2035 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2035 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU KVM support
 | 
						|
 *
 | 
						|
 * Copyright IBM, Corp. 2008
 | 
						|
 *           Red Hat, Inc. 2008
 | 
						|
 *
 | 
						|
 * Authors:
 | 
						|
 *  Anthony Liguori   <aliguori@us.ibm.com>
 | 
						|
 *  Glauber Costa     <gcosta@redhat.com>
 | 
						|
 *
 | 
						|
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | 
						|
 * See the COPYING file in the top-level directory.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/ioctl.h>
 | 
						|
#include <sys/mman.h>
 | 
						|
#include <stdarg.h>
 | 
						|
 | 
						|
#include <linux/kvm.h>
 | 
						|
 | 
						|
#include "qemu-common.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
#include "qemu/option.h"
 | 
						|
#include "qemu/config-file.h"
 | 
						|
#include "sysemu/sysemu.h"
 | 
						|
#include "hw/hw.h"
 | 
						|
#include "hw/pci/msi.h"
 | 
						|
#include "exec/gdbstub.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
#include "qemu/bswap.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#include "qemu/event_notifier.h"
 | 
						|
 | 
						|
/* This check must be after config-host.h is included */
 | 
						|
#ifdef CONFIG_EVENTFD
 | 
						|
#include <sys/eventfd.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_VALGRIND_H
 | 
						|
#include <valgrind/memcheck.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
 | 
						|
#define PAGE_SIZE TARGET_PAGE_SIZE
 | 
						|
 | 
						|
//#define DEBUG_KVM
 | 
						|
 | 
						|
#ifdef DEBUG_KVM
 | 
						|
#define DPRINTF(fmt, ...) \
 | 
						|
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | 
						|
#else
 | 
						|
#define DPRINTF(fmt, ...) \
 | 
						|
    do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define KVM_MSI_HASHTAB_SIZE    256
 | 
						|
 | 
						|
typedef struct KVMSlot
 | 
						|
{
 | 
						|
    hwaddr start_addr;
 | 
						|
    ram_addr_t memory_size;
 | 
						|
    void *ram;
 | 
						|
    int slot;
 | 
						|
    int flags;
 | 
						|
} KVMSlot;
 | 
						|
 | 
						|
typedef struct kvm_dirty_log KVMDirtyLog;
 | 
						|
 | 
						|
struct KVMState
 | 
						|
{
 | 
						|
    KVMSlot slots[32];
 | 
						|
    int fd;
 | 
						|
    int vmfd;
 | 
						|
    int coalesced_mmio;
 | 
						|
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
 | 
						|
    bool coalesced_flush_in_progress;
 | 
						|
    int broken_set_mem_region;
 | 
						|
    int migration_log;
 | 
						|
    int vcpu_events;
 | 
						|
    int robust_singlestep;
 | 
						|
    int debugregs;
 | 
						|
#ifdef KVM_CAP_SET_GUEST_DEBUG
 | 
						|
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
 | 
						|
#endif
 | 
						|
    int pit_state2;
 | 
						|
    int xsave, xcrs;
 | 
						|
    int many_ioeventfds;
 | 
						|
    int intx_set_mask;
 | 
						|
    /* The man page (and posix) say ioctl numbers are signed int, but
 | 
						|
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
 | 
						|
     * unsigned, and treating them as signed here can break things */
 | 
						|
    unsigned irq_set_ioctl;
 | 
						|
#ifdef KVM_CAP_IRQ_ROUTING
 | 
						|
    struct kvm_irq_routing *irq_routes;
 | 
						|
    int nr_allocated_irq_routes;
 | 
						|
    uint32_t *used_gsi_bitmap;
 | 
						|
    unsigned int gsi_count;
 | 
						|
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
 | 
						|
    bool direct_msi;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
KVMState *kvm_state;
 | 
						|
bool kvm_kernel_irqchip;
 | 
						|
bool kvm_async_interrupts_allowed;
 | 
						|
bool kvm_irqfds_allowed;
 | 
						|
bool kvm_msi_via_irqfd_allowed;
 | 
						|
bool kvm_gsi_routing_allowed;
 | 
						|
 | 
						|
static const KVMCapabilityInfo kvm_required_capabilites[] = {
 | 
						|
    KVM_CAP_INFO(USER_MEMORY),
 | 
						|
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 | 
						|
    KVM_CAP_LAST_INFO
 | 
						|
};
 | 
						|
 | 
						|
static KVMSlot *kvm_alloc_slot(KVMState *s)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | 
						|
        if (s->slots[i].memory_size == 0) {
 | 
						|
            return &s->slots[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fprintf(stderr, "%s: no free slot available\n", __func__);
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
 | 
						|
                                         hwaddr start_addr,
 | 
						|
                                         hwaddr end_addr)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | 
						|
        KVMSlot *mem = &s->slots[i];
 | 
						|
 | 
						|
        if (start_addr == mem->start_addr &&
 | 
						|
            end_addr == mem->start_addr + mem->memory_size) {
 | 
						|
            return mem;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find overlapping slot with lowest start address
 | 
						|
 */
 | 
						|
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
 | 
						|
                                            hwaddr start_addr,
 | 
						|
                                            hwaddr end_addr)
 | 
						|
{
 | 
						|
    KVMSlot *found = NULL;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | 
						|
        KVMSlot *mem = &s->slots[i];
 | 
						|
 | 
						|
        if (mem->memory_size == 0 ||
 | 
						|
            (found && found->start_addr < mem->start_addr)) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (end_addr > mem->start_addr &&
 | 
						|
            start_addr < mem->start_addr + mem->memory_size) {
 | 
						|
            found = mem;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return found;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 | 
						|
                                       hwaddr *phys_addr)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | 
						|
        KVMSlot *mem = &s->slots[i];
 | 
						|
 | 
						|
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 | 
						|
            *phys_addr = mem->start_addr + (ram - mem->ram);
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
 | 
						|
{
 | 
						|
    struct kvm_userspace_memory_region mem;
 | 
						|
 | 
						|
    mem.slot = slot->slot;
 | 
						|
    mem.guest_phys_addr = slot->start_addr;
 | 
						|
    mem.memory_size = slot->memory_size;
 | 
						|
    mem.userspace_addr = (unsigned long)slot->ram;
 | 
						|
    mem.flags = slot->flags;
 | 
						|
    if (s->migration_log) {
 | 
						|
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | 
						|
    }
 | 
						|
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_reset_vcpu(void *opaque)
 | 
						|
{
 | 
						|
    CPUState *cpu = opaque;
 | 
						|
 | 
						|
    kvm_arch_reset_vcpu(cpu);
 | 
						|
}
 | 
						|
 | 
						|
int kvm_init_vcpu(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
    long mmap_size;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    DPRINTF("kvm_init_vcpu\n");
 | 
						|
 | 
						|
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
 | 
						|
    if (ret < 0) {
 | 
						|
        DPRINTF("kvm_create_vcpu failed\n");
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu->kvm_fd = ret;
 | 
						|
    cpu->kvm_state = s;
 | 
						|
    cpu->kvm_vcpu_dirty = true;
 | 
						|
 | 
						|
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 | 
						|
    if (mmap_size < 0) {
 | 
						|
        ret = mmap_size;
 | 
						|
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 | 
						|
                        cpu->kvm_fd, 0);
 | 
						|
    if (cpu->kvm_run == MAP_FAILED) {
 | 
						|
        ret = -errno;
 | 
						|
        DPRINTF("mmap'ing vcpu state failed\n");
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 | 
						|
        s->coalesced_mmio_ring =
 | 
						|
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = kvm_arch_init_vcpu(cpu);
 | 
						|
    if (ret == 0) {
 | 
						|
        qemu_register_reset(kvm_reset_vcpu, cpu);
 | 
						|
