We switched from qemu_memalign to mmap() but then we don't modify
qemu_vfree() to do a munmap() over free().  Which we cannot do
because qemu_vfree() frees memory allocated by qemu_{mem,block}align.
Introduce a new function that does the munmap(), luckily the size is
available in the RAMBlock.
Reported-by: Amos Kong <akong@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Amos Kong <akong@redhat.com>
Message-id: 1368454796-14989-3-git-send-email-pbonzini@redhat.com
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
	
			
		
			
				
	
	
		
			2640 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2640 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Virtual page mapping
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "config.h"
 | 
						|
#ifdef _WIN32
 | 
						|
#include <windows.h>
 | 
						|
#else
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/mman.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "qemu-common.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "tcg.h"
 | 
						|
#include "hw/hw.h"
 | 
						|
#include "hw/qdev.h"
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
#include "hw/xen/xen.h"
 | 
						|
#include "qemu/timer.h"
 | 
						|
#include "qemu/config-file.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "sysemu/dma.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
#include <qemu.h>
 | 
						|
#else /* !CONFIG_USER_ONLY */
 | 
						|
#include "sysemu/xen-mapcache.h"
 | 
						|
#include "trace.h"
 | 
						|
#endif
 | 
						|
#include "exec/cpu-all.h"
 | 
						|
 | 
						|
#include "exec/cputlb.h"
 | 
						|
#include "translate-all.h"
 | 
						|
 | 
						|
#include "exec/memory-internal.h"
 | 
						|
 | 
						|
//#define DEBUG_UNASSIGNED
 | 
						|
//#define DEBUG_SUBPAGE
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
int phys_ram_fd;
 | 
						|
static int in_migration;
 | 
						|
 | 
						|
RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
 | 
						|
 | 
						|
static MemoryRegion *system_memory;
 | 
						|
static MemoryRegion *system_io;
 | 
						|
 | 
						|
AddressSpace address_space_io;
 | 
						|
AddressSpace address_space_memory;
 | 
						|
DMAContext dma_context_memory;
 | 
						|
 | 
						|
MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
 | 
						|
static MemoryRegion io_mem_subpage_ram;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
CPUArchState *first_cpu;
 | 
						|
/* current CPU in the current thread. It is only valid inside
 | 
						|
   cpu_exec() */
 | 
						|
DEFINE_TLS(CPUArchState *,cpu_single_env);
 | 
						|
/* 0 = Do not count executed instructions.
 | 
						|
   1 = Precise instruction counting.
 | 
						|
   2 = Adaptive rate instruction counting.  */
 | 
						|
int use_icount;
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static MemoryRegionSection *phys_sections;
 | 
						|
static unsigned phys_sections_nb, phys_sections_nb_alloc;
 | 
						|
static uint16_t phys_section_unassigned;
 | 
						|
static uint16_t phys_section_notdirty;
 | 
						|
static uint16_t phys_section_rom;
 | 
						|
static uint16_t phys_section_watch;
 | 
						|
 | 
						|
/* Simple allocator for PhysPageEntry nodes */
 | 
						|
static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
 | 
						|
static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
 | 
						|
 | 
						|
#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
 | 
						|
 | 
						|
static void io_mem_init(void);
 | 
						|
static void memory_map_init(void);
 | 
						|
static void *qemu_safe_ram_ptr(ram_addr_t addr);
 | 
						|
 | 
						|
static MemoryRegion io_mem_watch;
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static void phys_map_node_reserve(unsigned nodes)
 | 
						|
{
 | 
						|
    if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
 | 
						|
        typedef PhysPageEntry Node[L2_SIZE];
 | 
						|
        phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
 | 
						|
        phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
 | 
						|
                                      phys_map_nodes_nb + nodes);
 | 
						|
        phys_map_nodes = g_renew(Node, phys_map_nodes,
 | 
						|
                                 phys_map_nodes_nb_alloc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t phys_map_node_alloc(void)
 | 
						|
{
 | 
						|
    unsigned i;
 | 
						|
    uint16_t ret;
 | 
						|
 | 
						|
    ret = phys_map_nodes_nb++;
 | 
						|
    assert(ret != PHYS_MAP_NODE_NIL);
 | 
						|
    assert(ret != phys_map_nodes_nb_alloc);
 | 
						|
    for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
        phys_map_nodes[ret][i].is_leaf = 0;
 | 
						|
        phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void phys_map_nodes_reset(void)
 | 
						|
{
 | 
						|
    phys_map_nodes_nb = 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
 | 
						|
                                hwaddr *nb, uint16_t leaf,
 | 
						|
                                int level)
 | 
						|
{
 | 
						|
    PhysPageEntry *p;
 | 
						|
    int i;
 | 
						|
    hwaddr step = (hwaddr)1 << (level * L2_BITS);
 | 
						|
 | 
						|
    if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
 | 
						|
        lp->ptr = phys_map_node_alloc();
 | 
						|
        p = phys_map_nodes[lp->ptr];
 | 
						|
        if (level == 0) {
 | 
						|
            for (i = 0; i < L2_SIZE; i++) {
 | 
						|
                p[i].is_leaf = 1;
 | 
						|
                p[i].ptr = phys_section_unassigned;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        p = phys_map_nodes[lp->ptr];
 | 
						|
    }
 | 
						|
    lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
 | 
						|
 | 
						|
    while (*nb && lp < &p[L2_SIZE]) {
 | 
						|
        if ((*index & (step - 1)) == 0 && *nb >= step) {
 | 
						|
            lp->is_leaf = true;
 | 
						|
            lp->ptr = leaf;
 | 
						|
            *index += step;
 | 
						|
            *nb -= step;
 | 
						|
        } else {
 | 
						|
            phys_page_set_level(lp, index, nb, leaf, level - 1);
 | 
						|
        }
 | 
						|
        ++lp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void phys_page_set(AddressSpaceDispatch *d,
 | 
						|
                          hwaddr index, hwaddr nb,
 | 
						|
                          uint16_t leaf)
 | 
						|
{
 | 
						|
    /* Wildly overreserve - it doesn't matter much. */
 | 
						|
    phys_map_node_reserve(3 * P_L2_LEVELS);
 | 
						|
 | 
						|
    phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
 | 
						|
{
 | 
						|
    PhysPageEntry lp = d->phys_map;
 | 
						|
    PhysPageEntry *p;
 | 
						|
    int i;
 | 
						|
    uint16_t s_index = phys_section_unassigned;
 | 
						|
 | 
						|
    for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
 | 
						|
        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 | 
						|
            goto not_found;
 | 
						|
        }
 | 
						|
        p = phys_map_nodes[lp.ptr];
 | 
						|
        lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
 | 
						|
    }
 | 
						|
 | 
						|
    s_index = lp.ptr;
 | 
						|
not_found:
 | 
						|
    return &phys_sections[s_index];
 | 
						|
}
 | 
						|
 | 
						|
bool memory_region_is_unassigned(MemoryRegion *mr)
 | 
						|
{
 | 
						|
    return mr != &io_mem_ram && mr != &io_mem_rom
 | 
						|
        && mr != &io_mem_notdirty && !mr->rom_device
 | 
						|
        && mr != &io_mem_watch;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void cpu_exec_init_all(void)
 | 
						|
{
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
    qemu_mutex_init(&ram_list.mutex);
 | 
						|
    memory_map_init();
 | 
						|
    io_mem_init();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
static int cpu_common_post_load(void *opaque, int version_id)
 | 
						|
{
 | 
						|
    CPUState *cpu = opaque;
 | 
						|
 | 
						|
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 | 
						|
       version_id is increased. */
 | 
						|
    cpu->interrupt_request &= ~0x01;
 | 
						|
    tlb_flush(cpu->env_ptr, 1);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const VMStateDescription vmstate_cpu_common = {
 | 
						|
    .name = "cpu_common",
 | 
						|
    .version_id = 1,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .minimum_version_id_old = 1,
 | 
						|
    .post_load = cpu_common_post_load,
 | 
						|
    .fields      = (VMStateField []) {
 | 
						|
        VMSTATE_UINT32(halted, CPUState),
 | 
						|
        VMSTATE_UINT32(interrupt_request, CPUState),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    }
 | 
						|
};
 | 
						|
#else
 | 
						|
#define vmstate_cpu_common vmstate_dummy
 | 
						|
#endif
 | 
						|
 | 
						|
CPUState *qemu_get_cpu(int index)
 | 
						|
{
 | 
						|
    CPUArchState *env = first_cpu;
 | 
						|
    CPUState *cpu = NULL;
 | 
						|
 | 
						|
    while (env) {
 | 
						|
        cpu = ENV_GET_CPU(env);
 | 
						|
        if (cpu->cpu_index == index) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        env = env->next_cpu;
 | 
						|
    }
 | 
						|
 | 
						|
    return env ? cpu : NULL;
 | 
						|
}
 | 
						|
 | 
						|
void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
 | 
						|
{
 | 
						|
    CPUArchState *env = first_cpu;
 | 
						|
 | 
						|
    while (env) {
 | 
						|
        func(ENV_GET_CPU(env), data);
 | 
						|
        env = env->next_cpu;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void cpu_exec_init(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
    CPUArchState **penv;
 | 
						|
    int cpu_index;
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    cpu_list_lock();
 | 
						|
#endif
 | 
						|
    env->next_cpu = NULL;
 | 
						|
    penv = &first_cpu;
 | 
						|
    cpu_index = 0;
 | 
						|
    while (*penv != NULL) {
 | 
						|
        penv = &(*penv)->next_cpu;
 | 
						|
        cpu_index++;
 | 
						|
    }
 | 
						|
    cpu->cpu_index = cpu_index;
 | 
						|
    cpu->numa_node = 0;
 | 
						|
    QTAILQ_INIT(&env->breakpoints);
 | 
						|
    QTAILQ_INIT(&env->watchpoints);
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    cpu->thread_id = qemu_get_thread_id();
 | 
						|
#endif
 | 
						|
    *penv = env;
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    cpu_list_unlock();
 | 
						|
#endif
 | 
						|
    vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
 | 
						|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | 
						|
    register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
 | 
						|
                    cpu_save, cpu_load, env);
 | 
						|
    assert(cc->vmsd == NULL);
 | 
						|
#endif
 | 
						|
    if (cc->vmsd != NULL) {
 | 
						|
        vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 | 
						|
{
 | 
						|
    tb_invalidate_phys_page_range(pc, pc + 1, 0);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
 | 
						|
{
 | 
						|
    tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
 | 
						|
            (pc & ~TARGET_PAGE_MASK));
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif /* TARGET_HAS_ICE */
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | 
						|
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | 
						|
                          int flags, CPUWatchpoint **watchpoint)
 | 
						|
{
 | 
						|
    return -ENOSYS;
 | 
						|
}
 | 
						|
#else
 | 
						|
/* Add a watchpoint.  */
 | 
						|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
 | 
						|
                          int flags, CPUWatchpoint **watchpoint)
 | 
						|
{
 | 
						|
    target_ulong len_mask = ~(len - 1);
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
 | 
						|
    if ((len & (len - 1)) || (addr & ~len_mask) ||
 | 
						|
            len == 0 || len > TARGET_PAGE_SIZE) {
 | 
						|
        fprintf(stderr, "qemu: tried to set invalid watchpoint at "
 | 
						|
                TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
    wp = g_malloc(sizeof(*wp));
 | 
						|
 | 
						|
    wp->vaddr = addr;
 | 
						|
    wp->len_mask = len_mask;
 | 
						|
    wp->flags = flags;
 | 
						|
 | 
						|
    /* keep all GDB-injected watchpoints in front */
 | 
						|
    if (flags & BP_GDB)
 | 
						|
        QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
 | 
						|
    else
 | 
						|
        QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
 | 
						|
 | 
						|
    tlb_flush_page(env, addr);
 | 
						|
 | 
						|
    if (watchpoint)
 | 
						|
        *watchpoint = wp;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific watchpoint.  */
 | 
						|
int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
 | 
						|
                          int flags)
 | 
						|
{
 | 
						|
    target_ulong len_mask = ~(len - 1);
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        if (addr == wp->vaddr && len_mask == wp->len_mask
 | 
						|
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 | 
						|
            cpu_watchpoint_remove_by_ref(env, wp);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -ENOENT;
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific watchpoint by reference.  */
 | 
						|
void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
 | 
						|
{
 | 
						|
    QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
 | 
						|
 | 
						|
    tlb_flush_page(env, watchpoint->vaddr);
 | 
						|
 | 
						|
    g_free(watchpoint);
 | 
						|
}
 | 
						|
 | 
						|
/* Remove all matching watchpoints.  */
 | 
						|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
    CPUWatchpoint *wp, *next;
 | 
						|
 | 
						|
    QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
 | 
						|
        if (wp->flags & mask)
 | 
						|
            cpu_watchpoint_remove_by_ref(env, wp);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Add a breakpoint.  */
 | 
						|
int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
 | 
						|
                          CPUBreakpoint **breakpoint)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp;
 | 
						|
 | 
						|
    bp = g_malloc(sizeof(*bp));
 | 
						|
 | 
						|
    bp->pc = pc;
 | 
						|
    bp->flags = flags;
 | 
						|
 | 
						|
    /* keep all GDB-injected breakpoints in front */
 | 
						|
    if (flags & BP_GDB)
 | 
						|
        QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
 | 
						|
    else
 | 
						|
        QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
 | 
						|
 | 
						|
    breakpoint_invalidate(env, pc);
 | 
						|
 | 
						|
    if (breakpoint)
 | 
						|
        *breakpoint = bp;
 | 
						|
    return 0;
 | 
						|
#else
 | 
						|
    return -ENOSYS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific breakpoint.  */
 | 
						|
int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | 
						|
        if (bp->pc == pc && bp->flags == flags) {
 | 
						|
            cpu_breakpoint_remove_by_ref(env, bp);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return -ENOENT;
 | 
						|
#else
 | 
						|
    return -ENOSYS;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Remove a specific breakpoint by reference.  */
 | 
						|
void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
 | 
						|
 | 
						|
    breakpoint_invalidate(env, breakpoint->pc);
 | 
						|
 | 
						|
    g_free(breakpoint);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Remove all matching breakpoints. */
 | 
						|
void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp, *next;
 | 
						|
 | 
						|
    QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
 | 
						|
        if (bp->flags & mask)
 | 
						|
            cpu_breakpoint_remove_by_ref(env, bp);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
 | 
						|
   CPU loop after each instruction */
 | 
						|
void cpu_single_step(CPUArchState *env, int enabled)
 | 
						|
{
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    if (env->singlestep_enabled != enabled) {
 | 
						|
        env->singlestep_enabled = enabled;
 | 
						|
        if (kvm_enabled())
 | 
						|
            kvm_update_guest_debug(env, 0);
 | 
						|
        else {
 | 
						|
            /* must flush all the translated code to avoid inconsistencies */
 | 
						|
            /* XXX: only flush what is necessary */
 | 
						|
            tb_flush(env);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void cpu_exit(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    cpu->exit_request = 1;
 | 
						|
    cpu->tcg_exit_req = 1;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_abort(CPUArchState *env, const char *fmt, ...)
 | 
						|
{
 | 
						|
    va_list ap;
 | 
						|
    va_list ap2;
 | 
						|
 | 
						|
    va_start(ap, fmt);
 | 
						|
    va_copy(ap2, ap);
 | 
						|
    fprintf(stderr, "qemu: fatal: ");
 | 
						|
    vfprintf(stderr, fmt, ap);
 | 
						|
    fprintf(stderr, "\n");
 | 
						|
    cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | 
						|
    if (qemu_log_enabled()) {
 | 
						|
        qemu_log("qemu: fatal: ");
 | 
						|
        qemu_log_vprintf(fmt, ap2);
 | 
						|
        qemu_log("\n");
 | 
						|
        log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | 
						|
        qemu_log_flush();
 | 
						|
        qemu_log_close();
 | 
						|
    }
 | 
						|
    va_end(ap2);
 | 
						|
    va_end(ap);
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
    {
 | 
						|
        struct sigaction act;
 | 
						|
        sigfillset(&act.sa_mask);
 | 
						|
        act.sa_handler = SIG_DFL;
 | 
						|
        sigaction(SIGABRT, &act, NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
CPUArchState *cpu_copy(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUArchState *new_env = cpu_init(env->cpu_model_str);
 | 
						|
    CPUArchState *next_cpu = new_env->next_cpu;
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    CPUBreakpoint *bp;
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
#endif
 | 
						|
 | 
						|
    memcpy(new_env, env, sizeof(CPUArchState));
 | 
						|
 | 
						|
    /* Preserve chaining. */
 | 
						|
    new_env->next_cpu = next_cpu;
 | 
						|
 | 
						|
    /* Clone all break/watchpoints.
 | 
						|
       Note: Once we support ptrace with hw-debug register access, make sure
 | 
						|
       BP_CPU break/watchpoints are handled correctly on clone. */
 | 
						|
    QTAILQ_INIT(&env->breakpoints);
 | 
						|
    QTAILQ_INIT(&env->watchpoints);
 | 
						|
#if defined(TARGET_HAS_ICE)
 | 
						|
    QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | 
						|
        cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
 | 
						|
    }
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
 | 
						|
                              wp->flags, NULL);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return new_env;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
 | 
						|
                                      uintptr_t length)
 | 
						|
{
 | 
						|
    uintptr_t start1;
 | 
						|
 | 
						|
    /* we modify the TLB cache so that the dirty bit will be set again
 | 
						|
       when accessing the range */
 | 
						|
    start1 = (uintptr_t)qemu_safe_ram_ptr(start);
 | 
						|
    /* Check that we don't span multiple blocks - this breaks the
 | 
						|
       address comparisons below.  */
 | 
						|
    if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
 | 
						|
            != (end - 1) - start) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    cpu_tlb_reset_dirty_all(start1, length);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* Note: start and end must be within the same ram block.  */
 | 
						|
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | 
						|
                                     int dirty_flags)
 | 
						|
{
 | 
						|
    uintptr_t length;
 | 
						|
 | 
						|
    start &= TARGET_PAGE_MASK;
 | 
						|
    end = TARGET_PAGE_ALIGN(end);
 | 
						|
 | 
						|
    length = end - start;
 | 
						|
    if (length == 0)
 | 
						|
        return;
 | 
						|
    cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
 | 
						|
 | 
						|
    if (tcg_enabled()) {
 | 
						|
        tlb_reset_dirty_range_all(start, end, length);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int cpu_physical_memory_set_dirty_tracking(int enable)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    in_migration = enable;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
hwaddr memory_region_section_get_iotlb(CPUArchState *env,
 | 
						|
                                                   MemoryRegionSection *section,
 | 
						|
                                                   target_ulong vaddr,
 | 
						|
                                                   hwaddr paddr,
 | 
						|
                                                   int prot,
 | 
						|
                                                   target_ulong *address)
 | 
						|
{
 | 
						|
    hwaddr iotlb;
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    if (memory_region_is_ram(section->mr)) {
 | 
						|
        /* Normal RAM.  */
 | 
						|
        iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, paddr);
 | 
						|
        if (!section->readonly) {
 | 
						|
            iotlb |= phys_section_notdirty;
 | 
						|
        } else {
 | 
						|
            iotlb |= phys_section_rom;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* IO handlers are currently passed a physical address.
