
                        area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | 
						|
                                    flags, -1, 0);
 | 
						|
                    }
 | 
						|
#else
 | 
						|
                    abort();
 | 
						|
#endif
 | 
						|
                } else {
 | 
						|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | 
						|
                    flags |= MAP_SHARED | MAP_ANONYMOUS;
 | 
						|
                    area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
 | 
						|
                                flags, -1, 0);
 | 
						|
#else
 | 
						|
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | 
						|
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | 
						|
                                flags, -1, 0);
 | 
						|
#endif
 | 
						|
                }
 | 
						|
                if (area != vaddr) {
 | 
						|
                    fprintf(stderr, "Could not remap addr: "
 | 
						|
                            RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
 | 
						|
                            length, addr);
 | 
						|
                    exit(1);
 | 
						|
                }
 | 
						|
                memory_try_enable_merging(vaddr, length);
 | 
						|
                qemu_ram_setup_dump(vaddr, length);
 | 
						|
            }
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* !_WIN32 */
 | 
						|
 | 
						|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
 | 
						|
   With the exception of the softmmu code in this file, this should
 | 
						|
   only be used for local memory (e.g. video ram) that the device owns,
 | 
						|
   and knows it isn't going to access beyond the end of the block.
 | 
						|
 | 
						|
   It should not be used for general purpose DMA.
 | 
						|
   Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
 | 
						|
 */
 | 
						|
void *qemu_get_ram_ptr(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr - block->offset < block->length) {
 | 
						|
            /* Move this entry to to start of the list.  */
 | 
						|
            if (block != QLIST_FIRST(&ram_list.blocks)) {
 | 
						|
                QLIST_REMOVE(block, next);
 | 
						|
                QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
 | 
						|
            }
 | 
						|
            if (xen_enabled()) {
 | 
						|
                /* We need to check if the requested address is in the RAM
 | 
						|
                 * because we don't want to map the entire memory in QEMU.
 | 
						|
                 * In that case just map until the end of the page.
 | 
						|
                 */
 | 
						|
                if (block->offset == 0) {
 | 
						|
                    return xen_map_cache(addr, 0, 0);
 | 
						|
                } else if (block->host == NULL) {
 | 
						|
                    block->host =
 | 
						|
                        xen_map_cache(block->offset, block->length, 1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return block->host + (addr - block->offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | 
						|
    abort();
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
 | 
						|
 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
 | 
						|
 */
 | 
						|
void *qemu_safe_ram_ptr(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr - block->offset < block->length) {
 | 
						|
            if (xen_enabled()) {
 | 
						|
                /* We need to check if the requested address is in the RAM
 | 
						|
                 * because we don't want to map the entire memory in QEMU.
 | 
						|
                 * In that case just map until the end of the page.
 | 
						|
                 */
 | 
						|
                if (block->offset == 0) {
 | 
						|
                    return xen_map_cache(addr, 0, 0);
 | 
						|
                } else if (block->host == NULL) {
 | 
						|
                    block->host =
 | 
						|
                        xen_map_cache(block->offset, block->length, 1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return block->host + (addr - block->offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | 
						|
    abort();
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
 | 
						|
 * but takes a size argument */
 | 
						|
void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
 | 
						|
{
 | 
						|
    if (*size == 0) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (xen_enabled()) {
 | 
						|
        return xen_map_cache(addr, *size, 1);
 | 
						|
    } else {
 | 
						|
        RAMBlock *block;
 | 
						|
 | 
						|
        QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
            if (addr - block->offset < block->length) {
 | 
						|
                if (addr - block->offset + *size > block->length)
 | 
						|
                    *size = block->length - addr + block->offset;
 | 
						|
                return block->host + (addr - block->offset);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_put_ram_ptr(void *addr)
 | 
						|
{
 | 
						|
    trace_qemu_put_ram_ptr(addr);
 | 
						|
}
 | 
						|
 | 
						|
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    uint8_t *host = ptr;
 | 
						|
 | 
						|
    if (xen_enabled()) {
 | 
						|
        *ram_addr = xen_ram_addr_from_mapcache(ptr);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    QLIST_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        /* This case append when the block is not mapped. */
 | 
						|
        if (block->host == NULL) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        if (host - block->host < block->length) {
 | 
						|
            *ram_addr = block->offset + (host - block->host);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Some of the softmmu routines need to translate from a host pointer
 | 
						|
   (typically a TLB entry) back to a ram offset.  */
 | 
						|
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
 | 
						|
    if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
 | 
						|
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    return ram_addr;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
 | 
						|
                                    unsigned size)
 | 
						|
{
 | 
						|
#ifdef DEBUG_UNASSIGNED
 | 
						|