        kvm_arch_reset_vcpu(cpu);
 | 
						|
    }
 | 
						|
err:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * dirty pages logging control
 | 
						|
 */
 | 
						|
 | 
						|
static int kvm_mem_flags(KVMState *s, bool log_dirty)
 | 
						|
{
 | 
						|
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
 | 
						|
    int old_flags;
 | 
						|
 | 
						|
    old_flags = mem->flags;
 | 
						|
 | 
						|
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
 | 
						|
    mem->flags = flags;
 | 
						|
 | 
						|
    /* If nothing changed effectively, no need to issue ioctl */
 | 
						|
    if (s->migration_log) {
 | 
						|
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | 
						|
    }
 | 
						|
 | 
						|
    if (flags == old_flags) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return kvm_set_user_memory_region(s, mem);
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
 | 
						|
                                      ram_addr_t size, bool log_dirty)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
 | 
						|
 | 
						|
    if (mem == NULL)  {
 | 
						|
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
 | 
						|
                TARGET_FMT_plx "\n", __func__, phys_addr,
 | 
						|
                (hwaddr)(phys_addr + size - 1));
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_log_start(MemoryListener *listener,
 | 
						|
                          MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
 | 
						|
                                   section->size, true);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_log_stop(MemoryListener *listener,
 | 
						|
                          MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
 | 
						|
                                   section->size, false);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_set_migration_log(int enable)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
    KVMSlot *mem;
 | 
						|
    int i, err;
 | 
						|
 | 
						|
    s->migration_log = enable;
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | 
						|
        mem = &s->slots[i];
 | 
						|
 | 
						|
        if (!mem->memory_size) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        err = kvm_set_user_memory_region(s, mem);
 | 
						|
        if (err) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* get kvm's dirty pages bitmap and update qemu's */
 | 
						|
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 | 
						|
                                         unsigned long *bitmap)
 | 
						|
{
 | 
						|
    unsigned int i, j;
 | 
						|
    unsigned long page_number, c;
 | 
						|
    hwaddr addr, addr1;
 | 
						|
    unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
 | 
						|
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
 | 
						|
 | 
						|
    /*
 | 
						|
     * bitmap-traveling is faster than memory-traveling (for addr...)
 | 
						|
     * especially when most of the memory is not dirty.
 | 
						|
     */
 | 
						|
    for (i = 0; i < len; i++) {
 | 
						|
        if (bitmap[i] != 0) {
 | 
						|
            c = leul_to_cpu(bitmap[i]);
 | 
						|
            do {
 | 
						|
                j = ffsl(c) - 1;
 | 
						|
                c &= ~(1ul << j);
 | 
						|
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
 | 
						|
                addr1 = page_number * TARGET_PAGE_SIZE;
 | 
						|
                addr = section->offset_within_region + addr1;
 | 
						|
                memory_region_set_dirty(section->mr, addr,
 | 
						|
                                        TARGET_PAGE_SIZE * hpratio);
 | 
						|
            } while (c != 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 | 
						|
 | 
						|
/**
 | 
						|
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 | 
						|
 * This function updates qemu's dirty bitmap using
 | 
						|
 * memory_region_set_dirty().  This means all bits are set
 | 
						|
 * to dirty.
 | 
						|
 *
 | 
						|
 * @start_add: start of logged region.
 | 
						|
 * @end_addr: end of logged region.
 | 
						|
 */
 | 
						|
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
    unsigned long size, allocated_size = 0;
 | 
						|
    KVMDirtyLog d;
 | 
						|
    KVMSlot *mem;
 | 
						|
    int ret = 0;
 | 
						|
    hwaddr start_addr = section->offset_within_address_space;
 | 
						|
    hwaddr end_addr = start_addr + section->size;
 | 
						|
 | 
						|
    d.dirty_bitmap = NULL;
 | 
						|
    while (start_addr < end_addr) {
 | 
						|
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
 | 
						|
        if (mem == NULL) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* XXX bad kernel interface alert
 | 
						|
         * For dirty bitmap, kernel allocates array of size aligned to
 | 
						|
         * bits-per-long.  But for case when the kernel is 64bits and
 | 
						|
         * the userspace is 32bits, userspace can't align to the same
 | 
						|
         * bits-per-long, since sizeof(long) is different between kernel
 | 
						|
         * and user space.  This way, userspace will provide buffer which
 | 
						|
         * may be 4 bytes less than the kernel will use, resulting in
 | 
						|
         * userspace memory corruption (which is not detectable by valgrind
 | 
						|
         * too, in most cases).
 | 
						|
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 | 
						|
         * a hope that sizeof(long) wont become >8 any time soon.
 | 
						|
         */
 | 
						|
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 | 
						|
                     /*HOST_LONG_BITS*/ 64) / 8;
 | 
						|
        if (!d.dirty_bitmap) {
 | 
						|
            d.dirty_bitmap = g_malloc(size);
 | 
						|
        } else if (size > allocated_size) {
 | 
						|
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 | 
						|
        }
 | 
						|
        allocated_size = size;
 | 
						|
        memset(d.dirty_bitmap, 0, allocated_size);
 | 
						|
 | 
						|
        d.slot = mem->slot;
 | 
						|
 | 
						|
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 | 
						|
            DPRINTF("ioctl failed %d\n", errno);
 | 
						|
            ret = -1;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 | 
						|
        start_addr = mem->start_addr + mem->memory_size;
 | 
						|
    }
 | 
						|
    g_free(d.dirty_bitmap);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_coalesce_mmio_region(MemoryListener *listener,
 | 
						|
                                     MemoryRegionSection *secion,
 | 
						|
                                     hwaddr start, hwaddr size)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
 | 
						|
    if (s->coalesced_mmio) {
 | 
						|
        struct kvm_coalesced_mmio_zone zone;
 | 
						|
 | 
						|
        zone.addr = start;
 | 
						|
        zone.size = size;
 | 
						|
        zone.pad = 0;
 | 
						|
 | 
						|
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 | 
						|
                                       MemoryRegionSection *secion,
 | 
						|
                                       hwaddr start, hwaddr size)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
 | 
						|
    if (s->coalesced_mmio) {
 | 
						|
        struct kvm_coalesced_mmio_zone zone;
 | 
						|
 | 
						|
        zone.addr = start;
 | 
						|
        zone.size = size;
 | 
						|
        zone.pad = 0;
 | 
						|
 | 
						|
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int kvm_check_extension(KVMState *s, unsigned int extension)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 | 
						|
    if (ret < 0) {
 | 
						|
        ret = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_check_many_ioeventfds(void)
 | 
						|
{
 | 
						|
    /* Userspace can use ioeventfd for io notification.  This requires a host
 | 
						|
     * that supports eventfd(2) and an I/O thread; since eventfd does not
 | 
						|
     * support SIGIO it cannot interrupt the vcpu.