 | 
						|
           It would be nice to pass an offset from the base address
 | 
						|
           of that region.  This would avoid having to special case RAM,
 | 
						|
           and avoid full address decoding in every device.
 | 
						|
           We can't use the high bits of pd for this because
 | 
						|
           IO_MEM_ROMD uses these as a ram address.  */
 | 
						|
        iotlb = section - phys_sections;
 | 
						|
        iotlb += memory_region_section_addr(section, paddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make accesses to pages with watchpoints go via the
 | 
						|
       watchpoint trap routines.  */
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
 | 
						|
            /* Avoid trapping reads of pages with a write breakpoint. */
 | 
						|
            if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
 | 
						|
                iotlb = phys_section_watch + paddr;
 | 
						|
                *address |= TLB_MMIO;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return iotlb;
 | 
						|
}
 | 
						|
#endif /* defined(CONFIG_USER_ONLY) */
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | 
						|
typedef struct subpage_t {
 | 
						|
    MemoryRegion iomem;
 | 
						|
    hwaddr base;
 | 
						|
    uint16_t sub_section[TARGET_PAGE_SIZE];
 | 
						|
} subpage_t;
 | 
						|
 | 
						|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | 
						|
                             uint16_t section);
 | 
						|
static subpage_t *subpage_init(hwaddr base);
 | 
						|
static void destroy_page_desc(uint16_t section_index)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section = &phys_sections[section_index];
 | 
						|
    MemoryRegion *mr = section->mr;
 | 
						|
 | 
						|
    if (mr->subpage) {
 | 
						|
        subpage_t *subpage = container_of(mr, subpage_t, iomem);
 | 
						|
        memory_region_destroy(&subpage->iomem);
 | 
						|
        g_free(subpage);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
 | 
						|
{
 | 
						|
    unsigned i;
 | 
						|
    PhysPageEntry *p;
 | 
						|
 | 
						|
    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    p = phys_map_nodes[lp->ptr];
 | 
						|
    for (i = 0; i < L2_SIZE; ++i) {
 | 
						|
        if (!p[i].is_leaf) {
 | 
						|
            destroy_l2_mapping(&p[i], level - 1);
 | 
						|
        } else {
 | 
						|
            destroy_page_desc(p[i].ptr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    lp->is_leaf = 0;
 | 
						|
    lp->ptr = PHYS_MAP_NODE_NIL;
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_all_mappings(AddressSpaceDispatch *d)
 | 
						|
{
 | 
						|
    destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
 | 
						|
    phys_map_nodes_reset();
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t phys_section_add(MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    if (phys_sections_nb == phys_sections_nb_alloc) {
 | 
						|
        phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
 | 
						|
        phys_sections = g_renew(MemoryRegionSection, phys_sections,
 | 
						|
                                phys_sections_nb_alloc);
 | 
						|
    }
 | 
						|
    phys_sections[phys_sections_nb] = *section;
 | 
						|
    return phys_sections_nb++;
 | 
						|
}
 | 
						|
 | 
						|
static void phys_sections_clear(void)
 | 
						|
{
 | 
						|
    phys_sections_nb = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    subpage_t *subpage;
 | 
						|
    hwaddr base = section->offset_within_address_space
 | 
						|
        & TARGET_PAGE_MASK;
 | 
						|
    MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
 | 
						|
    MemoryRegionSection subsection = {
 | 
						|
        .offset_within_address_space = base,
 | 
						|
        .size = TARGET_PAGE_SIZE,
 | 
						|
    };
 | 
						|
    hwaddr start, end;
 | 
						|
 | 
						|
    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 | 
						|
 | 
						|
    if (!(existing->mr->subpage)) {
 | 
						|
        subpage = subpage_init(base);
 | 
						|
        subsection.mr = &subpage->iomem;
 | 
						|
        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
 | 
						|
                      phys_section_add(&subsection));
 | 
						|
    } else {
 | 
						|
        subpage = container_of(existing->mr, subpage_t, iomem);
 | 
						|
    }
 | 
						|
    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
 | 
						|
    end = start + section->size - 1;
 | 
						|
    subpage_register(subpage, start, end, phys_section_add(section));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    hwaddr start_addr = section->offset_within_address_space;
 | 
						|
    ram_addr_t size = section->size;
 | 
						|
    hwaddr addr;
 | 
						|
    uint16_t section_index = phys_section_add(section);
 | 
						|
 | 
						|
    assert(size);
 | 
						|
 | 
						|
    addr = start_addr;
 | 
						|
    phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
 | 
						|
                  section_index);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
 | 
						|
    MemoryRegionSection now = *section, remain = *section;
 | 
						|
 | 
						|
    if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
 | 
						|
        || (now.size < TARGET_PAGE_SIZE)) {
 | 
						|
        now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
 | 
						|
                       - now.offset_within_address_space,
 | 
						|
                       now.size);
 | 
						|
        register_subpage(d, &now);
 | 
						|
        remain.size -= now.size;
 | 
						|
        remain.offset_within_address_space += now.size;
 | 
						|
        remain.offset_within_region += now.size;
 | 
						|
    }
 | 
						|
    while (remain.size >= TARGET_PAGE_SIZE) {
 | 
						|
        now = remain;
 | 
						|
        if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
 | 
						|
            now.size = TARGET_PAGE_SIZE;
 | 
						|
            register_subpage(d, &now);
 | 
						|
        } else {
 | 
						|
            now.size &= TARGET_PAGE_MASK;
 | 
						|
            register_multipage(d, &now);
 | 
						|
        }
 | 
						|
        remain.size -= now.size;
 | 
						|
        remain.offset_within_address_space += now.size;
 | 
						|
        remain.offset_within_region += now.size;
 | 
						|
    }
 | 
						|
    now = remain;
 | 
						|
    if (now.size) {
 | 
						|
        register_subpage(d, &now);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_flush_coalesced_mmio_buffer(void)
 | 
						|
{
 | 
						|
    if (kvm_enabled())
 | 
						|
        kvm_flush_coalesced_mmio_buffer();
 | 
						|
}
 | 
						|
 | 
						|
void qemu_mutex_lock_ramlist(void)
 | 
						|
{
 | 
						|
    qemu_mutex_lock(&ram_list.mutex);
 | 
						|
}
 | 
						|
 | 
						|
void qemu_mutex_unlock_ramlist(void)
 | 
						|
{
 | 
						|
    qemu_mutex_unlock(&ram_list.mutex);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__linux__) && !defined(TARGET_S390X)
 | 
						|
 | 
						|
#include <sys/vfs.h>
 | 
						|
 | 
						|
#define HUGETLBFS_MAGIC       0x958458f6
 | 
						|
 | 
						|
static long gethugepagesize(const char *path)
 | 
						|
{
 | 
						|
    struct statfs fs;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    do {
 | 
						|
        ret = statfs(path, &fs);
 | 
						|
    } while (ret != 0 && errno == EINTR);
 | 
						|
 | 
						|
    if (ret != 0) {
 | 
						|
        perror(path);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (fs.f_type != HUGETLBFS_MAGIC)
 | 
						|
        fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
 | 
						|
 | 
						|
    return fs.f_bsize;
 | 
						|
}
 | 
						|
 | 
						|
static void *file_ram_alloc(RAMBlock *block,
 | 
						|
                            ram_addr_t memory,
 | 
						|
                            const char *path)
 | 
						|
{
 | 
						|
    char *filename;
 | 
						|
    char *sanitized_name;
 | 
						|
    char *c;
 | 
						|
    void *area;
 | 
						|
    int fd;
 | 
						|
#ifdef MAP_POPULATE
 | 
						|
    int flags;
 | 
						|
#endif
 | 
						|
    unsigned long hpagesize;
 | 
						|
 | 
						|
    hpagesize = gethugepagesize(path);
 | 
						|
    if (!hpagesize) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (memory < hpagesize) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | 
						|
        fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Make name safe to use with mkstemp by replacing '/' with '_'. */
 | 
						|
    sanitized_name = g_strdup(block->mr->name);
 | 
						|
    for (c = sanitized_name; *c != '\0'; c++) {
 | 
						|
        if (*c == '/')
 | 
						|
            *c = '_';
 | 
						|
    }
 | 
						|
 | 
						|
    filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
 | 
						|
                               sanitized_name);
 | 
						|
    g_free(sanitized_name);
 | 
						|
 | 
						|
    fd = mkstemp(filename);
 | 
						|
    if (fd < 0) {
 | 
						|
        perror("unable to create backing store for hugepages");
 | 
						|
        g_free(filename);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    unlink(filename);
 | 
						|
    g_free(filename);
 | 
						|
 | 
						|
    memory = (memory+hpagesize-1) & ~(hpagesize-1);
 | 
						|
 | 
						|
    /*
 | 
						|
     * ftruncate is not supported by hugetlbfs in older
 | 
						|
     * hosts, so don't bother bailing out on errors.
 | 
						|
     * If anything goes wrong with it under other filesystems,
 | 
						|
     * mmap will fail.
 | 
						|
     */
 | 
						|
    if (ftruncate(fd, memory))
 | 
						|
        perror("ftruncate");
 | 
						|
 | 
						|
#ifdef MAP_POPULATE
 | 
						|
    /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
 | 
						|
     * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED
 | 
						|
     * to sidestep this quirk.