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | 
						|
#endif
 | 
						|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | 
						|
    cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void unassigned_mem_write(void *opaque, hwaddr addr,
 | 
						|
                                 uint64_t val, unsigned size)
 | 
						|
{
 | 
						|
#ifdef DEBUG_UNASSIGNED
 | 
						|
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
 | 
						|
#endif
 | 
						|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | 
						|
    cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps unassigned_mem_ops = {
 | 
						|
    .read = unassigned_mem_read,
 | 
						|
    .write = unassigned_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t error_mem_read(void *opaque, hwaddr addr,
 | 
						|
                               unsigned size)
 | 
						|
{
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
static void error_mem_write(void *opaque, hwaddr addr,
 | 
						|
                            uint64_t value, unsigned size)
 | 
						|
{
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps error_mem_ops = {
 | 
						|
    .read = error_mem_read,
 | 
						|
    .write = error_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static const MemoryRegionOps rom_mem_ops = {
 | 
						|
    .read = error_mem_read,
 | 
						|
    .write = unassigned_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
 | 
						|
                               uint64_t val, unsigned size)
 | 
						|
{
 | 
						|
    int dirty_flags;
 | 
						|
    dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | 
						|
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
        tb_invalidate_phys_page_fast(ram_addr, size);
 | 
						|
        dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    switch (size) {
 | 
						|
    case 1:
 | 
						|
        stb_p(qemu_get_ram_ptr(ram_addr), val);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        stw_p(qemu_get_ram_ptr(ram_addr), val);
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        stl_p(qemu_get_ram_ptr(ram_addr), val);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | 
						|
    cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | 
						|
    /* we remove the notdirty callback only if the code has been
 | 
						|
       flushed */
 | 
						|
    if (dirty_flags == 0xff)
 | 
						|
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps notdirty_mem_ops = {
 | 
						|
    .read = error_mem_read,
 | 
						|
    .write = notdirty_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
/* Generate a debug exception if a watchpoint has been hit.  */
 | 
						|
static void check_watchpoint(int offset, int len_mask, int flags)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu_single_env;
 | 
						|
    target_ulong pc, cs_base;
 | 
						|
    TranslationBlock *tb;
 | 
						|
    target_ulong vaddr;
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
    int cpu_flags;
 | 
						|
 | 
						|
    if (env->watchpoint_hit) {
 | 
						|
        /* We re-entered the check after replacing the TB. Now raise
 | 
						|
         * the debug interrupt so that is will trigger after the
 | 
						|
         * current instruction. */
 | 
						|
        cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        if ((vaddr == (wp->vaddr & len_mask) ||
 | 
						|
             (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
 | 
						|
            wp->flags |= BP_WATCHPOINT_HIT;
 | 
						|
            if (!env->watchpoint_hit) {
 | 
						|
                env->watchpoint_hit = wp;
 | 
						|
                tb = tb_find_pc(env->mem_io_pc);
 | 
						|
                if (!tb) {
 | 
						|
                    cpu_abort(env, "check_watchpoint: could not find TB for "
 | 
						|
                              "pc=%p", (void *)env->mem_io_pc);
 | 
						|
                }
 | 
						|
                cpu_restore_state(tb, env, env->mem_io_pc);
 | 
						|
                tb_phys_invalidate(tb, -1);
 | 
						|
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 | 
						|
                    env->exception_index = EXCP_DEBUG;
 | 
						|
                    cpu_loop_exit(env);
 | 
						|
                } else {
 | 
						|
                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
 | 
						|
                    tb_gen_code(env, pc, cs_base, cpu_flags, 1);
 | 
						|
                    cpu_resume_from_signal(env, NULL);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            wp->flags &= ~BP_WATCHPOINT_HIT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | 
						|
   so these check for a hit then pass through to the normal out-of-line
 | 
						|
   phys routines.  */
 | 
						|
static uint64_t watch_mem_read(void *opaque, hwaddr addr,
 | 
						|
                               unsigned size)
 | 
						|
{
 | 
						|
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
 | 
						|
    switch (size) {
 | 
						|
    case 1: return ldub_phys(addr);
 | 
						|
    case 2: return lduw_phys(addr);
 | 
						|
    case 4: return ldl_phys(addr);
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void watch_mem_write(void *opaque, hwaddr addr,
 | 
						|
                            uint64_t val, unsigned size)
 | 
						|
{
 | 
						|
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
 | 
						|
    switch (size) {
 | 
						|
    case 1:
 | 
						|
        stb_phys(addr, val);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        stw_phys(addr, val);
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        stl_phys(addr, val);
 | 
						|
        break;
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps watch_mem_ops = {
 | 
						|
    .read = watch_mem_read,
 | 
						|
    .write = watch_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t subpage_read(void *opaque, hwaddr addr,
 | 
						|
                             unsigned len)
 | 
						|
{
 | 
						|
    subpage_t *mmio = opaque;
 | 
						|
    unsigned int idx = SUBPAGE_IDX(addr);
 | 
						|
    MemoryRegionSection *section;
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
 | 
						|
           mmio, len, addr, idx);
 | 
						|
#endif
 | 
						|
 | 
						|
    section = &phys_sections[mmio->sub_section[idx]];
 | 
						|