 | 
						|
     *
 | 
						|
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 | 
						|
     * can avoid creating too many ioeventfds.
 | 
						|
     */
 | 
						|
#if defined(CONFIG_EVENTFD)
 | 
						|
    int ioeventfds[7];
 | 
						|
    int i, ret = 0;
 | 
						|
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 | 
						|
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 | 
						|
        if (ioeventfds[i] < 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
 | 
						|
        if (ret < 0) {
 | 
						|
            close(ioeventfds[i]);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Decide whether many devices are supported or not */
 | 
						|
    ret = i == ARRAY_SIZE(ioeventfds);
 | 
						|
 | 
						|
    while (i-- > 0) {
 | 
						|
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
 | 
						|
        close(ioeventfds[i]);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
#else
 | 
						|
    return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const KVMCapabilityInfo *
 | 
						|
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 | 
						|
{
 | 
						|
    while (list->name) {
 | 
						|
        if (!kvm_check_extension(s, list->value)) {
 | 
						|
            return list;
 | 
						|
        }
 | 
						|
        list++;
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
    KVMSlot *mem, old;
 | 
						|
    int err;
 | 
						|
    MemoryRegion *mr = section->mr;
 | 
						|
    bool log_dirty = memory_region_is_logging(mr);
 | 
						|
    hwaddr start_addr = section->offset_within_address_space;
 | 
						|
    ram_addr_t size = section->size;
 | 
						|
    void *ram = NULL;
 | 
						|
    unsigned delta;
 | 
						|
 | 
						|
    /* kvm works in page size chunks, but the function may be called
 | 
						|
       with sub-page size and unaligned start address. */
 | 
						|
    delta = TARGET_PAGE_ALIGN(size) - size;
 | 
						|
    if (delta > size) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    start_addr += delta;
 | 
						|
    size -= delta;
 | 
						|
    size &= TARGET_PAGE_MASK;
 | 
						|
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!memory_region_is_ram(mr)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
 | 
						|
        if (!mem) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (add && start_addr >= mem->start_addr &&
 | 
						|
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
 | 
						|
            (ram - start_addr == mem->ram - mem->start_addr)) {
 | 
						|
            /* The new slot fits into the existing one and comes with
 | 
						|
             * identical parameters - update flags and done. */
 | 
						|
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        old = *mem;
 | 
						|
 | 
						|
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 | 
						|
            kvm_physical_sync_dirty_bitmap(section);
 | 
						|
        }
 | 
						|
 | 
						|
        /* unregister the overlapping slot */
 | 
						|
        mem->memory_size = 0;
 | 
						|
        err = kvm_set_user_memory_region(s, mem);
 | 
						|
        if (err) {
 | 
						|
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 | 
						|
                    __func__, strerror(-err));
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
 | 
						|
        /* Workaround for older KVM versions: we can't join slots, even not by
 | 
						|
         * unregistering the previous ones and then registering the larger
 | 
						|
         * slot. We have to maintain the existing fragmentation. Sigh.
 | 
						|
         *
 | 
						|
         * This workaround assumes that the new slot starts at the same
 | 
						|
         * address as the first existing one. If not or if some overlapping
 | 
						|
         * slot comes around later, we will fail (not seen in practice so far)
 | 
						|
         * - and actually require a recent KVM version. */
 | 
						|
        if (s->broken_set_mem_region &&
 | 
						|
            old.start_addr == start_addr && old.memory_size < size && add) {
 | 
						|
            mem = kvm_alloc_slot(s);
 | 
						|
            mem->memory_size = old.memory_size;
 | 
						|
            mem->start_addr = old.start_addr;
 | 
						|
            mem->ram = old.ram;
 | 
						|
            mem->flags = kvm_mem_flags(s, log_dirty);
 | 
						|
 | 
						|
            err = kvm_set_user_memory_region(s, mem);
 | 
						|
            if (err) {
 | 
						|
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 | 
						|
                        strerror(-err));
 | 
						|
                abort();
 | 
						|
            }
 | 
						|
 | 
						|
            start_addr += old.memory_size;
 | 
						|
            ram += old.memory_size;
 | 
						|
            size -= old.memory_size;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* register prefix slot */
 | 
						|
        if (old.start_addr < start_addr) {
 | 
						|
            mem = kvm_alloc_slot(s);
 | 
						|
            mem->memory_size = start_addr - old.start_addr;
 | 
						|
            mem->start_addr = old.start_addr;
 | 
						|
            mem->ram = old.ram;
 | 
						|
            mem->flags =  kvm_mem_flags(s, log_dirty);
 | 
						|
 | 
						|
            err = kvm_set_user_memory_region(s, mem);
 | 
						|
            if (err) {
 | 
						|
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
 | 
						|
                        __func__, strerror(-err));
 | 
						|
#ifdef TARGET_PPC
 | 
						|
                fprintf(stderr, "%s: This is probably because your kernel's " \
 | 
						|
                                "PAGE_SIZE is too big. Please try to use 4k " \
 | 
						|
                                "PAGE_SIZE!\n", __func__);
 | 
						|
#endif
 | 
						|
                abort();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* register suffix slot */
 | 
						|
        if (old.start_addr + old.memory_size > start_addr + size) {
 | 
						|
            ram_addr_t size_delta;
 | 
						|
 | 
						|
            mem = kvm_alloc_slot(s);
 | 
						|
            mem->start_addr = start_addr + size;
 | 
						|
            size_delta = mem->start_addr - old.start_addr;
 | 
						|
            mem->memory_size = old.memory_size - size_delta;
 | 
						|
            mem->ram = old.ram + size_delta;
 | 
						|
            mem->flags = kvm_mem_flags(s, log_dirty);
 | 
						|
 | 
						|
            err = kvm_set_user_memory_region(s, mem);
 | 
						|
            if (err) {
 | 
						|
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
 | 
						|
                        __func__, strerror(-err));
 | 
						|
                abort();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* in case the KVM bug workaround already "consumed" the new slot */
 | 
						|
    if (!size) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if (!add) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    mem = kvm_alloc_slot(s);
 | 
						|
    mem->memory_size = size;
 | 
						|
    mem->start_addr = start_addr;
 | 
						|
    mem->ram = ram;
 | 
						|
    mem->flags = kvm_mem_flags(s, log_dirty);
 | 
						|
 | 
						|
    err = kvm_set_user_memory_region(s, mem);
 | 
						|
    if (err) {
 | 
						|
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 | 
						|
                strerror(-err));
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_region_add(MemoryListener *listener,
 | 
						|
                           MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    kvm_set_phys_mem(section, true);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_region_del(MemoryListener *listener,
 | 
						|
                           MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    kvm_set_phys_mem(section, false);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_log_sync(MemoryListener *listener,
 | 
						|
                         MemoryRegionSection *section)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_physical_sync_dirty_bitmap(section);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_log_global_start(struct MemoryListener *listener)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_set_migration_log(1);
 | 
						|
