362 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			362 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Common CPU TLB handling
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "config.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
 | 
						|
#include "exec/cputlb.h"
 | 
						|
 | 
						|
#include "exec/memory-internal.h"
 | 
						|
 | 
						|
//#define DEBUG_TLB
 | 
						|
//#define DEBUG_TLB_CHECK
 | 
						|
 | 
						|
/* statistics */
 | 
						|
int tlb_flush_count;
 | 
						|
 | 
						|
static const CPUTLBEntry s_cputlb_empty_entry = {
 | 
						|
    .addr_read  = -1,
 | 
						|
    .addr_write = -1,
 | 
						|
    .addr_code  = -1,
 | 
						|
    .addend     = -1,
 | 
						|
};
 | 
						|
 | 
						|
/* NOTE:
 | 
						|
 * If flush_global is true (the usual case), flush all tlb entries.
 | 
						|
 * If flush_global is false, flush (at least) all tlb entries not
 | 
						|
 * marked global.
 | 
						|
 *
 | 
						|
 * Since QEMU doesn't currently implement a global/not-global flag
 | 
						|
 * for tlb entries, at the moment tlb_flush() will also flush all
 | 
						|
 * tlb entries in the flush_global == false case. This is OK because
 | 
						|
 * CPU architectures generally permit an implementation to drop
 | 
						|
 * entries from the TLB at any time, so flushing more entries than
 | 
						|
 * required is only an efficiency issue, not a correctness issue.
 | 
						|
 */
 | 
						|
void tlb_flush(CPUArchState *env, int flush_global)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
#if defined(DEBUG_TLB)
 | 
						|
    printf("tlb_flush:\n");
 | 
						|
#endif
 | 
						|
    /* must reset current TB so that interrupts cannot modify the
 | 
						|
       links while we are modifying them */
 | 
						|
    env->current_tb = NULL;
 | 
						|
 | 
						|
    for (i = 0; i < CPU_TLB_SIZE; i++) {
 | 
						|
        int mmu_idx;
 | 
						|
 | 
						|
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | 
						|
 | 
						|
    env->tlb_flush_addr = -1;
 | 
						|
    env->tlb_flush_mask = 0;
 | 
						|
    tlb_flush_count++;
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
 | 
						|
{
 | 
						|
    if (addr == (tlb_entry->addr_read &
 | 
						|
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | 
						|
        addr == (tlb_entry->addr_write &
 | 
						|
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | 
						|
        addr == (tlb_entry->addr_code &
 | 
						|
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | 
						|
        *tlb_entry = s_cputlb_empty_entry;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page(CPUArchState *env, target_ulong addr)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
#if defined(DEBUG_TLB)
 | 
						|
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 | 
						|
#endif
 | 
						|
    /* Check if we need to flush due to large pages.  */
 | 
						|
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 | 
						|
#if defined(DEBUG_TLB)
 | 
						|
        printf("tlb_flush_page: forced full flush ("
 | 
						|
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | 
						|
               env->tlb_flush_addr, env->tlb_flush_mask);
 | 
						|
#endif
 | 
						|
        tlb_flush(env, 1);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* must reset current TB so that interrupts cannot modify the
 | 
						|
       links while we are modifying them */
 | 
						|
    env->current_tb = NULL;
 | 
						|
 | 
						|
    addr &= TARGET_PAGE_MASK;
 | 
						|
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 | 
						|
    }
 | 
						|
 | 
						|
    tb_flush_jmp_cache(env, addr);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLBs so that writes to code in the virtual page 'addr'
 | 
						|
   can be detected */
 | 
						|
void tlb_protect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_reset_dirty(ram_addr,
 | 
						|
                                    ram_addr + TARGET_PAGE_SIZE,
 | 
						|
                                    CODE_DIRTY_FLAG);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
 | 
						|
   tested for self modifying code */
 | 
						|
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
 | 
						|
                             target_ulong vaddr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
 | 
						|
}
 | 
						|
 | 
						|
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
 | 
						|
{
 | 
						|
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 | 
						|
                           uintptr_t length)
 | 
						|
{
 | 
						|
    uintptr_t addr;
 | 
						|
 | 
						|
    if (tlb_is_dirty_ram(tlb_entry)) {
 | 
						|
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 | 
						|
        if ((addr - start) < length) {
 | 
						|
            tlb_entry->addr_write |= TLB_NOTDIRTY;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
    void *p;
 | 
						|
 | 
						|
    if (tlb_is_dirty_ram(tlb_entry)) {
 | 
						|
        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
 | 
						|
            + tlb_entry->addend);
 | 
						|
        ram_addr = qemu_ram_addr_from_host_nofail(p);
 | 
						|
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
 | 
						|
            tlb_entry->addr_write |= TLB_NOTDIRTY;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
 | 
						|
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        int mmu_idx;
 | 
						|
 | 
						|
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
            unsigned int i;
 | 
						|
 | 
						|
            for (i = 0; i < CPU_TLB_SIZE; i++) {
 | 
						|
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 | 
						|
                                      start1, length);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 | 
						|
{
 | 
						|
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 | 
						|
        tlb_entry->addr_write = vaddr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB corresponding to virtual page vaddr
 | 
						|
   so that it is no longer dirty */
 | 
						|
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    vaddr &= TARGET_PAGE_MASK;
 | 
						|
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Our TLB does not support large pages, so remember the area covered by
 | 
						|
   large pages and trigger a full TLB flush if these are invalidated.  */
 | 
						|
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 | 
						|
                               target_ulong size)
 | 
						|
{
 | 
						|
    target_ulong mask = ~(size - 1);
 | 
						|
 | 
						|
    if (env->tlb_flush_addr == (target_ulong)-1) {
 | 
						|
        env->tlb_flush_addr = vaddr & mask;
 | 
						|
        env->tlb_flush_mask = mask;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /* Extend the existing region to include the new page.