    addr += mmio->base;
 | 
						|
    addr -= section->offset_within_address_space;
 | 
						|
    addr += section->offset_within_region;
 | 
						|
    return io_mem_read(section->mr, addr, len);
 | 
						|
}
 | 
						|
 | 
						|
static void subpage_write(void *opaque, hwaddr addr,
 | 
						|
                          uint64_t value, unsigned len)
 | 
						|
{
 | 
						|
    subpage_t *mmio = opaque;
 | 
						|
    unsigned int idx = SUBPAGE_IDX(addr);
 | 
						|
    MemoryRegionSection *section;
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx
 | 
						|
           " idx %d value %"PRIx64"\n",
 | 
						|
           __func__, mmio, len, addr, idx, value);
 | 
						|
#endif
 | 
						|
 | 
						|
    section = &phys_sections[mmio->sub_section[idx]];
 | 
						|
    addr += mmio->base;
 | 
						|
    addr -= section->offset_within_address_space;
 | 
						|
    addr += section->offset_within_region;
 | 
						|
    io_mem_write(section->mr, addr, value, len);
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps subpage_ops = {
 | 
						|
    .read = subpage_read,
 | 
						|
    .write = subpage_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
 | 
						|
                                 unsigned size)
 | 
						|
{
 | 
						|
    ram_addr_t raddr = addr;
 | 
						|
    void *ptr = qemu_get_ram_ptr(raddr);
 | 
						|
    switch (size) {
 | 
						|
    case 1: return ldub_p(ptr);
 | 
						|
    case 2: return lduw_p(ptr);
 | 
						|
    case 4: return ldl_p(ptr);
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void subpage_ram_write(void *opaque, hwaddr addr,
 | 
						|
                              uint64_t value, unsigned size)
 | 
						|
{
 | 
						|
    ram_addr_t raddr = addr;
 | 
						|
    void *ptr = qemu_get_ram_ptr(raddr);
 | 
						|
    switch (size) {
 | 
						|
    case 1: return stb_p(ptr, value);
 | 
						|
    case 2: return stw_p(ptr, value);
 | 
						|
    case 4: return stl_p(ptr, value);
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps subpage_ram_ops = {
 | 
						|
    .read = subpage_ram_read,
 | 
						|
    .write = subpage_ram_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | 
						|
                             uint16_t section)
 | 
						|
{
 | 
						|
    int idx, eidx;
 | 
						|
 | 
						|
    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | 
						|
        return -1;
 | 
						|
    idx = SUBPAGE_IDX(start);
 | 
						|
    eidx = SUBPAGE_IDX(end);
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
 | 
						|
           mmio, start, end, idx, eidx, memory);
 | 
						|
#endif
 | 
						|
    if (memory_region_is_ram(phys_sections[section].mr)) {
 | 
						|
        MemoryRegionSection new_section = phys_sections[section];
 | 
						|
        new_section.mr = &io_mem_subpage_ram;
 | 
						|
        section = phys_section_add(&new_section);
 | 
						|
    }
 | 
						|
    for (; idx <= eidx; idx++) {
 | 
						|
        mmio->sub_section[idx] = section;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static subpage_t *subpage_init(hwaddr base)
 | 
						|
{
 | 
						|
    subpage_t *mmio;
 | 
						|
 | 
						|
    mmio = g_malloc0(sizeof(subpage_t));
 | 
						|
 | 
						|
    mmio->base = base;
 | 
						|
    memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
 | 
						|
                          "subpage", TARGET_PAGE_SIZE);
 | 
						|
    mmio->iomem.subpage = true;
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
 | 
						|
           mmio, base, TARGET_PAGE_SIZE, subpage_memory);
 | 
						|
#endif
 | 
						|
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
 | 
						|
 | 
						|
    return mmio;
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t dummy_section(MemoryRegion *mr)
 | 
						|
{
 | 
						|
    MemoryRegionSection section = {
 | 
						|
        .mr = mr,
 | 
						|
        .offset_within_address_space = 0,
 | 
						|
        .offset_within_region = 0,
 | 
						|
        .size = UINT64_MAX,
 | 
						|
    };
 | 
						|
 | 
						|
    return phys_section_add(§ion);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegion *iotlb_to_region(hwaddr index)
 | 
						|
{
 | 
						|
    return phys_sections[index & ~TARGET_PAGE_MASK].mr;
 | 
						|
}
 | 
						|
 | 
						|
static void io_mem_init(void)
 | 
						|
{
 | 
						|
    memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
 | 
						|
                          "unassigned", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
 | 
						|
                          "notdirty", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
 | 
						|
                          "subpage-ram", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
 | 
						|
                          "watch", UINT64_MAX);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_begin(MemoryListener *listener)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
 | 
						|
 | 
						|
    destroy_all_mappings(d);
 | 
						|
    d->phys_map.ptr = PHYS_MAP_NODE_NIL;
 | 
						|
}
 | 
						|
 | 
						|
static void core_begin(MemoryListener *listener)
 | 
						|
{
 | 
						|
    phys_sections_clear();
 | 
						|
    phys_section_unassigned = dummy_section(&io_mem_unassigned);
 | 
						|
    phys_section_notdirty = dummy_section(&io_mem_notdirty);
 | 
						|
    phys_section_rom = dummy_section(&io_mem_rom);
 | 
						|
    phys_section_watch = dummy_section(&io_mem_watch);
 | 
						|
}
 | 
						|
 | 
						|
static void tcg_commit(MemoryListener *listener)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
 | 
						|
    /* since each CPU stores ram addresses in its TLB cache, we must
 | 
						|
       reset the modified entries */
 | 
						|
    /* XXX: slow ! */
 | 
						|
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        tlb_flush(env, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void core_log_global_start(MemoryListener *listener)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_tracking(1);
 | 
						|
}
 | 
						|
 | 
						|
static void core_log_global_stop(MemoryListener *listener)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_tracking(0);
 | 
						|
}
 | 
						|
 | 
						|
static void io_region_add(MemoryListener *listener,
 | 
						|