    assert(r >= 0);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_log_global_stop(struct MemoryListener *listener)
 | 
						|
{
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_set_migration_log(0);
 | 
						|
    assert(r >= 0);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 | 
						|
                                  MemoryRegionSection *section,
 | 
						|
                                  bool match_data, uint64_t data,
 | 
						|
                                  EventNotifier *e)
 | 
						|
{
 | 
						|
    int fd = event_notifier_get_fd(e);
 | 
						|
    int r;
 | 
						|
 | 
						|
    assert(match_data && section->size <= 8);
 | 
						|
 | 
						|
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 | 
						|
                               data, true, section->size);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 | 
						|
                                  MemoryRegionSection *section,
 | 
						|
                                  bool match_data, uint64_t data,
 | 
						|
                                  EventNotifier *e)
 | 
						|
{
 | 
						|
    int fd = event_notifier_get_fd(e);
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 | 
						|
                               data, false, section->size);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_io_ioeventfd_add(MemoryListener *listener,
 | 
						|
                                 MemoryRegionSection *section,
 | 
						|
                                 bool match_data, uint64_t data,
 | 
						|
                                 EventNotifier *e)
 | 
						|
{
 | 
						|
    int fd = event_notifier_get_fd(e);
 | 
						|
    int r;
 | 
						|
 | 
						|
    assert(match_data && section->size == 2);
 | 
						|
 | 
						|
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
 | 
						|
                                   data, true);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_io_ioeventfd_del(MemoryListener *listener,
 | 
						|
                                 MemoryRegionSection *section,
 | 
						|
                                 bool match_data, uint64_t data,
 | 
						|
                                 EventNotifier *e)
 | 
						|
 | 
						|
{
 | 
						|
    int fd = event_notifier_get_fd(e);
 | 
						|
    int r;
 | 
						|
 | 
						|
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
 | 
						|
                                   data, false);
 | 
						|
    if (r < 0) {
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static MemoryListener kvm_memory_listener = {
 | 
						|
    .region_add = kvm_region_add,
 | 
						|
    .region_del = kvm_region_del,
 | 
						|
    .log_start = kvm_log_start,
 | 
						|
    .log_stop = kvm_log_stop,
 | 
						|
    .log_sync = kvm_log_sync,
 | 
						|
    .log_global_start = kvm_log_global_start,
 | 
						|
    .log_global_stop = kvm_log_global_stop,
 | 
						|
    .eventfd_add = kvm_mem_ioeventfd_add,
 | 
						|
    .eventfd_del = kvm_mem_ioeventfd_del,
 | 
						|
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
 | 
						|
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
 | 
						|
    .priority = 10,
 | 
						|
};
 | 
						|
 | 
						|
static MemoryListener kvm_io_listener = {
 | 
						|
    .eventfd_add = kvm_io_ioeventfd_add,
 | 
						|
    .eventfd_del = kvm_io_ioeventfd_del,
 | 
						|
    .priority = 10,
 | 
						|
};
 | 
						|
 | 
						|
static void kvm_handle_interrupt(CPUArchState *env, int mask)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    env->interrupt_request |= mask;
 | 
						|
 | 
						|
    if (!qemu_cpu_is_self(cpu)) {
 | 
						|
        qemu_cpu_kick(cpu);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int kvm_set_irq(KVMState *s, int irq, int level)
 | 
						|
{
 | 
						|
    struct kvm_irq_level event;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    assert(kvm_async_interrupts_enabled());
 | 
						|
 | 
						|
    event.level = level;
 | 
						|
    event.irq = irq;
 | 
						|
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 | 
						|
    if (ret < 0) {
 | 
						|
        perror("kvm_set_irq");
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
 | 
						|
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef KVM_CAP_IRQ_ROUTING
 | 
						|
typedef struct KVMMSIRoute {
 | 
						|
    struct kvm_irq_routing_entry kroute;
 | 
						|
    QTAILQ_ENTRY(KVMMSIRoute) entry;
 | 
						|
} KVMMSIRoute;
 | 
						|
 | 
						|
static void set_gsi(KVMState *s, unsigned int gsi)
 | 
						|
{
 | 
						|
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
 | 
						|
}
 | 
						|
 | 
						|
static void clear_gsi(KVMState *s, unsigned int gsi)
 | 
						|
{
 | 
						|
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_init_irq_routing(KVMState *s)
 | 
						|
{
 | 
						|
    int gsi_count, i;
 | 
						|
 | 
						|
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
 | 
						|
    if (gsi_count > 0) {
 | 
						|
        unsigned int gsi_bits, i;
 | 
						|
 | 
						|
        /* Round up so we can search ints using ffs */
 | 
						|
        gsi_bits = ALIGN(gsi_count, 32);
 | 
						|
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
 | 
						|
        s->gsi_count = gsi_count;
 | 
						|
 | 
						|
        /* Mark any over-allocated bits as already in use */
 | 
						|
        for (i = gsi_count; i < gsi_bits; i++) {
 | 
						|
            set_gsi(s, i);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 | 
						|
    s->nr_allocated_irq_routes = 0;
 | 
						|
 | 
						|
    if (!s->direct_msi) {
 | 
						|
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
 | 
						|
            QTAILQ_INIT(&s->msi_hashtab[i]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    kvm_arch_init_irq_routing(s);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_irqchip_commit_routes(KVMState *s)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    s->irq_routes->flags = 0;
 | 
						|
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 | 
						|
    assert(ret == 0);
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_add_routing_entry(KVMState *s,
 | 
						|
                                  struct kvm_irq_routing_entry *entry)
 | 
						|
{
 | 
						|
    struct kvm_irq_routing_entry *new;
 | 
						|
    int n, size;
 | 
						|
 | 
						|
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
 | 
						|
        n = s->nr_allocated_irq_routes * 2;
 | 
						|
        if (n < 64) {
 | 
						|
            n = 64;
 | 
						|
        }
 | 
						|
        size = sizeof(struct kvm_irq_routing);
 | 
						|
        size += n * sizeof(*new);
 | 
						|
        s->irq_routes = g_realloc(s->irq_routes, size);
 | 
						|
        s->nr_allocated_irq_routes = n;
 | 
						|
    }
 | 
						|
    n = s->irq_routes->nr++;
 | 
						|
    new = &s->irq_routes->entries[n];
 | 
						|
    memset(new, 0, sizeof(*new));
 | 
						|
    new->gsi = entry->gsi;
 | 
						|
    new->type = entry->type;
 | 
						|
    new->flags = entry->flags;
 | 
						|
    new->u = entry->u;
 | 
						|
 | 
						|
    set_gsi(s, entry->gsi);
 | 
						|
 | 
						|
    kvm_irqchip_commit_routes(s);
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_update_routing_entry(KVMState *s,
 | 
						|
                                    struct kvm_irq_routing_entry *new_entry)
 | 
						|
{
 | 
						|
    struct kvm_irq_routing_entry *entry;
 | 
						|
    int n;
 | 
						|
 | 
						|
    for (n = 0; n < s->irq_routes->nr; n++) {
 | 
						|
        entry = &s->irq_routes->entries[n];
 | 
						|
        if (entry->gsi != new_entry->gsi) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        entry->type = new_entry->type;
 | 
						|
        entry->flags = new_entry->flags;
 | 
						|
        entry->u = new_entry->u;
 | 
						|
 | 
						|
        kvm_irqchip_commit_routes(s);
 | 
						|
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return -ESRCH;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
 | 
						|
{
 | 
						|
    struct kvm_irq_routing_entry e;
 | 
						|
 | 
						|
    assert(pin < s->gsi_count);
 | 
						|
 | 
						|
    e.gsi = irq;
 | 
						|
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
 | 
						|
    e.flags = 0;