 | 
						|
     */
 | 
						|
    flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
 | 
						|
    area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
 | 
						|
#else
 | 
						|
    area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
 | 
						|
#endif
 | 
						|
    if (area == MAP_FAILED) {
 | 
						|
        perror("file_ram_alloc: can't mmap RAM pages");
 | 
						|
        close(fd);
 | 
						|
        return (NULL);
 | 
						|
    }
 | 
						|
    block->fd = fd;
 | 
						|
    return area;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static ram_addr_t find_ram_offset(ram_addr_t size)
 | 
						|
{
 | 
						|
    RAMBlock *block, *next_block;
 | 
						|
    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 | 
						|
 | 
						|
    assert(size != 0); /* it would hand out same offset multiple times */
 | 
						|
 | 
						|
    if (QTAILQ_EMPTY(&ram_list.blocks))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        ram_addr_t end, next = RAM_ADDR_MAX;
 | 
						|
 | 
						|
        end = block->offset + block->length;
 | 
						|
 | 
						|
        QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
 | 
						|
            if (next_block->offset >= end) {
 | 
						|
                next = MIN(next, next_block->offset);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (next - end >= size && next - end < mingap) {
 | 
						|
            offset = end;
 | 
						|
            mingap = next - end;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (offset == RAM_ADDR_MAX) {
 | 
						|
        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
 | 
						|
                (uint64_t)size);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
 | 
						|
    return offset;
 | 
						|
}
 | 
						|
 | 
						|
ram_addr_t last_ram_offset(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    ram_addr_t last = 0;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next)
 | 
						|
        last = MAX(last, block->offset + block->length);
 | 
						|
 | 
						|
    return last;
 | 
						|
}
 | 
						|
 | 
						|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    QemuOpts *machine_opts;
 | 
						|
 | 
						|
    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
 | 
						|
    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
 | 
						|
    if (machine_opts &&
 | 
						|
        !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
 | 
						|
        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
 | 
						|
        if (ret) {
 | 
						|
            perror("qemu_madvise");
 | 
						|
            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
 | 
						|
                            "but dump_guest_core=off specified\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
 | 
						|
{
 | 
						|
    RAMBlock *new_block, *block;
 | 
						|
 | 
						|
    new_block = NULL;
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (block->offset == addr) {
 | 
						|
            new_block = block;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    assert(new_block);
 | 
						|
    assert(!new_block->idstr[0]);
 | 
						|
 | 
						|
    if (dev) {
 | 
						|
        char *id = qdev_get_dev_path(dev);
 | 
						|
        if (id) {
 | 
						|
            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | 
						|
            g_free(id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | 
						|
 | 
						|
    /* This assumes the iothread lock is taken here too.  */
 | 
						|
    qemu_mutex_lock_ramlist();
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
 | 
						|
            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | 
						|
                    new_block->idstr);
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_mutex_unlock_ramlist();
 | 
						|
}
 | 
						|
 | 
						|
static int memory_try_enable_merging(void *addr, size_t len)
 | 
						|
{
 | 
						|
    QemuOpts *opts;
 | 
						|
 | 
						|
    opts = qemu_opts_find(qemu_find_opts("machine"), 0);
 | 
						|
    if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
 | 
						|
        /* disabled by the user */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
 | 
						|
}
 | 
						|
 | 
						|
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 | 
						|
                                   MemoryRegion *mr)
 | 
						|
{
 | 
						|
    RAMBlock *block, *new_block;
 | 
						|
 | 
						|
    size = TARGET_PAGE_ALIGN(size);
 | 
						|
    new_block = g_malloc0(sizeof(*new_block));
 | 
						|
 | 
						|
    /* This assumes the iothread lock is taken here too.  */
 | 
						|
    qemu_mutex_lock_ramlist();
 | 
						|
    new_block->mr = mr;
 | 
						|
    new_block->offset = find_ram_offset(size);
 | 
						|
    if (host) {
 | 
						|
        new_block->host = host;
 | 
						|
        new_block->flags |= RAM_PREALLOC_MASK;
 | 
						|
    } else {
 | 
						|
        if (mem_path) {
 | 
						|
#if defined (__linux__) && !defined(TARGET_S390X)
 | 
						|
            new_block->host = file_ram_alloc(new_block, size, mem_path);
 | 
						|
            if (!new_block->host) {
 | 
						|
                new_block->host = qemu_anon_ram_alloc(size);
 | 
						|
                memory_try_enable_merging(new_block->host, size);
 | 
						|
            }
 | 
						|
#else
 | 
						|
            fprintf(stderr, "-mem-path option unsupported\n");
 | 
						|
            exit(1);
 | 
						|
#endif
 | 
						|
        } else {
 | 
						|
            if (xen_enabled()) {
 | 
						|
                xen_ram_alloc(new_block->offset, size, mr);
 | 
						|
            } else if (kvm_enabled()) {
 | 
						|
                /* some s390/kvm configurations have special constraints */
 | 
						|
                new_block->host = kvm_ram_alloc(size);
 | 
						|
            } else {
 | 
						|
                new_block->host = qemu_anon_ram_alloc(size);
 | 
						|
            }
 | 
						|
            memory_try_enable_merging(new_block->host, size);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    new_block->length = size;
 | 
						|
 | 
						|
    /* Keep the list sorted from biggest to smallest block.  */
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (block->length < new_block->length) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (block) {
 | 
						|
        QTAILQ_INSERT_BEFORE(block, new_block, next);
 | 
						|
    } else {
 | 
						|
        QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
 | 
						|
    }
 | 
						|
    ram_list.mru_block = NULL;
 | 
						|
 | 
						|
    ram_list.version++;
 | 
						|
    qemu_mutex_unlock_ramlist();
 | 
						|
 | 
						|
    ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
 | 
						|
                                       last_ram_offset() >> TARGET_PAGE_BITS);
 | 
						|
    memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
 | 
						|
           0, size >> TARGET_PAGE_BITS);
 | 
						|
    cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
 | 
						|
 | 
						|
    qemu_ram_setup_dump(new_block->host, size);
 | 
						|
    qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
 | 
						|
 | 
						|
    if (kvm_enabled())
 | 
						|
        kvm_setup_guest_memory(new_block->host, size);
 | 
						|
 | 
						|
    return new_block->offset;
 | 
						|
}
 | 
						|
 | 
						|
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
 | 
						|
{
 | 
						|
    return qemu_ram_alloc_from_ptr(size, NULL, mr);
 | 
						|
}
 | 
						|
 | 
						|
void qemu_ram_free_from_ptr(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    /* This assumes the iothread lock is taken here too.  */
 | 
						|
    qemu_mutex_lock_ramlist();
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr == block->offset) {
 | 
						|
            QTAILQ_REMOVE(&ram_list.blocks, block, next);
 | 
						|
            ram_list.mru_block = NULL;
 | 
						|
            ram_list.version++;
 | 
						|
            g_free(block);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_mutex_unlock_ramlist();
 | 
						|
}
 | 
						|
 | 
						|
void qemu_ram_free(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    /* This assumes the iothread lock is taken here too.  */
 | 
						|
    qemu_mutex_lock_ramlist();
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr == block->offset) {
 | 
						|
            QTAILQ_REMOVE(&ram_list.blocks, block, next);
 | 
						|
            ram_list.mru_block = NULL;
 | 
						|
            ram_list.version++;
 | 
						|
            if (block->flags & RAM_PREALLOC_MASK) {
 | 
						|
                ;
 | 
						|
            } else if (mem_path) {
 | 
						|
#if defined (__linux__) && !defined(TARGET_S390X)
 | 
						|
                if (block->fd) {
 | 
						|
                    munmap(block->host, block->length);
 | 
						|
                    close(block->fd);
 | 
						|
                } else {
 | 
						|
                    qemu_anon_ram_free(block->host, block->length);
 | 
						|
                }
 | 
						|
#else
 | 
						|
                abort();
 | 
						|
#endif
 | 
						|
            } else {
 | 
						|
                if (xen_enabled()) {
 | 
						|
                    xen_invalidate_map_cache_entry(block->host);
 | 
						|
                } else {
 | 
						|
                    qemu_anon_ram_free(block->host, block->length);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            g_free(block);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_mutex_unlock_ramlist();
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifndef _WIN32
 | 
						|
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    ram_addr_t offset;
 | 
						|
    int flags;
 | 
						|
    void *area, *vaddr;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        offset = addr - block->offset;
 | 
						|
        if (offset < block->length) {
 | 
						|
            vaddr = block->host + offset;
 | 
						|
            if (block->flags & RAM_PREALLOC_MASK) {
 | 
						|
                ;
 | 
						|
            } else {
 | 
						|
                flags = MAP_FIXED;
 | 
						|
                munmap(vaddr, length);
 | 
						|
                if (mem_path) {
 | 
						|
#if defined(__linux__) && !defined(TARGET_S390X)
 | 
						|
                    if (block->fd) {
 | 
						|
#ifdef MAP_POPULATE
 | 
						|
                        flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
 | 
						|
                            MAP_PRIVATE;
 | 
						|
#else
 | 
						|
                        flags |= MAP_PRIVATE;
 | 
						|
#endif
 | 
						|
                        area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | 
						|
                                    flags, block->fd, offset);
 | 
						|
                    } else {
 | 
						|
                        flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | 
						|
                        area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | 
						|
                                    flags, -1, 0);
 | 
						|
                    }
 | 
						|
#else
 | 
						|
                    abort();
 | 
						|
#endif
 | 
						|
                } else {
 | 
						|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | 
						|
                    flags |= MAP_SHARED | MAP_ANONYMOUS;
 | 
						|
                    area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
 | 
						|
                                flags, -1, 0);
 | 
						|
#else
 | 
						|
                    flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | 
						|
                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | 
						|
                                flags, -1, 0);
 | 
						|
#endif
 | 
						|
                }
 | 
						|
                if (area != vaddr) {
 | 
						|
                    fprintf(stderr, "Could not remap addr: "
 | 
						|
                            RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
 | 
						|
                            length, addr);
 | 
						|
                    exit(1);
 | 
						|
                }
 | 
						|
                memory_try_enable_merging(vaddr, length);
 | 
						|
                qemu_ram_setup_dump(vaddr, length);
 | 
						|
            }
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* !_WIN32 */
 | 
						|
 | 
						|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
 | 
						|
   With the exception of the softmmu code in this file, this should
 | 
						|
   only be used for local memory (e.g. video ram) that the device owns,
 | 
						|
   and knows it isn't going to access beyond the end of the block.