                          MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
 | 
						|
 | 
						|
    mrio->mr = section->mr;
 | 
						|
    mrio->offset = section->offset_within_region;
 | 
						|
    iorange_init(&mrio->iorange, &memory_region_iorange_ops,
 | 
						|
                 section->offset_within_address_space, section->size);
 | 
						|
    ioport_register(&mrio->iorange);
 | 
						|
}
 | 
						|
 | 
						|
static void io_region_del(MemoryListener *listener,
 | 
						|
                          MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    isa_unassign_ioport(section->offset_within_address_space, section->size);
 | 
						|
}
 | 
						|
 | 
						|
static MemoryListener core_memory_listener = {
 | 
						|
    .begin = core_begin,
 | 
						|
    .log_global_start = core_log_global_start,
 | 
						|
    .log_global_stop = core_log_global_stop,
 | 
						|
    .priority = 1,
 | 
						|
};
 | 
						|
 | 
						|
static MemoryListener io_memory_listener = {
 | 
						|
    .region_add = io_region_add,
 | 
						|
    .region_del = io_region_del,
 | 
						|
    .priority = 0,
 | 
						|
};
 | 
						|
 | 
						|
static MemoryListener tcg_memory_listener = {
 | 
						|
    .commit = tcg_commit,
 | 
						|
};
 | 
						|
 | 
						|
void address_space_init_dispatch(AddressSpace *as)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
 | 
						|
 | 
						|
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
 | 
						|
    d->listener = (MemoryListener) {
 | 
						|
        .begin = mem_begin,
 | 
						|
        .region_add = mem_add,
 | 
						|
        .region_nop = mem_add,
 | 
						|
        .priority = 0,
 | 
						|
    };
 | 
						|
    as->dispatch = d;
 | 
						|
    memory_listener_register(&d->listener, as);
 | 
						|
}
 | 
						|
 | 
						|
void address_space_destroy_dispatch(AddressSpace *as)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = as->dispatch;
 | 
						|
 | 
						|
    memory_listener_unregister(&d->listener);
 | 
						|
    destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
 | 
						|
    g_free(d);
 | 
						|
    as->dispatch = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void memory_map_init(void)
 | 
						|
{
 | 
						|
    system_memory = g_malloc(sizeof(*system_memory));
 | 
						|
    memory_region_init(system_memory, "system", INT64_MAX);
 | 
						|
    address_space_init(&address_space_memory, system_memory);
 | 
						|
    address_space_memory.name = "memory";
 | 
						|
 | 
						|
    system_io = g_malloc(sizeof(*system_io));
 | 
						|
    memory_region_init(system_io, "io", 65536);
 | 
						|
    address_space_init(&address_space_io, system_io);
 | 
						|
    address_space_io.name = "I/O";
 | 
						|
 | 
						|
    memory_listener_register(&core_memory_listener, &address_space_memory);
 | 
						|
    memory_listener_register(&io_memory_listener, &address_space_io);
 | 
						|
    memory_listener_register(&tcg_memory_listener, &address_space_memory);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegion *get_system_memory(void)
 | 
						|
{
 | 
						|
    return system_memory;
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegion *get_system_io(void)
 | 
						|
{
 | 
						|
    return system_io;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !defined(CONFIG_USER_ONLY) */
 | 
						|
 | 
						|
/* physical memory access (slow version, mainly for debug) */
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | 
						|
                        uint8_t *buf, int len, int is_write)
 | 
						|
{
 | 
						|
    int l, flags;
 | 
						|
    target_ulong page;
 | 
						|
    void * p;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        flags = page_get_flags(page);
 | 
						|
        if (!(flags & PAGE_VALID))
 | 
						|
            return -1;
 | 
						|
        if (is_write) {
 | 
						|
            if (!(flags & PAGE_WRITE))
 | 
						|
                return -1;
 | 
						|
            /* XXX: this code should not depend on lock_user */
 | 
						|
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | 
						|
                return -1;
 | 
						|
            memcpy(p, buf, l);
 | 
						|
            unlock_user(p, addr, l);
 | 
						|
        } else {
 | 
						|
            if (!(flags & PAGE_READ))
 | 
						|
                return -1;
 | 
						|
            /* XXX: this code should not depend on lock_user */
 | 
						|
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | 
						|
                return -1;
 | 
						|
            memcpy(buf, p, l);
 | 
						|
            unlock_user(p, addr, 0);
 | 
						|
        }
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static void invalidate_and_set_dirty(hwaddr addr,
 | 
						|
                                     hwaddr length)
 | 
						|
{
 | 
						|
    if (!cpu_physical_memory_is_dirty(addr)) {
 | 
						|
        /* invalidate code */
 | 
						|
        tb_invalidate_phys_page_range(addr, addr + length, 0);
 | 
						|
        /* set dirty bit */
 | 
						|
        cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
 | 
						|
    }
 | 
						|
    xen_modified_memory(addr, length);
 | 
						|
}
 | 
						|
 | 
						|
void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
 | 
						|
                      int len, bool is_write)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = as->dispatch;
 | 
						|
    int l;
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint32_t val;
 | 
						|
    hwaddr page;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        section = phys_page_find(d, page >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
        if (is_write) {
 | 
						|
            if (!memory_region_is_ram(section->mr)) {
 | 
						|
                hwaddr addr1;
 | 
						|
                addr1 = memory_region_section_addr(section, addr);
 | 
						|
                /* XXX: could force cpu_single_env to NULL to avoid
 | 
						|
                   potential bugs */
 | 
						|
                if (l >= 4 && ((addr1 & 3) == 0)) {
 | 
						|
                    /* 32 bit write access */
 | 
						|
                    val = ldl_p(buf);
 | 
						|
                    io_mem_write(section->mr, addr1, val, 4);
 | 
						|
                    l = 4;
 | 
						|