 | 
						|
    e.u.irqchip.irqchip = irqchip;
 | 
						|
    e.u.irqchip.pin = pin;
 | 
						|
    kvm_add_routing_entry(s, &e);
 | 
						|
}
 | 
						|
 | 
						|
void kvm_irqchip_release_virq(KVMState *s, int virq)
 | 
						|
{
 | 
						|
    struct kvm_irq_routing_entry *e;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < s->irq_routes->nr; i++) {
 | 
						|
        e = &s->irq_routes->entries[i];
 | 
						|
        if (e->gsi == virq) {
 | 
						|
            s->irq_routes->nr--;
 | 
						|
            *e = s->irq_routes->entries[s->irq_routes->nr];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    clear_gsi(s, virq);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int kvm_hash_msi(uint32_t data)
 | 
						|
{
 | 
						|
    /* This is optimized for IA32 MSI layout. However, no other arch shall
 | 
						|
     * repeat the mistake of not providing a direct MSI injection API. */
 | 
						|
    return data & 0xff;
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_flush_dynamic_msi_routes(KVMState *s)
 | 
						|
{
 | 
						|
    KVMMSIRoute *route, *next;
 | 
						|
    unsigned int hash;
 | 
						|
 | 
						|
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
 | 
						|
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
 | 
						|
            kvm_irqchip_release_virq(s, route->kroute.gsi);
 | 
						|
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
 | 
						|
            g_free(route);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_irqchip_get_virq(KVMState *s)
 | 
						|
{
 | 
						|
    uint32_t *word = s->used_gsi_bitmap;
 | 
						|
    int max_words = ALIGN(s->gsi_count, 32) / 32;
 | 
						|
    int i, bit;
 | 
						|
    bool retry = true;
 | 
						|
 | 
						|
again:
 | 
						|
    /* Return the lowest unused GSI in the bitmap */
 | 
						|
    for (i = 0; i < max_words; i++) {
 | 
						|
        bit = ffs(~word[i]);
 | 
						|
        if (!bit) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        return bit - 1 + i * 32;
 | 
						|
    }
 | 
						|
    if (!s->direct_msi && retry) {
 | 
						|
        retry = false;
 | 
						|
        kvm_flush_dynamic_msi_routes(s);
 | 
						|
        goto again;
 | 
						|
    }
 | 
						|
    return -ENOSPC;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
 | 
						|
{
 | 
						|
    unsigned int hash = kvm_hash_msi(msg.data);
 | 
						|
    KVMMSIRoute *route;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
 | 
						|
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
 | 
						|
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
 | 
						|
            route->kroute.u.msi.data == msg.data) {
 | 
						|
            return route;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
 | 
						|
{
 | 
						|
    struct kvm_msi msi;
 | 
						|
    KVMMSIRoute *route;
 | 
						|
 | 
						|
    if (s->direct_msi) {
 | 
						|
        msi.address_lo = (uint32_t)msg.address;
 | 
						|
        msi.address_hi = msg.address >> 32;
 | 
						|
        msi.data = msg.data;
 | 
						|
        msi.flags = 0;
 | 
						|
        memset(msi.pad, 0, sizeof(msi.pad));
 | 
						|
 | 
						|
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
 | 
						|
    }
 | 
						|
 | 
						|
    route = kvm_lookup_msi_route(s, msg);
 | 
						|
    if (!route) {
 | 
						|
        int virq;
 | 
						|
 | 
						|
        virq = kvm_irqchip_get_virq(s);
 | 
						|
        if (virq < 0) {
 | 
						|
            return virq;
 | 
						|
        }
 | 
						|
 | 
						|
        route = g_malloc(sizeof(KVMMSIRoute));
 | 
						|
        route->kroute.gsi = virq;
 | 
						|
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
 | 
						|
        route->kroute.flags = 0;
 | 
						|
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
 | 
						|
        route->kroute.u.msi.address_hi = msg.address >> 32;
 | 
						|
        route->kroute.u.msi.data = msg.data;
 | 
						|
 | 
						|
        kvm_add_routing_entry(s, &route->kroute);
 | 
						|
 | 
						|
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
 | 
						|
                           entry);
 | 
						|
    }
 | 
						|
 | 
						|
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
 | 
						|
 | 
						|
    return kvm_set_irq(s, route->kroute.gsi, 1);
 | 
						|
}
 | 
						|
 | 
						|
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
 | 
						|
{
 | 
						|
    struct kvm_irq_routing_entry kroute;
 | 
						|
    int virq;
 | 
						|
 | 
						|
    if (!kvm_gsi_routing_enabled()) {
 | 
						|
        return -ENOSYS;
 | 
						|
    }
 | 
						|
 | 
						|
    virq = kvm_irqchip_get_virq(s);
 | 
						|
    if (virq < 0) {
 | 
						|
        return virq;
 | 
						|
    }
 | 
						|
 | 
						|
    kroute.gsi = virq;
 | 
						|
    kroute.type = KVM_IRQ_ROUTING_MSI;
 | 
						|
    kroute.flags = 0;
 | 
						|
    kroute.u.msi.address_lo = (uint32_t)msg.address;
 | 
						|
    kroute.u.msi.address_hi = msg.address >> 32;
 | 
						|
    kroute.u.msi.data = msg.data;
 | 
						|
 | 
						|
    kvm_add_routing_entry(s, &kroute);
 | 
						|
 | 
						|
    return virq;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
 | 
						|
{
 | 
						|
    struct kvm_irq_routing_entry kroute;
 | 
						|
 | 
						|
    if (!kvm_irqchip_in_kernel()) {
 | 
						|
        return -ENOSYS;
 | 
						|
    }
 | 
						|
 | 
						|
    kroute.gsi = virq;
 | 
						|
    kroute.type = KVM_IRQ_ROUTING_MSI;
 | 
						|
    kroute.flags = 0;
 | 
						|
    kroute.u.msi.address_lo = (uint32_t)msg.address;
 | 
						|
    kroute.u.msi.address_hi = msg.address >> 32;
 | 
						|
    kroute.u.msi.data = msg.data;
 | 
						|
 | 
						|
    return kvm_update_routing_entry(s, &kroute);
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
 | 
						|
{
 | 
						|
    struct kvm_irqfd irqfd = {
 | 
						|
        .fd = fd,
 | 
						|
        .gsi = virq,
 | 
						|
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
 | 
						|
    };
 | 
						|
 | 
						|
    if (!kvm_irqfds_enabled()) {
 | 
						|
        return -ENOSYS;
 | 
						|
    }
 | 
						|
 | 
						|
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
 | 
						|
}
 | 
						|
 | 
						|
#else /* !KVM_CAP_IRQ_ROUTING */
 | 
						|
 | 
						|
static void kvm_init_irq_routing(KVMState *s)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void kvm_irqchip_release_virq(KVMState *s, int virq)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
 | 
						|
{
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
 | 
						|
{
 | 
						|
    return -ENOSYS;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
 | 
						|
{
 | 
						|
    abort();
 | 
						|
}
 | 
						|
#endif /* !KVM_CAP_IRQ_ROUTING */
 | 
						|
 | 
						|
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
 | 
						|
{
 | 
						|
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
 | 
						|
}
 | 
						|
 | 
						|
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
 | 
						|
{
 | 
						|
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_irqchip_create(KVMState *s)
 | 
						|
{
 | 
						|
    QemuOptsList *list = qemu_find_opts("machine");
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (QTAILQ_EMPTY(&list->head) ||
 | 
						|
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
 | 
						|
                           "kernel_irqchip", true) ||
 | 
						|
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "Create kernel irqchip failed\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    kvm_kernel_irqchip = true;
 | 
						|
    /* If we have an in-kernel IRQ chip then we must have asynchronous
 | 
						|
     * interrupt delivery (though the reverse is not necessarily true)
 | 
						|
     */
 | 
						|
    kvm_async_interrupts_allowed = true;
 | 
						|
 | 
						|
    kvm_init_irq_routing(s);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_max_vcpus(KVMState *s)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    /* Find number of supported CPUs using the recommended
 | 
						|
     * procedure from the kernel API documentation to cope with
 | 
						|
     * older kernels that may be missing capabilities.