 | 
						|
       This is a compromise between unnecessary flushes and the cost
 | 
						|
       of maintaining a full variable size TLB.  */
 | 
						|
    mask &= env->tlb_flush_mask;
 | 
						|
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 | 
						|
        mask <<= 1;
 | 
						|
    }
 | 
						|
    env->tlb_flush_addr &= mask;
 | 
						|
    env->tlb_flush_mask = mask;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry. At most one entry for a given virtual address
 | 
						|
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | 
						|
   supplied size is only used by tlb_flush_page.  */
 | 
						|
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
 | 
						|
                  hwaddr paddr, int prot,
 | 
						|
                  int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    unsigned int index;
 | 
						|
    target_ulong address;
 | 
						|
    target_ulong code_address;
 | 
						|
    uintptr_t addend;
 | 
						|
    CPUTLBEntry *te;
 | 
						|
    hwaddr iotlb;
 | 
						|
 | 
						|
    assert(size >= TARGET_PAGE_SIZE);
 | 
						|
    if (size != TARGET_PAGE_SIZE) {
 | 
						|
        tlb_add_large_page(env, vaddr, size);
 | 
						|
    }
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, paddr >> TARGET_PAGE_BITS);
 | 
						|
#if defined(DEBUG_TLB)
 | 
						|
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | 
						|
           " prot=%x idx=%d pd=0x%08lx\n",
 | 
						|
           vaddr, paddr, prot, mmu_idx, pd);
 | 
						|
#endif
 | 
						|
 | 
						|
    address = vaddr;
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* IO memory case (romd handled later) */
 | 
						|
        address |= TLB_MMIO;
 | 
						|
    }
 | 
						|
    if (memory_region_is_ram(section->mr) ||
 | 
						|
        memory_region_is_romd(section->mr)) {
 | 
						|
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
 | 
						|
        + memory_region_section_addr(section, paddr);
 | 
						|
    } else {
 | 
						|
        addend = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    code_address = address;
 | 
						|
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
 | 
						|
                                            &address);
 | 
						|
 | 
						|
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
 | 
						|
    te = &env->tlb_table[mmu_idx][index];
 | 
						|
    te->addend = addend - vaddr;
 | 
						|
    if (prot & PAGE_READ) {
 | 
						|
        te->addr_read = address;
 | 
						|
    } else {
 | 
						|
        te->addr_read = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (prot & PAGE_EXEC) {
 | 
						|
        te->addr_code = code_address;
 | 
						|
    } else {
 | 
						|
        te->addr_code = -1;
 | 
						|
    }
 | 
						|
    if (prot & PAGE_WRITE) {
 | 
						|
        if ((memory_region_is_ram(section->mr) && section->readonly)
 | 
						|
            || memory_region_is_romd(section->mr)) {
 | 
						|
            /* Write access calls the I/O callback.  */
 | 
						|
            te->addr_write = address | TLB_MMIO;
 | 
						|
        } else if (memory_region_is_ram(section->mr)
 | 
						|
                   && !cpu_physical_memory_is_dirty(
 | 
						|
                           section->mr->ram_addr
 | 
						|
                           + memory_region_section_addr(section, paddr))) {
 | 
						|
            te->addr_write = address | TLB_NOTDIRTY;
 | 
						|
        } else {
 | 
						|
            te->addr_write = address;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        te->addr_write = -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* NOTE: this function can trigger an exception */
 | 
						|
/* NOTE2: the returned address is not exactly the physical address: it
 | 
						|
 * is actually a ram_addr_t (in system mode; the user mode emulation
 | 
						|
 * version of this function returns a guest virtual address).
 | 
						|
 */
 | 
						|
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 | 
						|
{
 | 
						|
    int mmu_idx, page_index, pd;
 | 
						|
    void *p;
 | 
						|
    MemoryRegion *mr;
 | 
						|
 | 
						|
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | 
						|
    mmu_idx = cpu_mmu_index(env1);
 | 
						|
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 | 
						|
                 (addr & TARGET_PAGE_MASK))) {
 | 
						|
        cpu_ldub_code(env1, addr);
 | 
						|
    }
 | 
						|
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
 | 
						|
    mr = iotlb_to_region(pd);
 | 
						|
    if (memory_region_is_unassigned(mr)) {
 | 
						|
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
 | 
						|
        cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
 | 
						|
#else
 | 
						|
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
 | 
						|
                  TARGET_FMT_lx "\n", addr);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 | 
						|
    return qemu_ram_addr_from_host_nofail(p);
 | 
						|
}
 | 
						|
 | 
						|
#define MMUSUFFIX _cmmu
 | 
						|
#undef GETPC
 | 
						|
#define GETPC() ((uintptr_t)0)
 | 
						|
#define SOFTMMU_CODE_ACCESS
 | 
						|
 | 
						|
#define SHIFT 0
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 1
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 2
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 3
 | 
						|
#include "exec/softmmu_template.h"
 | 
						|
 | 
						|
#undef env
 |