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | 
						|
                    /* 16 bit write access */
 | 
						|
                    val = lduw_p(buf);
 | 
						|
                    io_mem_write(section->mr, addr1, val, 2);
 | 
						|
                    l = 2;
 | 
						|
                } else {
 | 
						|
                    /* 8 bit write access */
 | 
						|
                    val = ldub_p(buf);
 | 
						|
                    io_mem_write(section->mr, addr1, val, 1);
 | 
						|
                    l = 1;
 | 
						|
                }
 | 
						|
            } else if (!section->readonly) {
 | 
						|
                ram_addr_t addr1;
 | 
						|
                addr1 = memory_region_get_ram_addr(section->mr)
 | 
						|
                    + memory_region_section_addr(section, addr);
 | 
						|
                /* RAM case */
 | 
						|
                ptr = qemu_get_ram_ptr(addr1);
 | 
						|
                memcpy(ptr, buf, l);
 | 
						|
                invalidate_and_set_dirty(addr1, l);
 | 
						|
                qemu_put_ram_ptr(ptr);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (!(memory_region_is_ram(section->mr) ||
 | 
						|
                  memory_region_is_romd(section->mr))) {
 | 
						|
                hwaddr addr1;
 | 
						|
                /* I/O case */
 | 
						|
                addr1 = memory_region_section_addr(section, addr);
 | 
						|
                if (l >= 4 && ((addr1 & 3) == 0)) {
 | 
						|
                    /* 32 bit read access */
 | 
						|
                    val = io_mem_read(section->mr, addr1, 4);
 | 
						|
                    stl_p(buf, val);
 | 
						|
                    l = 4;
 | 
						|
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | 
						|
                    /* 16 bit read access */
 | 
						|
                    val = io_mem_read(section->mr, addr1, 2);
 | 
						|
                    stw_p(buf, val);
 | 
						|
                    l = 2;
 | 
						|
                } else {
 | 
						|
                    /* 8 bit read access */
 | 
						|
                    val = io_mem_read(section->mr, addr1, 1);
 | 
						|
                    stb_p(buf, val);
 | 
						|
                    l = 1;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                /* RAM case */
 | 
						|
                ptr = qemu_get_ram_ptr(section->mr->ram_addr
 | 
						|
                                       + memory_region_section_addr(section,
 | 
						|
                                                                    addr));
 | 
						|
                memcpy(buf, ptr, l);
 | 
						|
                qemu_put_ram_ptr(ptr);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void address_space_write(AddressSpace *as, hwaddr addr,
 | 
						|
                         const uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    address_space_rw(as, addr, (uint8_t *)buf, len, true);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * address_space_read: read from an address space.
 | 
						|
 *
 | 
						|
 * @as: #AddressSpace to be accessed
 | 
						|
 * @addr: address within that address space
 | 
						|
 * @buf: buffer with the data transferred
 | 
						|
 */
 | 
						|
void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    address_space_rw(as, addr, buf, len, false);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
 | 
						|
                            int len, int is_write)
 | 
						|
{
 | 
						|
    return address_space_rw(&address_space_memory, addr, buf, len, is_write);
 | 
						|
}
 | 
						|
 | 
						|
/* used for ROM loading : can write in RAM and ROM */
 | 
						|
void cpu_physical_memory_write_rom(hwaddr addr,
 | 
						|
                                   const uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = address_space_memory.dispatch;
 | 
						|
    int l;
 | 
						|
    uint8_t *ptr;
 | 
						|
    hwaddr page;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        section = phys_page_find(d, page >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
        if (!(memory_region_is_ram(section->mr) ||
 | 
						|
              memory_region_is_romd(section->mr))) {
 | 
						|
            /* do nothing */
 | 
						|
        } else {
 | 
						|
            unsigned long addr1;
 | 
						|
            addr1 = memory_region_get_ram_addr(section->mr)
 | 
						|
                + memory_region_section_addr(section, addr);
 | 
						|
            /* ROM/RAM case */
 | 
						|
            ptr = qemu_get_ram_ptr(addr1);
 | 
						|
            memcpy(ptr, buf, l);
 | 
						|
            invalidate_and_set_dirty(addr1, l);
 | 
						|
            qemu_put_ram_ptr(ptr);
 | 
						|
        }
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    void *buffer;
 | 
						|
    hwaddr addr;
 | 
						|
    hwaddr len;
 | 
						|
} BounceBuffer;
 | 
						|
 | 
						|
static BounceBuffer bounce;
 | 
						|
 | 
						|
typedef struct MapClient {
 | 
						|
    void *opaque;
 | 
						|
    void (*callback)(void *opaque);
 | 
						|
    QLIST_ENTRY(MapClient) link;
 | 
						|
} MapClient;
 | 
						|
 | 
						|
static QLIST_HEAD(map_client_list, MapClient) map_client_list
 | 
						|
    = QLIST_HEAD_INITIALIZER(map_client_list);
 | 
						|
 | 
						|
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
 | 
						|
{
 | 
						|
    MapClient *client = g_malloc(sizeof(*client));
 | 
						|
 | 
						|
    client->opaque = opaque;
 | 
						|
    client->callback = callback;
 | 
						|
    QLIST_INSERT_HEAD(&map_client_list, client, link);
 | 
						|
    return client;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_unregister_map_client(void *_client)
 | 
						|
{
 | 
						|
    MapClient *client = (MapClient *)_client;
 | 
						|
 | 
						|
    QLIST_REMOVE(client, link);
 | 
						|
    g_free(client);
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_notify_map_clients(void)
 | 
						|
{
 | 
						|
    MapClient *client;
 | 
						|
 | 
						|
    while (!QLIST_EMPTY(&map_client_list)) {
 | 
						|
        client = QLIST_FIRST(&map_client_list);
 | 
						|
        client->callback(client->opaque);
 | 
						|
        cpu_unregister_map_client(client);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Map a physical memory region into a host virtual address.