 | 
						|
     */
 | 
						|
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return 4;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_init(void)
 | 
						|
{
 | 
						|
    static const char upgrade_note[] =
 | 
						|
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
 | 
						|
        "(see http://sourceforge.net/projects/kvm).\n";
 | 
						|
    KVMState *s;
 | 
						|
    const KVMCapabilityInfo *missing_cap;
 | 
						|
    int ret;
 | 
						|
    int i;
 | 
						|
    int max_vcpus;
 | 
						|
 | 
						|
    s = g_malloc0(sizeof(KVMState));
 | 
						|
 | 
						|
    /*
 | 
						|
     * On systems where the kernel can support different base page
 | 
						|
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
 | 
						|
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
 | 
						|
     * page size for the system though.
 | 
						|
     */
 | 
						|
    assert(TARGET_PAGE_SIZE <= getpagesize());
 | 
						|
 | 
						|
#ifdef KVM_CAP_SET_GUEST_DEBUG
 | 
						|
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
 | 
						|
#endif
 | 
						|
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | 
						|
        s->slots[i].slot = i;
 | 
						|
    }
 | 
						|
    s->vmfd = -1;
 | 
						|
    s->fd = qemu_open("/dev/kvm", O_RDWR);
 | 
						|
    if (s->fd == -1) {
 | 
						|
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
 | 
						|
        ret = -errno;
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
 | 
						|
    if (ret < KVM_API_VERSION) {
 | 
						|
        if (ret > 0) {
 | 
						|
            ret = -EINVAL;
 | 
						|
        }
 | 
						|
        fprintf(stderr, "kvm version too old\n");
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret > KVM_API_VERSION) {
 | 
						|
        ret = -EINVAL;
 | 
						|
        fprintf(stderr, "kvm version not supported\n");
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    max_vcpus = kvm_max_vcpus(s);
 | 
						|
    if (smp_cpus > max_vcpus) {
 | 
						|
        ret = -EINVAL;
 | 
						|
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
 | 
						|
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
 | 
						|
    if (s->vmfd < 0) {
 | 
						|
#ifdef TARGET_S390X
 | 
						|
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
 | 
						|
                        "your host kernel command line\n");
 | 
						|
#endif
 | 
						|
        ret = s->vmfd;
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
 | 
						|
    if (!missing_cap) {
 | 
						|
        missing_cap =
 | 
						|
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
 | 
						|
    }
 | 
						|
    if (missing_cap) {
 | 
						|
        ret = -EINVAL;
 | 
						|
        fprintf(stderr, "kvm does not support %s\n%s",
 | 
						|
                missing_cap->name, upgrade_note);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
 | 
						|
 | 
						|
    s->broken_set_mem_region = 1;
 | 
						|
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
 | 
						|
    if (ret > 0) {
 | 
						|
        s->broken_set_mem_region = 0;
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef KVM_CAP_VCPU_EVENTS
 | 
						|
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
 | 
						|
#endif
 | 
						|
 | 
						|
    s->robust_singlestep =
 | 
						|
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
 | 
						|
 | 
						|
#ifdef KVM_CAP_DEBUGREGS
 | 
						|
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef KVM_CAP_XSAVE
 | 
						|
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef KVM_CAP_XCRS
 | 
						|
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef KVM_CAP_PIT_STATE2
 | 
						|
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef KVM_CAP_IRQ_ROUTING
 | 
						|
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
 | 
						|
#endif
 | 
						|
 | 
						|
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
 | 
						|
 | 
						|
    s->irq_set_ioctl = KVM_IRQ_LINE;
 | 
						|
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
 | 
						|
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = kvm_arch_init(s);
 | 
						|
    if (ret < 0) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = kvm_irqchip_create(s);
 | 
						|
    if (ret < 0) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    kvm_state = s;
 | 
						|
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
 | 
						|
    memory_listener_register(&kvm_io_listener, &address_space_io);
 | 
						|
 | 
						|
    s->many_ioeventfds = kvm_check_many_ioeventfds();
 | 
						|
 | 
						|
    cpu_interrupt_handler = kvm_handle_interrupt;
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
err:
 | 
						|
    if (s->vmfd >= 0) {
 | 
						|
        close(s->vmfd);
 | 
						|
    }
 | 
						|
    if (s->fd != -1) {
 | 
						|
        close(s->fd);
 | 
						|
    }
 | 
						|
    g_free(s);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
 | 
						|
                          uint32_t count)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint8_t *ptr = data;
 | 
						|
 | 
						|
    for (i = 0; i < count; i++) {
 | 
						|
        if (direction == KVM_EXIT_IO_IN) {
 | 
						|
            switch (size) {
 | 
						|
            case 1:
 | 
						|
                stb_p(ptr, cpu_inb(port));
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                stw_p(ptr, cpu_inw(port));
 | 
						|
                break;
 | 
						|
            case 4:
 | 
						|
                stl_p(ptr, cpu_inl(port));
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            switch (size) {
 | 
						|
            case 1:
 | 
						|
                cpu_outb(port, ldub_p(ptr));
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                cpu_outw(port, lduw_p(ptr));
 | 
						|
                break;
 | 
						|
            case 4:
 | 
						|
                cpu_outl(port, ldl_p(ptr));
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ptr += size;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    fprintf(stderr, "KVM internal error.");
 | 
						|
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
 | 
						|
        int i;
 | 
						|
 | 
						|
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
 | 
						|
        for (i = 0; i < run->internal.ndata; ++i) {
 | 
						|
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
 | 
						|
                    i, (uint64_t)run->internal.data[i]);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        fprintf(stderr, "\n");
 | 
						|
    }
 | 
						|
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
 | 
						|
        fprintf(stderr, "emulation failure\n");
 | 
						|
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
 | 
						|
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
 | 
						|
            return EXCP_INTERRUPT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* FIXME: Should trigger a qmp message to let management know
 | 
						|
     * something went wrong.