 | 
						|
 | 
						|
   It should not be used for general purpose DMA.
 | 
						|
   Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
 | 
						|
 */
 | 
						|
void *qemu_get_ram_ptr(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    /* The list is protected by the iothread lock here.  */
 | 
						|
    block = ram_list.mru_block;
 | 
						|
    if (block && addr - block->offset < block->length) {
 | 
						|
        goto found;
 | 
						|
    }
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr - block->offset < block->length) {
 | 
						|
            goto found;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | 
						|
    abort();
 | 
						|
 | 
						|
found:
 | 
						|
    ram_list.mru_block = block;
 | 
						|
    if (xen_enabled()) {
 | 
						|
        /* We need to check if the requested address is in the RAM
 | 
						|
         * because we don't want to map the entire memory in QEMU.
 | 
						|
         * In that case just map until the end of the page.
 | 
						|
         */
 | 
						|
        if (block->offset == 0) {
 | 
						|
            return xen_map_cache(addr, 0, 0);
 | 
						|
        } else if (block->host == NULL) {
 | 
						|
            block->host =
 | 
						|
                xen_map_cache(block->offset, block->length, 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return block->host + (addr - block->offset);
 | 
						|
}
 | 
						|
 | 
						|
/* Return a host pointer to ram allocated with qemu_ram_alloc.  Same as
 | 
						|
 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
 | 
						|
 *
 | 
						|
 * ??? Is this still necessary?
 | 
						|
 */
 | 
						|
static void *qemu_safe_ram_ptr(ram_addr_t addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    /* The list is protected by the iothread lock here.  */
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        if (addr - block->offset < block->length) {
 | 
						|
            if (xen_enabled()) {
 | 
						|
                /* We need to check if the requested address is in the RAM
 | 
						|
                 * because we don't want to map the entire memory in QEMU.
 | 
						|
                 * In that case just map until the end of the page.
 | 
						|
                 */
 | 
						|
                if (block->offset == 0) {
 | 
						|
                    return xen_map_cache(addr, 0, 0);
 | 
						|
                } else if (block->host == NULL) {
 | 
						|
                    block->host =
 | 
						|
                        xen_map_cache(block->offset, block->length, 1);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return block->host + (addr - block->offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | 
						|
    abort();
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
 | 
						|
 * but takes a size argument */
 | 
						|
static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
 | 
						|
{
 | 
						|
    if (*size == 0) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (xen_enabled()) {
 | 
						|
        return xen_map_cache(addr, *size, 1);
 | 
						|
    } else {
 | 
						|
        RAMBlock *block;
 | 
						|
 | 
						|
        QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
            if (addr - block->offset < block->length) {
 | 
						|
                if (addr - block->offset + *size > block->length)
 | 
						|
                    *size = block->length - addr + block->offset;
 | 
						|
                return block->host + (addr - block->offset);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void qemu_put_ram_ptr(void *addr)
 | 
						|
{
 | 
						|
    trace_qemu_put_ram_ptr(addr);
 | 
						|
}
 | 
						|
 | 
						|
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    uint8_t *host = ptr;
 | 
						|
 | 
						|
    if (xen_enabled()) {
 | 
						|
        *ram_addr = xen_ram_addr_from_mapcache(ptr);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    QTAILQ_FOREACH(block, &ram_list.blocks, next) {
 | 
						|
        /* This case append when the block is not mapped. */
 | 
						|
        if (block->host == NULL) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        if (host - block->host < block->length) {
 | 
						|
            *ram_addr = block->offset + (host - block->host);
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Some of the softmmu routines need to translate from a host pointer
 | 
						|
   (typically a TLB entry) back to a ram offset.  */
 | 
						|
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
 | 
						|
    if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
 | 
						|
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    return ram_addr;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
 | 
						|
                                    unsigned size)
 | 
						|
{
 | 
						|
#ifdef DEBUG_UNASSIGNED
 | 
						|
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | 
						|
#endif
 | 
						|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | 
						|
    cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void unassigned_mem_write(void *opaque, hwaddr addr,
 | 
						|
                                 uint64_t val, unsigned size)
 | 
						|
{
 | 
						|
#ifdef DEBUG_UNASSIGNED
 | 
						|
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
 | 
						|
#endif
 | 
						|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | 
						|
    cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps unassigned_mem_ops = {
 | 
						|
    .read = unassigned_mem_read,
 | 
						|
    .write = unassigned_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t error_mem_read(void *opaque, hwaddr addr,
 | 
						|
                               unsigned size)
 | 
						|
{
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
static void error_mem_write(void *opaque, hwaddr addr,
 | 
						|
                            uint64_t value, unsigned size)
 | 
						|
{
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps error_mem_ops = {
 | 
						|
    .read = error_mem_read,
 | 
						|
    .write = error_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static const MemoryRegionOps rom_mem_ops = {
 | 
						|
    .read = error_mem_read,
 | 
						|
    .write = unassigned_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
 | 
						|
                               uint64_t val, unsigned size)
 | 
						|
{
 | 
						|
    int dirty_flags;
 | 
						|
    dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | 
						|
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
        tb_invalidate_phys_page_fast(ram_addr, size);
 | 
						|
        dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    switch (size) {
 | 
						|
    case 1:
 | 
						|
        stb_p(qemu_get_ram_ptr(ram_addr), val);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        stw_p(qemu_get_ram_ptr(ram_addr), val);
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        stl_p(qemu_get_ram_ptr(ram_addr), val);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | 
						|
    cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | 
						|
    /* we remove the notdirty callback only if the code has been
 | 
						|
       flushed */
 | 
						|
    if (dirty_flags == 0xff)
 | 
						|
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps notdirty_mem_ops = {
 | 
						|
    .read = error_mem_read,
 | 
						|
    .write = notdirty_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
/* Generate a debug exception if a watchpoint has been hit.  */
 | 
						|
static void check_watchpoint(int offset, int len_mask, int flags)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu_single_env;
 | 
						|
    target_ulong pc, cs_base;
 | 
						|
    target_ulong vaddr;
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
    int cpu_flags;
 | 
						|
 | 
						|
    if (env->watchpoint_hit) {
 | 
						|
        /* We re-entered the check after replacing the TB. Now raise
 | 
						|
         * the debug interrupt so that is will trigger after the
 | 
						|
         * current instruction. */
 | 
						|
        cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | 
						|
    QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | 
						|
        if ((vaddr == (wp->vaddr & len_mask) ||
 | 
						|
             (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
 | 
						|
            wp->flags |= BP_WATCHPOINT_HIT;
 | 
						|
            if (!env->watchpoint_hit) {
 | 
						|
                env->watchpoint_hit = wp;
 | 
						|
                tb_check_watchpoint(env);
 | 
						|
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 | 
						|
                    env->exception_index = EXCP_DEBUG;
 | 
						|
                    cpu_loop_exit(env);
 | 
						|
                } else {
 | 
						|
                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
 | 
						|
                    tb_gen_code(env, pc, cs_base, cpu_flags, 1);
 | 
						|
                    cpu_resume_from_signal(env, NULL);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            wp->flags &= ~BP_WATCHPOINT_HIT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | 
						|
   so these check for a hit then pass through to the normal out-of-line
 | 
						|
   phys routines.  */
 | 
						|
static uint64_t watch_mem_read(void *opaque, hwaddr addr,
 | 
						|
                               unsigned size)
 | 
						|
{
 | 
						|
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
 | 
						|
    switch (size) {
 | 
						|
    case 1: return ldub_phys(addr);
 | 
						|
    case 2: return lduw_phys(addr);
 | 
						|
    case 4: return ldl_phys(addr);
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void watch_mem_write(void *opaque, hwaddr addr,
 | 
						|
                            uint64_t val, unsigned size)
 | 
						|
{
 | 
						|
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
 | 
						|
    switch (size) {
 | 
						|
    case 1:
 | 
						|
        stb_phys(addr, val);
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        stw_phys(addr, val);
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        stl_phys(addr, val);
 | 
						|
        break;
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps watch_mem_ops = {
 | 
						|
    .read = watch_mem_read,
 | 
						|
    .write = watch_mem_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t subpage_read(void *opaque, hwaddr addr,
 | 
						|
                             unsigned len)
 | 
						|
{
 | 
						|
    subpage_t *mmio = opaque;
 | 
						|
    unsigned int idx = SUBPAGE_IDX(addr);
 | 
						|
    MemoryRegionSection *section;
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
 | 
						|
           mmio, len, addr, idx);
 | 
						|
#endif
 | 
						|
 | 