 | 
						|
 * May map a subset of the requested range, given by and returned in *plen.
 | 
						|
 * May return NULL if resources needed to perform the mapping are exhausted.
 | 
						|
 * Use only for reads OR writes - not for read-modify-write operations.
 | 
						|
 * Use cpu_register_map_client() to know when retrying the map operation is
 | 
						|
 * likely to succeed.
 | 
						|
 */
 | 
						|
void *address_space_map(AddressSpace *as,
 | 
						|
                        hwaddr addr,
 | 
						|
                        hwaddr *plen,
 | 
						|
                        bool is_write)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = as->dispatch;
 | 
						|
    hwaddr len = *plen;
 | 
						|
    hwaddr todo = 0;
 | 
						|
    int l;
 | 
						|
    hwaddr page;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    ram_addr_t raddr = RAM_ADDR_MAX;
 | 
						|
    ram_addr_t rlen;
 | 
						|
    void *ret;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        section = phys_page_find(d, page >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
        if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
 | 
						|
            if (todo || bounce.buffer) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
 | 
						|
            bounce.addr = addr;
 | 
						|
            bounce.len = l;
 | 
						|
            if (!is_write) {
 | 
						|
                address_space_read(as, addr, bounce.buffer, l);
 | 
						|
            }
 | 
						|
 | 
						|
            *plen = l;
 | 
						|
            return bounce.buffer;
 | 
						|
        }
 | 
						|
        if (!todo) {
 | 
						|
            raddr = memory_region_get_ram_addr(section->mr)
 | 
						|
                + memory_region_section_addr(section, addr);
 | 
						|
        }
 | 
						|
 | 
						|
        len -= l;
 | 
						|
        addr += l;
 | 
						|
        todo += l;
 | 
						|
    }
 | 
						|
    rlen = todo;
 | 
						|
    ret = qemu_ram_ptr_length(raddr, &rlen);
 | 
						|
    *plen = rlen;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Unmaps a memory region previously mapped by address_space_map().
 | 
						|
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 | 
						|
 * the amount of memory that was actually read or written by the caller.
 | 
						|
 */
 | 
						|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 | 
						|
                         int is_write, hwaddr access_len)
 | 
						|
{
 | 
						|
    if (buffer != bounce.buffer) {
 | 
						|
        if (is_write) {
 | 
						|
            ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
 | 
						|
            while (access_len) {
 | 
						|
                unsigned l;
 | 
						|
                l = TARGET_PAGE_SIZE;
 | 
						|
                if (l > access_len)
 | 
						|
                    l = access_len;
 | 
						|
                invalidate_and_set_dirty(addr1, l);
 | 
						|
                addr1 += l;
 | 
						|
                access_len -= l;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (xen_enabled()) {
 | 
						|
            xen_invalidate_map_cache_entry(buffer);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (is_write) {
 | 
						|
        address_space_write(as, bounce.addr, bounce.buffer, access_len);
 | 
						|
    }
 | 
						|
    qemu_vfree(bounce.buffer);
 | 
						|
    bounce.buffer = NULL;
 | 
						|
    cpu_notify_map_clients();
 | 
						|
}
 | 
						|
 | 
						|
void *cpu_physical_memory_map(hwaddr addr,
 | 
						|
                              hwaddr *plen,
 | 
						|
                              int is_write)
 | 
						|
{
 | 
						|
    return address_space_map(&address_space_memory, addr, plen, is_write);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
 | 
						|
                               int is_write, hwaddr access_len)
 | 
						|
{
 | 
						|
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline uint32_t ldl_phys_internal(hwaddr addr,
 | 
						|
                                         enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint32_t val;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* I/O case */
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        val = io_mem_read(section->mr, addr, 4);
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            val = ldl_le_p(ptr);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            val = ldl_be_p(ptr);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            val = ldl_p(ptr);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ldl_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ldl_le_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ldl_be_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline uint64_t ldq_phys_internal(hwaddr addr,
 | 
						|
                                         enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint64_t val;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* I/O case */
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
 | 
						|
        /* XXX This is broken when device endian != cpu endian.