 | 
						|
     */
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_flush_coalesced_mmio_buffer(void)
 | 
						|
{
 | 
						|
    KVMState *s = kvm_state;
 | 
						|
 | 
						|
    if (s->coalesced_flush_in_progress) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    s->coalesced_flush_in_progress = true;
 | 
						|
 | 
						|
    if (s->coalesced_mmio_ring) {
 | 
						|
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
 | 
						|
        while (ring->first != ring->last) {
 | 
						|
            struct kvm_coalesced_mmio *ent;
 | 
						|
 | 
						|
            ent = &ring->coalesced_mmio[ring->first];
 | 
						|
 | 
						|
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
 | 
						|
            smp_wmb();
 | 
						|
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    s->coalesced_flush_in_progress = false;
 | 
						|
}
 | 
						|
 | 
						|
static void do_kvm_cpu_synchronize_state(void *arg)
 | 
						|
{
 | 
						|
    CPUState *cpu = arg;
 | 
						|
 | 
						|
    if (!cpu->kvm_vcpu_dirty) {
 | 
						|
        kvm_arch_get_registers(cpu);
 | 
						|
        cpu->kvm_vcpu_dirty = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void kvm_cpu_synchronize_state(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    if (!cpu->kvm_vcpu_dirty) {
 | 
						|
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
 | 
						|
    cpu->kvm_vcpu_dirty = false;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_cpu_synchronize_post_init(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
 | 
						|
    cpu->kvm_vcpu_dirty = false;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_cpu_exec(CPUArchState *env)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    struct kvm_run *run = cpu->kvm_run;
 | 
						|
    int ret, run_ret;
 | 
						|
 | 
						|
    DPRINTF("kvm_cpu_exec()\n");
 | 
						|
 | 
						|
    if (kvm_arch_process_async_events(cpu)) {
 | 
						|
        env->exit_request = 0;
 | 
						|
        return EXCP_HLT;
 | 
						|
    }
 | 
						|
 | 
						|
    do {
 | 
						|
        if (cpu->kvm_vcpu_dirty) {
 | 
						|
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
 | 
						|
            cpu->kvm_vcpu_dirty = false;
 | 
						|
        }
 | 
						|
 | 
						|
        kvm_arch_pre_run(cpu, run);
 | 
						|
        if (env->exit_request) {
 | 
						|
            DPRINTF("interrupt exit requested\n");
 | 
						|
            /*
 | 
						|
             * KVM requires us to reenter the kernel after IO exits to complete
 | 
						|
             * instruction emulation. This self-signal will ensure that we
 | 
						|
             * leave ASAP again.
 | 
						|
             */
 | 
						|
            qemu_cpu_kick_self();
 | 
						|
        }
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
 | 
						|
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
 | 
						|
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        kvm_arch_post_run(cpu, run);
 | 
						|
 | 
						|
        if (run_ret < 0) {
 | 
						|
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
 | 
						|
                DPRINTF("io window exit\n");
 | 
						|
                ret = EXCP_INTERRUPT;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            fprintf(stderr, "error: kvm run failed %s\n",
 | 
						|
                    strerror(-run_ret));
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
 | 
						|
        switch (run->exit_reason) {
 | 
						|
        case KVM_EXIT_IO:
 | 
						|
            DPRINTF("handle_io\n");
 | 
						|
            kvm_handle_io(run->io.port,
 | 
						|
                          (uint8_t *)run + run->io.data_offset,
 | 
						|
                          run->io.direction,
 | 
						|
                          run->io.size,
 | 
						|
                          run->io.count);
 | 
						|
            ret = 0;
 | 
						|
            break;
 | 
						|
        case KVM_EXIT_MMIO:
 | 
						|
            DPRINTF("handle_mmio\n");
 | 
						|
            cpu_physical_memory_rw(run->mmio.phys_addr,
 | 
						|
                                   run->mmio.data,
 | 
						|
                                   run->mmio.len,
 | 
						|
                                   run->mmio.is_write);
 | 
						|
            ret = 0;
 | 
						|
            break;
 | 
						|
        case KVM_EXIT_IRQ_WINDOW_OPEN:
 | 
						|
            DPRINTF("irq_window_open\n");
 | 
						|
            ret = EXCP_INTERRUPT;
 | 
						|
            break;
 | 
						|
        case KVM_EXIT_SHUTDOWN:
 | 
						|
            DPRINTF("shutdown\n");
 | 
						|
            qemu_system_reset_request();
 | 
						|
            ret = EXCP_INTERRUPT;
 | 
						|
            break;
 | 
						|
        case KVM_EXIT_UNKNOWN:
 | 
						|
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
 | 
						|
                    (uint64_t)run->hw.hardware_exit_reason);
 | 
						|
            ret = -1;
 | 
						|
            break;
 | 
						|
        case KVM_EXIT_INTERNAL_ERROR:
 | 
						|
            ret = kvm_handle_internal_error(env, run);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            DPRINTF("kvm_arch_handle_exit\n");
 | 
						|
            ret = kvm_arch_handle_exit(cpu, run);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } while (ret == 0);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
 | 
						|
        vm_stop(RUN_STATE_INTERNAL_ERROR);
 | 
						|
    }
 | 
						|
 | 
						|
    env->exit_request = 0;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_ioctl(KVMState *s, int type, ...)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    void *arg;
 | 
						|
    va_list ap;
 | 
						|
 | 
						|
    va_start(ap, type);
 | 
						|
    arg = va_arg(ap, void *);
 | 
						|
    va_end(ap);
 | 
						|
 | 
						|
    ret = ioctl(s->fd, type, arg);
 | 
						|
    if (ret == -1) {
 | 
						|
        ret = -errno;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_vm_ioctl(KVMState *s, int type, ...)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    void *arg;
 | 
						|
    va_list ap;
 | 
						|
 | 
						|
    va_start(ap, type);
 | 
						|
    arg = va_arg(ap, void *);
 | 
						|
    va_end(ap);
 | 
						|
 | 
						|
    ret = ioctl(s->vmfd, type, arg);
 | 
						|
    if (ret == -1) {
 | 
						|
        ret = -errno;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    void *arg;
 | 
						|
    va_list ap;
 | 
						|
 | 
						|
    va_start(ap, type);
 | 
						|
    arg = va_arg(ap, void *);
 | 
						|
    va_end(ap);
 | 
						|
 | 
						|
    ret = ioctl(cpu->kvm_fd, type, arg);
 | 
						|
    if (ret == -1) {
 | 
						|
        ret = -errno;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_sync_mmu(void)
 | 
						|
{
 | 
						|
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_vcpu_events(void)
 | 
						|
{
 | 
						|
    return kvm_state->vcpu_events;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_robust_singlestep(void)
 | 
						|
{
 | 
						|
    return kvm_state->robust_singlestep;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_debugregs(void)
 | 
						|
{
 | 
						|
    return kvm_state->debugregs;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_xsave(void)
 | 
						|
{
 | 
						|
    return kvm_state->xsave;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_xcrs(void)
 | 
						|
{
 | 
						|
    return kvm_state->xcrs;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_pit_state2(void)
 | 
						|
{
 | 
						|
    return kvm_state->pit_state2;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_many_ioeventfds(void)
 | 
						|
{
 | 
						|
    if (!kvm_enabled()) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return kvm_state->many_ioeventfds;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_gsi_routing(void)
 | 
						|
{
 | 
						|
#ifdef KVM_CAP_IRQ_ROUTING
 | 
						|
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
 | 
						|
#else
 | 
						|
    return false;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
int kvm_has_intx_set_mask(void)
 | 