						|
    section = &phys_sections[mmio->sub_section[idx]];
 | 
						|
    addr += mmio->base;
 | 
						|
    addr -= section->offset_within_address_space;
 | 
						|
    addr += section->offset_within_region;
 | 
						|
    return io_mem_read(section->mr, addr, len);
 | 
						|
}
 | 
						|
 | 
						|
static void subpage_write(void *opaque, hwaddr addr,
 | 
						|
                          uint64_t value, unsigned len)
 | 
						|
{
 | 
						|
    subpage_t *mmio = opaque;
 | 
						|
    unsigned int idx = SUBPAGE_IDX(addr);
 | 
						|
    MemoryRegionSection *section;
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx
 | 
						|
           " idx %d value %"PRIx64"\n",
 | 
						|
           __func__, mmio, len, addr, idx, value);
 | 
						|
#endif
 | 
						|
 | 
						|
    section = &phys_sections[mmio->sub_section[idx]];
 | 
						|
    addr += mmio->base;
 | 
						|
    addr -= section->offset_within_address_space;
 | 
						|
    addr += section->offset_within_region;
 | 
						|
    io_mem_write(section->mr, addr, value, len);
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps subpage_ops = {
 | 
						|
    .read = subpage_read,
 | 
						|
    .write = subpage_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
 | 
						|
                                 unsigned size)
 | 
						|
{
 | 
						|
    ram_addr_t raddr = addr;
 | 
						|
    void *ptr = qemu_get_ram_ptr(raddr);
 | 
						|
    switch (size) {
 | 
						|
    case 1: return ldub_p(ptr);
 | 
						|
    case 2: return lduw_p(ptr);
 | 
						|
    case 4: return ldl_p(ptr);
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void subpage_ram_write(void *opaque, hwaddr addr,
 | 
						|
                              uint64_t value, unsigned size)
 | 
						|
{
 | 
						|
    ram_addr_t raddr = addr;
 | 
						|
    void *ptr = qemu_get_ram_ptr(raddr);
 | 
						|
    switch (size) {
 | 
						|
    case 1: return stb_p(ptr, value);
 | 
						|
    case 2: return stw_p(ptr, value);
 | 
						|
    case 4: return stl_p(ptr, value);
 | 
						|
    default: abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps subpage_ram_ops = {
 | 
						|
    .read = subpage_ram_read,
 | 
						|
    .write = subpage_ram_write,
 | 
						|
    .endianness = DEVICE_NATIVE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | 
						|
                             uint16_t section)
 | 
						|
{
 | 
						|
    int idx, eidx;
 | 
						|
 | 
						|
    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | 
						|
        return -1;
 | 
						|
    idx = SUBPAGE_IDX(start);
 | 
						|
    eidx = SUBPAGE_IDX(end);
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
 | 
						|
           mmio, start, end, idx, eidx, memory);
 | 
						|
#endif
 | 
						|
    if (memory_region_is_ram(phys_sections[section].mr)) {
 | 
						|
        MemoryRegionSection new_section = phys_sections[section];
 | 
						|
        new_section.mr = &io_mem_subpage_ram;
 | 
						|
        section = phys_section_add(&new_section);
 | 
						|
    }
 | 
						|
    for (; idx <= eidx; idx++) {
 | 
						|
        mmio->sub_section[idx] = section;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static subpage_t *subpage_init(hwaddr base)
 | 
						|
{
 | 
						|
    subpage_t *mmio;
 | 
						|
 | 
						|
    mmio = g_malloc0(sizeof(subpage_t));
 | 
						|
 | 
						|
    mmio->base = base;
 | 
						|
    memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
 | 
						|
                          "subpage", TARGET_PAGE_SIZE);
 | 
						|
    mmio->iomem.subpage = true;
 | 
						|
#if defined(DEBUG_SUBPAGE)
 | 
						|
    printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
 | 
						|
           mmio, base, TARGET_PAGE_SIZE, subpage_memory);
 | 
						|
#endif
 | 
						|
    subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
 | 
						|
 | 
						|
    return mmio;
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t dummy_section(MemoryRegion *mr)
 | 
						|
{
 | 
						|
    MemoryRegionSection section = {
 | 
						|
        .mr = mr,
 | 
						|
        .offset_within_address_space = 0,
 | 
						|
        .offset_within_region = 0,
 | 
						|
        .size = UINT64_MAX,
 | 
						|
    };
 | 
						|
 | 
						|
    return phys_section_add(§ion);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegion *iotlb_to_region(hwaddr index)
 | 
						|
{
 | 
						|
    return phys_sections[index & ~TARGET_PAGE_MASK].mr;
 | 
						|
}
 | 
						|
 | 
						|
static void io_mem_init(void)
 | 
						|
{
 | 
						|
    memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
 | 
						|
                          "unassigned", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
 | 
						|
                          "notdirty", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
 | 
						|
                          "subpage-ram", UINT64_MAX);
 | 
						|
    memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
 | 
						|
                          "watch", UINT64_MAX);
 | 
						|
}
 | 
						|
 | 
						|
static void mem_begin(MemoryListener *listener)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
 | 
						|
 | 
						|
    destroy_all_mappings(d);
 | 
						|
    d->phys_map.ptr = PHYS_MAP_NODE_NIL;
 | 
						|
}
 | 
						|
 | 
						|
static void core_begin(MemoryListener *listener)
 | 
						|
{
 | 
						|
    phys_sections_clear();
 | 
						|
    phys_section_unassigned = dummy_section(&io_mem_unassigned);
 | 
						|
    phys_section_notdirty = dummy_section(&io_mem_notdirty);
 | 
						|
    phys_section_rom = dummy_section(&io_mem_rom);
 | 
						|
    phys_section_watch = dummy_section(&io_mem_watch);
 | 
						|
}
 | 
						|
 | 
						|
static void tcg_commit(MemoryListener *listener)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
 | 
						|
    /* since each CPU stores ram addresses in its TLB cache, we must
 | 
						|
       reset the modified entries */
 | 
						|
    /* XXX: slow ! */
 | 
						|
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        tlb_flush(env, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void core_log_global_start(MemoryListener *listener)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_tracking(1);
 | 
						|
}
 | 
						|
 | 
						|
static void core_log_global_stop(MemoryListener *listener)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_tracking(0);
 | 
						|
}
 | 
						|
 | 
						|
static void io_region_add(MemoryListener *listener,
 | 
						|
                          MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
 | 
						|
 | 
						|
    mrio->mr = section->mr;
 | 
						|
    mrio->offset = section->offset_within_region;
 | 
						|
    iorange_init(&mrio->iorange, &memory_region_iorange_ops,
 | 
						|
                 section->offset_within_address_space, section->size);
 | 
						|
    ioport_register(&mrio->iorange);
 | 
						|
}
 | 
						|
 | 
						|
static void io_region_del(MemoryListener *listener,
 | 
						|
                          MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    isa_unassign_ioport(section->offset_within_address_space, section->size);
 | 
						|
}
 | 
						|
 | 
						|
static MemoryListener core_memory_listener = {
 | 
						|
    .begin = core_begin,
 | 
						|
    .log_global_start = core_log_global_start,
 | 
						|
    .log_global_stop = core_log_global_stop,
 | 
						|
    .priority = 1,
 | 
						|
};
 | 
						|
 | 
						|
static MemoryListener io_memory_listener = {
 | 
						|
    .region_add = io_region_add,
 | 
						|
    .region_del = io_region_del,
 | 
						|
    .priority = 0,
 | 
						|
};
 | 
						|
 | 
						|
static MemoryListener tcg_memory_listener = {
 | 
						|
    .commit = tcg_commit,
 | 
						|
};
 | 
						|
 | 
						|
void address_space_init_dispatch(AddressSpace *as)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
 | 
						|
 | 
						|
    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
 | 
						|
    d->listener = (MemoryListener) {
 | 
						|
        .begin = mem_begin,
 | 
						|
        .region_add = mem_add,
 | 
						|
        .region_nop = mem_add,
 | 
						|
        .priority = 0,
 | 
						|
    };
 | 
						|
    as->dispatch = d;
 | 
						|
    memory_listener_register(&d->listener, as);
 | 
						|
}
 | 
						|
 | 
						|
void address_space_destroy_dispatch(AddressSpace *as)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = as->dispatch;
 | 
						|
 | 
						|
    memory_listener_unregister(&d->listener);
 | 
						|
    destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
 | 
						|
    g_free(d);
 | 
						|
    as->dispatch = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void memory_map_init(void)
 | 
						|
{
 | 
						|
    system_memory = g_malloc(sizeof(*system_memory));
 | 
						|
    memory_region_init(system_memory, "system", INT64_MAX);
 | 
						|
    address_space_init(&address_space_memory, system_memory);
 | 
						|
    address_space_memory.name = "memory";
 | 
						|
 | 
						|
    system_io = g_malloc(sizeof(*system_io));
 | 
						|
    memory_region_init(system_io, "io", 65536);
 | 
						|
    address_space_init(&address_space_io, system_io);
 | 
						|
    address_space_io.name = "I/O";
 | 
						|
 | 
						|
    memory_listener_register(&core_memory_listener, &address_space_memory);
 | 
						|
    memory_listener_register(&io_memory_listener, &address_space_io);
 | 
						|
    memory_listener_register(&tcg_memory_listener, &address_space_memory);
 | 
						|
 | 
						|
    dma_context_init(&dma_context_memory, &address_space_memory,
 | 
						|
                     NULL, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegion *get_system_memory(void)
 | 
						|
{
 | 
						|
    return system_memory;
 | 
						|
}
 | 
						|
 | 
						|
MemoryRegion *get_system_io(void)
 | 
						|
{
 | 
						|
    return system_io;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* !defined(CONFIG_USER_ONLY) */
 | 
						|
 | 
						|
/* physical memory access (slow version, mainly for debug) */
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | 
						|
                        uint8_t *buf, int len, int is_write)
 | 
						|
{
 | 
						|
    int l, flags;
 | 
						|
    target_ulong page;
 | 
						|
    void * p;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        flags = page_get_flags(page);
 | 
						|
        if (!(flags & PAGE_VALID))
 | 
						|
            return -1;
 | 
						|
        if (is_write) {
 | 
						|
            if (!(flags & PAGE_WRITE))
 | 
						|
                return -1;
 | 
						|
            /* XXX: this code should not depend on lock_user */
 | 
						|
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | 
						|
                return -1;