 | 
						|
               Fix and add "endian" variable check */
 | 
						|
#ifdef TARGET_WORDS_BIGENDIAN
 | 
						|
        val = io_mem_read(section->mr, addr, 4) << 32;
 | 
						|
        val |= io_mem_read(section->mr, addr + 4, 4);
 | 
						|
#else
 | 
						|
        val = io_mem_read(section->mr, addr, 4);
 | 
						|
        val |= io_mem_read(section->mr, addr + 4, 4) << 32;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            val = ldq_le_p(ptr);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            val = ldq_be_p(ptr);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            val = ldq_p(ptr);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ldq_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ldq_le_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ldq_be_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: optimize */
 | 
						|
uint32_t ldub_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    uint8_t val;
 | 
						|
    cpu_physical_memory_read(addr, &val, 1);
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline uint32_t lduw_phys_internal(hwaddr addr,
 | 
						|
                                          enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint64_t val;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* I/O case */
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        val = io_mem_read(section->mr, addr, 2);
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            val = lduw_le_p(ptr);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            val = lduw_be_p(ptr);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            val = lduw_p(ptr);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t lduw_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t lduw_le_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t lduw_be_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned. The ram page is not masked as dirty
 | 
						|
   and the code inside is not invalidated. It is useful if the dirty
 | 
						|
   bits are used to track modified PTEs */
 | 
						|
void stl_phys_notdirty(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
        io_mem_write(section->mr, addr, val, 4);
 | 
						|
    } else {
 | 
						|
        unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
 | 
						|
                               & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, addr);
 | 
						|
        ptr = qemu_get_ram_ptr(addr1);
 | 
						|
        stl_p(ptr, val);
 | 
						|
 | 
						|
        if (unlikely(in_migration)) {
 | 
						|
            if (!cpu_physical_memory_is_dirty(addr1)) {
 | 
						|
                /* invalidate code */
 | 
						|
                tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | 
						|
                /* set dirty bit */
 | 
						|
                cpu_physical_memory_set_dirty_flags(
 | 
						|
                    addr1, (0xff & ~CODE_DIRTY_FLAG));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stq_phys_notdirty(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
#ifdef TARGET_WORDS_BIGENDIAN
 | 
						|
        io_mem_write(section->mr, addr, val >> 32, 4);
 | 
						|
        io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
 | 
						|
#else
 | 
						|
        io_mem_write(section->mr, addr, (uint32_t)val, 4);
 | 
						|
        io_mem_write(section->mr, addr + 4, val >> 32, 4);
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        stq_p(ptr, val);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline void stl_phys_internal(hwaddr addr, uint32_t val,
 | 
						|
                                     enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        io_mem_write(section->mr, addr, val, 4);
 | 
						|
    } else {
 | 
						|
        unsigned long addr1;
 | 
						|
        addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, addr);
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr(addr1);
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            stl_le_p(ptr, val);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            stl_be_p(ptr, val);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            stl_p(ptr, val);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        invalidate_and_set_dirty(addr1, 4);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stl_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stl_le_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stl_be_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: optimize */
 | 
						|
void stb_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    uint8_t v = val;
 | 
						|
    cpu_physical_memory_write(addr, &v, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline void stw_phys_internal(hwaddr addr, uint32_t val,
 | 
						|
                                     enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        io_mem_write(section->mr, addr, val, 2);
 | 
						|
    } else {
 | 
						|
        unsigned long addr1;
 | 
						|
        addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, addr);
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr(addr1);
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            stw_le_p(ptr, val);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            stw_be_p(ptr, val);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            stw_p(ptr, val);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        invalidate_and_set_dirty(addr1, 2);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stw_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stw_le_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stw_be_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: optimize */
 | 
						|
void stq_phys(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    val = tswap64(val);
 | 
						|
    cpu_physical_memory_write(addr, &val, 8);
 | 
						|
}
 | 
						|
 | 
						|
void stq_le_phys(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    val = cpu_to_le64(val);
 | 
						|
    cpu_physical_memory_write(addr, &val, 8);
 | 
						|
}
 | 
						|
 | 
						|
void stq_be_phys(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    val = cpu_to_be64(val);
 | 
						|
    cpu_physical_memory_write(addr, &val, 8);
 | 
						|
}
 | 
						|
 | 
						|
/* virtual memory access for debug (includes writing to ROM) */
 | 
						|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | 
						|
                        uint8_t *buf, int len, int is_write)
 | 
						|
{
 | 
						|
    int l;
 | 
						|
    hwaddr phys_addr;
 | 
						|
    target_ulong page;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        phys_addr = cpu_get_phys_page_debug(env, page);
 | 
						|
        /* if no physical page mapped, return an error */
 | 
						|
        if (phys_addr == -1)
 | 
						|
            return -1;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        phys_addr += (addr & ~TARGET_PAGE_MASK);
 | 
						|
        if (is_write)
 | 
						|
            cpu_physical_memory_write_rom(phys_addr, buf, l);
 | 
						|
        else
 | 
						|
            cpu_physical_memory_rw(phys_addr, buf, l, is_write);
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* in deterministic execution mode, instructions doing device I/Os
 | 
						|
   must be at the end of the TB */
 | 
						|
void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
    uint32_t n, cflags;
 | 
						|
    target_ulong pc, cs_base;
 | 
						|
    uint64_t flags;
 | 
						|
 | 
						|
    tb = tb_find_pc(retaddr);
 | 
						|
    if (!tb) {
 | 
						|
        cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
 | 
						|
                  (void *)retaddr);
 | 
						|
    }
 | 
						|
    n = env->icount_decr.u16.low + tb->icount;
 | 
						|
    cpu_restore_state(tb, env, retaddr);
 | 
						|
    /* Calculate how many instructions had been executed before the fault
 | 
						|
       occurred.  */
 | 
						|
    n = n - env->icount_decr.u16.low;
 | 
						|
    /* Generate a new TB ending on the I/O insn.  */
 | 
						|
    n++;
 | 
						|
    /* On MIPS and SH, delay slot instructions can only be restarted if
 | 
						|
       they were already the first instruction in the TB.  If this is not
 | 
						|
       the first instruction in a TB then re-execute the preceding
 | 
						|
       branch.  */
 | 
						|
#if defined(TARGET_MIPS)
 | 
						|
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
 | 
						|
        env->active_tc.PC -= 4;
 | 
						|
        env->icount_decr.u16.low++;
 | 
						|
        env->hflags &= ~MIPS_HFLAG_BMASK;
 | 
						|
    }
 | 
						|
#elif defined(TARGET_SH4)
 | 
						|
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
 | 
						|
            && n > 1) {
 | 
						|
        env->pc -= 2;
 | 
						|
        env->icount_decr.u16.low++;
 | 
						|
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* This should never happen.  */
 | 
						|
    if (n > CF_COUNT_MASK)
 | 
						|
        cpu_abort(env, "TB too big during recompile");
 | 
						|
 | 
						|
    cflags = n | CF_LAST_IO;
 | 
						|
    pc = tb->pc;
 | 
						|
    cs_base = tb->cs_base;
 | 
						|
    flags = tb->flags;
 | 
						|
    tb_phys_invalidate(tb, -1);
 | 
						|
    /* FIXME: In theory this could raise an exception.  In practice
 | 
						|
       we have already translated the block once so it's probably ok.  */
 | 
						|
    tb_gen_code(env, pc, cs_base, flags, cflags);
 | 
						|
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
 | 
						|
       the first in the TB) then we end up generating a whole new TB and
 | 
						|
       repeating the fault, which is horribly inefficient.
 | 
						|
       Better would be to execute just this insn uncached, or generate a
 | 
						|
       second new TB.  */
 | 
						|
    cpu_resume_from_signal(env, NULL);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
 | 
						|
{
 | 
						|
    int i, target_code_size, max_target_code_size;
 | 
						|
    int direct_jmp_count, direct_jmp2_count, cross_page;
 | 
						|
    TranslationBlock *tb;
 | 
						|
 | 
						|
    target_code_size = 0;
 | 
						|
    max_target_code_size = 0;
 | 
						|
    cross_page = 0;
 | 
						|
    direct_jmp_count = 0;
 | 
						|
    direct_jmp2_count = 0;
 | 
						|
    for(i = 0; i < nb_tbs; i++) {
 | 
						|
        tb = &tbs[i];
 | 
						|
        target_code_size += tb->size;
 | 
						|
        if (tb->size > max_target_code_size)
 | 
						|
            max_target_code_size = tb->size;
 | 
						|
        if (tb->page_addr[1] != -1)
 | 
						|
            cross_page++;
 | 
						|
        if (tb->tb_next_offset[0] != 0xffff) {
 | 
						|
            direct_jmp_count++;
 | 
						|
            if (tb->tb_next_offset[1] != 0xffff) {
 | 
						|
                direct_jmp2_count++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* XXX: avoid using doubles ? */
 | 
						|
    cpu_fprintf(f, "Translation buffer state:\n");
 | 
						|
    cpu_fprintf(f, "gen code size       %td/%zd\n",
 | 
						|
                code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
 | 
						|
    cpu_fprintf(f, "TB count            %d/%d\n", 
 | 
						|
                nb_tbs, code_gen_max_blocks);
 | 
						|
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
 | 
						|
                nb_tbs ? target_code_size / nb_tbs : 0,
 | 
						|
                max_target_code_size);
 | 
						|
    cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
 | 
						|
                nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
 | 
						|
                target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
 | 
						|
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
 | 
						|
            cross_page,
 | 
						|
            nb_tbs ? (cross_page * 100) / nb_tbs : 0);
 | 
						|
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
 | 
						|
                direct_jmp_count,
 | 
						|
                nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
 | 
						|
                direct_jmp2_count,
 | 
						|
                nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
 | 
						|
    cpu_fprintf(f, "\nStatistics:\n");
 | 
						|
    cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
 | 
						|
    cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
 | 
						|
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
 | 
						|
    tcg_dump_info(f, cpu_fprintf);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A helper function for the _utterly broken_ virtio device model to find out if
 | 
						|
 * it's running on a big endian machine. Don't do this at home kids!
 | 
						|
 */
 | 
						|
bool virtio_is_big_endian(void);
 | 
						|
bool virtio_is_big_endian(void)
 | 
						|
{
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
    return true;
 | 
						|
#else
 | 
						|
    return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
bool cpu_physical_memory_is_io(hwaddr phys_addr)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch,
 | 
						|
                             phys_addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    return !(memory_region_is_ram(section->mr) ||
 | 
						|
             memory_region_is_romd(section->mr));
 | 
						|
}
 | 
						|
#endif
 |