 | 
						|
            memcpy(p, buf, l);
 | 
						|
            unlock_user(p, addr, l);
 | 
						|
        } else {
 | 
						|
            if (!(flags & PAGE_READ))
 | 
						|
                return -1;
 | 
						|
            /* XXX: this code should not depend on lock_user */
 | 
						|
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | 
						|
                return -1;
 | 
						|
            memcpy(buf, p, l);
 | 
						|
            unlock_user(p, addr, 0);
 | 
						|
        }
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
static void invalidate_and_set_dirty(hwaddr addr,
 | 
						|
                                     hwaddr length)
 | 
						|
{
 | 
						|
    if (!cpu_physical_memory_is_dirty(addr)) {
 | 
						|
        /* invalidate code */
 | 
						|
        tb_invalidate_phys_page_range(addr, addr + length, 0);
 | 
						|
        /* set dirty bit */
 | 
						|
        cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
 | 
						|
    }
 | 
						|
    xen_modified_memory(addr, length);
 | 
						|
}
 | 
						|
 | 
						|
void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
 | 
						|
                      int len, bool is_write)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = as->dispatch;
 | 
						|
    int l;
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint32_t val;
 | 
						|
    hwaddr page;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        section = phys_page_find(d, page >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
        if (is_write) {
 | 
						|
            if (!memory_region_is_ram(section->mr)) {
 | 
						|
                hwaddr addr1;
 | 
						|
                addr1 = memory_region_section_addr(section, addr);
 | 
						|
                /* XXX: could force cpu_single_env to NULL to avoid
 | 
						|
                   potential bugs */
 | 
						|
                if (l >= 4 && ((addr1 & 3) == 0)) {
 | 
						|
                    /* 32 bit write access */
 | 
						|
                    val = ldl_p(buf);
 | 
						|
                    io_mem_write(section->mr, addr1, val, 4);
 | 
						|
                    l = 4;
 | 
						|
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | 
						|
                    /* 16 bit write access */
 | 
						|
                    val = lduw_p(buf);
 | 
						|
                    io_mem_write(section->mr, addr1, val, 2);
 | 
						|
                    l = 2;
 | 
						|
                } else {
 | 
						|
                    /* 8 bit write access */
 | 
						|
                    val = ldub_p(buf);
 | 
						|
                    io_mem_write(section->mr, addr1, val, 1);
 | 
						|
                    l = 1;
 | 
						|
                }
 | 
						|
            } else if (!section->readonly) {
 | 
						|
                ram_addr_t addr1;
 | 
						|
                addr1 = memory_region_get_ram_addr(section->mr)
 | 
						|
                    + memory_region_section_addr(section, addr);
 | 
						|
                /* RAM case */
 | 
						|
                ptr = qemu_get_ram_ptr(addr1);
 | 
						|
                memcpy(ptr, buf, l);
 | 
						|
                invalidate_and_set_dirty(addr1, l);
 | 
						|
                qemu_put_ram_ptr(ptr);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (!(memory_region_is_ram(section->mr) ||
 | 
						|
                  memory_region_is_romd(section->mr))) {
 | 
						|
                hwaddr addr1;
 | 
						|
                /* I/O case */
 | 
						|
                addr1 = memory_region_section_addr(section, addr);
 | 
						|
                if (l >= 4 && ((addr1 & 3) == 0)) {
 | 
						|
                    /* 32 bit read access */
 | 
						|
                    val = io_mem_read(section->mr, addr1, 4);
 | 
						|
                    stl_p(buf, val);
 | 
						|
                    l = 4;
 | 
						|
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | 
						|
                    /* 16 bit read access */
 | 
						|
                    val = io_mem_read(section->mr, addr1, 2);
 | 
						|
                    stw_p(buf, val);
 | 
						|
                    l = 2;
 | 
						|
                } else {
 | 
						|
                    /* 8 bit read access */
 | 
						|
                    val = io_mem_read(section->mr, addr1, 1);
 | 
						|
                    stb_p(buf, val);
 | 
						|
                    l = 1;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                /* RAM case */
 | 
						|
                ptr = qemu_get_ram_ptr(section->mr->ram_addr
 | 
						|
                                       + memory_region_section_addr(section,
 | 
						|
                                                                    addr));
 | 
						|
                memcpy(buf, ptr, l);
 | 
						|
                qemu_put_ram_ptr(ptr);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void address_space_write(AddressSpace *as, hwaddr addr,
 | 
						|
                         const uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    address_space_rw(as, addr, (uint8_t *)buf, len, true);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * address_space_read: read from an address space.
 | 
						|
 *
 | 
						|
 * @as: #AddressSpace to be accessed
 | 
						|
 * @addr: address within that address space
 | 
						|
 * @buf: buffer with the data transferred
 | 
						|
 */
 | 
						|
void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    address_space_rw(as, addr, buf, len, false);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
 | 
						|
                            int len, int is_write)
 | 
						|
{
 | 
						|
    return address_space_rw(&address_space_memory, addr, buf, len, is_write);
 | 
						|
}
 | 
						|
 | 
						|
/* used for ROM loading : can write in RAM and ROM */
 | 
						|
void cpu_physical_memory_write_rom(hwaddr addr,
 | 
						|
                                   const uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = address_space_memory.dispatch;
 | 
						|
    int l;
 | 
						|
    uint8_t *ptr;
 | 
						|
    hwaddr page;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        section = phys_page_find(d, page >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
        if (!(memory_region_is_ram(section->mr) ||
 | 
						|
              memory_region_is_romd(section->mr))) {
 | 
						|
            /* do nothing */
 | 
						|
        } else {
 | 
						|
            unsigned long addr1;
 | 
						|
            addr1 = memory_region_get_ram_addr(section->mr)
 | 
						|
                + memory_region_section_addr(section, addr);
 | 
						|
            /* ROM/RAM case */
 | 
						|
            ptr = qemu_get_ram_ptr(addr1);
 | 
						|
            memcpy(ptr, buf, l);
 | 
						|
            invalidate_and_set_dirty(addr1, l);
 | 
						|
            qemu_put_ram_ptr(ptr);
 | 
						|
        }
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    void *buffer;
 | 
						|
    hwaddr addr;
 | 
						|
    hwaddr len;
 | 
						|
} BounceBuffer;
 | 
						|
 | 
						|
static BounceBuffer bounce;
 | 
						|
 | 
						|
typedef struct MapClient {
 | 
						|
    void *opaque;
 | 
						|
    void (*callback)(void *opaque);
 | 
						|
    QLIST_ENTRY(MapClient) link;
 | 
						|
} MapClient;
 | 
						|
 | 
						|
static QLIST_HEAD(map_client_list, MapClient) map_client_list
 | 
						|
    = QLIST_HEAD_INITIALIZER(map_client_list);
 | 
						|
 | 
						|
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
 | 
						|
{
 | 
						|
    MapClient *client = g_malloc(sizeof(*client));
 | 
						|
 | 
						|
    client->opaque = opaque;
 | 
						|
    client->callback = callback;
 | 
						|
    QLIST_INSERT_HEAD(&map_client_list, client, link);
 | 
						|
    return client;
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_unregister_map_client(void *_client)
 | 
						|
{
 | 
						|
    MapClient *client = (MapClient *)_client;
 | 
						|
 | 
						|
    QLIST_REMOVE(client, link);
 | 
						|
    g_free(client);
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_notify_map_clients(void)
 | 
						|
{
 | 
						|
    MapClient *client;
 | 
						|
 | 
						|
    while (!QLIST_EMPTY(&map_client_list)) {
 | 
						|
        client = QLIST_FIRST(&map_client_list);
 | 
						|
        client->callback(client->opaque);
 | 
						|
        cpu_unregister_map_client(client);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Map a physical memory region into a host virtual address.
 | 
						|
 * May map a subset of the requested range, given by and returned in *plen.
 | 
						|
 * May return NULL if resources needed to perform the mapping are exhausted.
 | 
						|
 * Use only for reads OR writes - not for read-modify-write operations.
 | 
						|
 * Use cpu_register_map_client() to know when retrying the map operation is
 | 
						|
 * likely to succeed.
 | 
						|
 */
 | 
						|
void *address_space_map(AddressSpace *as,
 | 
						|
                        hwaddr addr,
 | 
						|
                        hwaddr *plen,
 | 
						|
                        bool is_write)
 | 
						|
{
 | 
						|
    AddressSpaceDispatch *d = as->dispatch;
 | 
						|
    hwaddr len = *plen;
 | 
						|
    hwaddr todo = 0;
 | 
						|
    int l;
 | 
						|
    hwaddr page;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    ram_addr_t raddr = RAM_ADDR_MAX;
 | 
						|
    ram_addr_t rlen;
 | 
						|
    void *ret;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        section = phys_page_find(d, page >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
        if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
 | 
						|
            if (todo || bounce.buffer) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
 | 
						|
            bounce.addr = addr;
 | 
						|
            bounce.len = l;
 | 
						|
            if (!is_write) {
 | 
						|
                address_space_read(as, addr, bounce.buffer, l);
 | 
						|
            }
 | 
						|
 | 
						|
            *plen = l;
 | 
						|
            return bounce.buffer;
 | 
						|
        }
 | 
						|
        if (!todo) {
 | 
						|
            raddr = memory_region_get_ram_addr(section->mr)
 | 
						|
                + memory_region_section_addr(section, addr);
 | 
						|
        }
 | 
						|
 | 
						|
        len -= l;
 | 
						|
        addr += l;
 | 
						|
        todo += l;
 | 
						|
    }
 | 
						|
    rlen = todo;
 | 
						|
    ret = qemu_ram_ptr_length(raddr, &rlen);
 | 
						|
    *plen = rlen;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Unmaps a memory region previously mapped by address_space_map().
 | 
						|
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 | 
						|
 * the amount of memory that was actually read or written by the caller.
 | 
						|
 */
 | 
						|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 | 
						|
                         int is_write, hwaddr access_len)
 | 
						|
{
 | 
						|
    if (buffer != bounce.buffer) {
 | 
						|
        if (is_write) {
 | 
						|
            ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
 | 
						|
            while (access_len) {
 | 
						|
                unsigned l;
 | 
						|
                l = TARGET_PAGE_SIZE;
 | 
						|
                if (l > access_len)
 | 
						|
                    l = access_len;
 | 
						|
                invalidate_and_set_dirty(addr1, l);
 | 
						|
                addr1 += l;
 | 
						|
                access_len -= l;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (xen_enabled()) {
 | 
						|
            xen_invalidate_map_cache_entry(buffer);
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (is_write) {
 | 
						|
        address_space_write(as, bounce.addr, bounce.buffer, access_len);
 | 
						|
    }
 | 
						|
    qemu_vfree(bounce.buffer);
 | 
						|
    bounce.buffer = NULL;
 | 
						|
    cpu_notify_map_clients();
 | 
						|
}
 | 
						|
 | 
						|
void *cpu_physical_memory_map(hwaddr addr,
 | 
						|
                              hwaddr *plen,
 | 
						|
                              int is_write)
 | 
						|
{
 | 
						|
    return address_space_map(&address_space_memory, addr, plen, is_write);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
 | 
						|
                               int is_write, hwaddr access_len)
 | 
						|
{
 | 
						|
    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline uint32_t ldl_phys_internal(hwaddr addr,
 | 
						|
                                         enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint32_t val;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* I/O case */
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        val = io_mem_read(section->mr, addr, 4);
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            val = ldl_le_p(ptr);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            val = ldl_be_p(ptr);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            val = ldl_p(ptr);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ldl_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ldl_le_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ldl_be_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline uint64_t ldq_phys_internal(hwaddr addr,
 | 
						|
                                         enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint64_t val;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* I/O case */
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
 | 
						|
        /* XXX This is broken when device endian != cpu endian.
 | 
						|
               Fix and add "endian" variable check */
 | 
						|
#ifdef TARGET_WORDS_BIGENDIAN
 | 
						|
        val = io_mem_read(section->mr, addr, 4) << 32;
 | 
						|
        val |= io_mem_read(section->mr, addr + 4, 4);
 | 
						|
#else
 | 
						|
        val = io_mem_read(section->mr, addr, 4);
 | 
						|
        val |= io_mem_read(section->mr, addr + 4, 4) << 32;
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            val = ldq_le_p(ptr);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            val = ldq_be_p(ptr);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            val = ldq_p(ptr);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ldq_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ldq_le_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ldq_be_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: optimize */
 | 
						|
uint32_t ldub_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    uint8_t val;
 | 
						|
    cpu_physical_memory_read(addr, &val, 1);
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline uint32_t lduw_phys_internal(hwaddr addr,
 | 
						|
                                          enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    uint64_t val;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!(memory_region_is_ram(section->mr) ||
 | 
						|
          memory_region_is_romd(section->mr))) {
 | 
						|
        /* I/O case */
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        val = io_mem_read(section->mr, addr, 2);
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            val = lduw_le_p(ptr);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            val = lduw_be_p(ptr);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            val = lduw_p(ptr);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t lduw_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t lduw_le_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t lduw_be_phys(hwaddr addr)
 | 
						|
{
 | 
						|
    return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned. The ram page is not masked as dirty
 | 
						|
   and the code inside is not invalidated. It is useful if the dirty
 | 
						|
   bits are used to track modified PTEs */
 | 
						|
void stl_phys_notdirty(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
        io_mem_write(section->mr, addr, val, 4);
 | 
						|
    } else {
 | 
						|
        unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
 | 
						|
                               & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, addr);
 | 
						|
        ptr = qemu_get_ram_ptr(addr1);
 | 
						|
        stl_p(ptr, val);
 | 
						|
 | 
						|
        if (unlikely(in_migration)) {
 | 
						|
            if (!cpu_physical_memory_is_dirty(addr1)) {
 | 
						|
                /* invalidate code */
 | 
						|
                tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | 
						|
                /* set dirty bit */
 | 
						|
                cpu_physical_memory_set_dirty_flags(
 | 
						|
                    addr1, (0xff & ~CODE_DIRTY_FLAG));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stq_phys_notdirty(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
#ifdef TARGET_WORDS_BIGENDIAN
 | 
						|
        io_mem_write(section->mr, addr, val >> 32, 4);
 | 
						|
        io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
 | 
						|
#else
 | 
						|
        io_mem_write(section->mr, addr, (uint32_t)val, 4);
 | 
						|
        io_mem_write(section->mr, addr + 4, val >> 32, 4);
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
 | 
						|
                                & TARGET_PAGE_MASK)
 | 
						|
                               + memory_region_section_addr(section, addr));
 | 
						|
        stq_p(ptr, val);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline void stl_phys_internal(hwaddr addr, uint32_t val,
 | 
						|
                                     enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap32(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        io_mem_write(section->mr, addr, val, 4);
 | 
						|
    } else {
 | 
						|
        unsigned long addr1;
 | 
						|
        addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, addr);
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr(addr1);
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            stl_le_p(ptr, val);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            stl_be_p(ptr, val);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            stl_p(ptr, val);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        invalidate_and_set_dirty(addr1, 4);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stl_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stl_le_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stl_be_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: optimize */
 | 
						|
void stb_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    uint8_t v = val;
 | 
						|
    cpu_physical_memory_write(addr, &v, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* warning: addr must be aligned */
 | 
						|
static inline void stw_phys_internal(hwaddr addr, uint32_t val,
 | 
						|
                                     enum device_endian endian)
 | 
						|
{
 | 
						|
    uint8_t *ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    if (!memory_region_is_ram(section->mr) || section->readonly) {
 | 
						|
        addr = memory_region_section_addr(section, addr);
 | 
						|
        if (memory_region_is_ram(section->mr)) {
 | 
						|
            section = &phys_sections[phys_section_rom];
 | 
						|
        }
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
        if (endian == DEVICE_LITTLE_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        if (endian == DEVICE_BIG_ENDIAN) {
 | 
						|
            val = bswap16(val);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        io_mem_write(section->mr, addr, val, 2);
 | 
						|
    } else {
 | 
						|
        unsigned long addr1;
 | 
						|
        addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
 | 
						|
            + memory_region_section_addr(section, addr);
 | 
						|
        /* RAM case */
 | 
						|
        ptr = qemu_get_ram_ptr(addr1);
 | 
						|
        switch (endian) {
 | 
						|
        case DEVICE_LITTLE_ENDIAN:
 | 
						|
            stw_le_p(ptr, val);
 | 
						|
            break;
 | 
						|
        case DEVICE_BIG_ENDIAN:
 | 
						|
            stw_be_p(ptr, val);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            stw_p(ptr, val);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        invalidate_and_set_dirty(addr1, 2);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void stw_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stw_le_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
void stw_be_phys(hwaddr addr, uint32_t val)
 | 
						|
{
 | 
						|
    stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: optimize */
 | 
						|
void stq_phys(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    val = tswap64(val);
 | 
						|
    cpu_physical_memory_write(addr, &val, 8);
 | 
						|
}
 | 
						|
 | 
						|
void stq_le_phys(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    val = cpu_to_le64(val);
 | 
						|
    cpu_physical_memory_write(addr, &val, 8);
 | 
						|
}
 | 
						|
 | 
						|
void stq_be_phys(hwaddr addr, uint64_t val)
 | 
						|
{
 | 
						|
    val = cpu_to_be64(val);
 | 
						|
    cpu_physical_memory_write(addr, &val, 8);
 | 
						|
}
 | 
						|
 | 
						|
/* virtual memory access for debug (includes writing to ROM) */
 | 
						|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
 | 
						|
                        uint8_t *buf, int len, int is_write)
 | 
						|
{
 | 
						|
    int l;
 | 
						|
    hwaddr phys_addr;
 | 
						|
    target_ulong page;
 | 
						|
 | 
						|
    while (len > 0) {
 | 
						|
        page = addr & TARGET_PAGE_MASK;
 | 
						|
        phys_addr = cpu_get_phys_page_debug(env, page);
 | 
						|
        /* if no physical page mapped, return an error */
 | 
						|
        if (phys_addr == -1)
 | 
						|
            return -1;
 | 
						|
        l = (page + TARGET_PAGE_SIZE) - addr;
 | 
						|
        if (l > len)
 | 
						|
            l = len;
 | 
						|
        phys_addr += (addr & ~TARGET_PAGE_MASK);
 | 
						|
        if (is_write)
 | 
						|
            cpu_physical_memory_write_rom(phys_addr, buf, l);
 | 
						|
        else
 | 
						|
            cpu_physical_memory_rw(phys_addr, buf, l, is_write);
 | 
						|
        len -= l;
 | 
						|
        buf += l;
 | 
						|
        addr += l;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
/*
 | 
						|
 * A helper function for the _utterly broken_ virtio device model to find out if
 | 
						|
 * it's running on a big endian machine. Don't do this at home kids!
 | 
						|
 */
 | 
						|
bool virtio_is_big_endian(void);
 | 
						|
bool virtio_is_big_endian(void)
 | 
						|
{
 | 
						|
#if defined(TARGET_WORDS_BIGENDIAN)
 | 
						|
    return true;
 | 
						|
#else
 | 
						|
    return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
bool cpu_physical_memory_is_io(hwaddr phys_addr)
 | 
						|
{
 | 
						|
    MemoryRegionSection *section;
 | 
						|
 | 
						|
    section = phys_page_find(address_space_memory.dispatch,
 | 
						|
                             phys_addr >> TARGET_PAGE_BITS);
 | 
						|
 | 
						|
    return !(memory_region_is_ram(section->mr) ||
 | 
						|
             memory_region_is_romd(section->mr));
 | 
						|
}
 | 
						|
#endif
 |