						|
{
 | 
						|
    return kvm_state->intx_set_mask;
 | 
						|
}
 | 
						|
 | 
						|
void *kvm_vmalloc(ram_addr_t size)
 | 
						|
{
 | 
						|
#ifdef TARGET_S390X
 | 
						|
    void *mem;
 | 
						|
 | 
						|
    mem = kvm_arch_vmalloc(size);
 | 
						|
    if (mem) {
 | 
						|
        return mem;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return qemu_vmalloc(size);
 | 
						|
}
 | 
						|
 | 
						|
void kvm_setup_guest_memory(void *start, size_t size)
 | 
						|
{
 | 
						|
#ifdef CONFIG_VALGRIND_H
 | 
						|
    VALGRIND_MAKE_MEM_DEFINED(start, size);
 | 
						|
#endif
 | 
						|
    if (!kvm_has_sync_mmu()) {
 | 
						|
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
 | 
						|
 | 
						|
        if (ret) {
 | 
						|
            perror("qemu_madvise");
 | 
						|
            fprintf(stderr,
 | 
						|
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef KVM_CAP_SET_GUEST_DEBUG
 | 
						|
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
 | 
						|
                                                 target_ulong pc)
 | 
						|
{
 | 
						|
    struct kvm_sw_breakpoint *bp;
 | 
						|
 | 
						|
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
 | 
						|
        if (bp->pc == pc) {
 | 
						|
            return bp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_sw_breakpoints_active(CPUState *cpu)
 | 
						|
{
 | 
						|
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
 | 
						|
}
 | 
						|
 | 
						|
struct kvm_set_guest_debug_data {
 | 
						|
    struct kvm_guest_debug dbg;
 | 
						|
    CPUState *cpu;
 | 
						|
    int err;
 | 
						|
};
 | 
						|
 | 
						|
static void kvm_invoke_set_guest_debug(void *data)
 | 
						|
{
 | 
						|
    struct kvm_set_guest_debug_data *dbg_data = data;
 | 
						|
 | 
						|
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
 | 
						|
                                   &dbg_data->dbg);
 | 
						|
}
 | 
						|
 | 
						|
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    struct kvm_set_guest_debug_data data;
 | 
						|
 | 
						|
    data.dbg.control = reinject_trap;
 | 
						|
 | 
						|
    if (env->singlestep_enabled) {
 | 
						|
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
 | 
						|
    }
 | 
						|
    kvm_arch_update_guest_debug(cpu, &data.dbg);
 | 
						|
    data.cpu = cpu;
 | 
						|
 | 
						|
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
 | 
						|
    return data.err;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
 | 
						|
                          target_ulong len, int type)
 | 
						|
{
 | 
						|
    CPUState *current_cpu = ENV_GET_CPU(current_env);
 | 
						|
    struct kvm_sw_breakpoint *bp;
 | 
						|
    CPUArchState *env;
 | 
						|
    int err;
 | 
						|
 | 
						|
    if (type == GDB_BREAKPOINT_SW) {
 | 
						|
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
 | 
						|
        if (bp) {
 | 
						|
            bp->use_count++;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
 | 
						|
        if (!bp) {
 | 
						|
            return -ENOMEM;
 | 
						|
        }
 | 
						|
 | 
						|
        bp->pc = addr;
 | 
						|
        bp->use_count = 1;
 | 
						|
        err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
 | 
						|
        if (err) {
 | 
						|
            g_free(bp);
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
 | 
						|
        QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints,
 | 
						|
                          bp, entry);
 | 
						|
    } else {
 | 
						|
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
 | 
						|
        if (err) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        err = kvm_update_guest_debug(env, 0);
 | 
						|
        if (err) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
 | 
						|
                          target_ulong len, int type)
 | 
						|
{
 | 
						|
    CPUState *current_cpu = ENV_GET_CPU(current_env);
 | 
						|
    struct kvm_sw_breakpoint *bp;
 | 
						|
    CPUArchState *env;
 | 
						|
    int err;
 | 
						|
 | 
						|
    if (type == GDB_BREAKPOINT_SW) {
 | 
						|
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
 | 
						|
        if (!bp) {
 | 
						|
            return -ENOENT;
 | 
						|
        }
 | 
						|
 | 
						|
        if (bp->use_count > 1) {
 | 
						|
            bp->use_count--;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
 | 
						|
        if (err) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
 | 
						|
        QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
 | 
						|
        g_free(bp);
 | 
						|
    } else {
 | 
						|
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
 | 
						|
        if (err) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        err = kvm_update_guest_debug(env, 0);
 | 
						|
        if (err) {
 | 
						|
            return err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_remove_all_breakpoints(CPUArchState *current_env)
 | 
						|
{
 | 
						|
    CPUState *current_cpu = ENV_GET_CPU(current_env);
 | 
						|
    struct kvm_sw_breakpoint *bp, *next;
 | 
						|
    KVMState *s = current_cpu->kvm_state;
 | 
						|
    CPUArchState *env;
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
 | 
						|
        if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
 | 
						|
            /* Try harder to find a CPU that currently sees the breakpoint. */
 | 
						|
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
                cpu = ENV_GET_CPU(env);
 | 
						|
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
 | 
						|
        g_free(bp);
 | 
						|
    }
 | 
						|
    kvm_arch_remove_all_hw_breakpoints();
 | 
						|
 | 
						|
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | 
						|
        kvm_update_guest_debug(env, 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#else /* !KVM_CAP_SET_GUEST_DEBUG */
 | 
						|
 | 
						|
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
 | 
						|
{
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
 | 
						|
                          target_ulong len, int type)
 | 
						|
{
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
 | 
						|
                          target_ulong len, int type)
 | 
						|
{
 | 
						|
    return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
void kvm_remove_all_breakpoints(CPUArchState *current_env)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
 | 
						|
 | 
						|
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    struct kvm_signal_mask *sigmask;
 | 
						|
    int r;
 | 
						|
 | 
						|
    if (!sigset) {
 | 
						|
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
 | 
						|
 | 
						|
    sigmask->len = 8;
 | 
						|
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
 | 
						|
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
 | 
						|
    g_free(sigmask);
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
 | 
						|
                           uint32_t size)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    struct kvm_ioeventfd iofd;
 | 
						|
 | 
						|
    iofd.datamatch = val;
 | 
						|
    iofd.addr = addr;
 | 
						|
    iofd.len = size;
 | 
						|
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
 | 
						|
    iofd.fd = fd;
 | 
						|
 | 
						|
    if (!kvm_enabled()) {
 | 
						|
        return -ENOSYS;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!assign) {
 | 
						|
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        return -errno;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
 | 
						|
{
 | 
						|
    struct kvm_ioeventfd kick = {
 | 
						|
        .datamatch = val,
 | 
						|
        .addr = addr,
 | 
						|
        .len = 2,
 | 
						|
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
 | 
						|
        .fd = fd,
 | 
						|
    };
 | 
						|
    int r;
 | 
						|
    if (!kvm_enabled()) {
 | 
						|
        return -ENOSYS;
 | 
						|
    }
 | 
						|
    if (!assign) {
 | 
						|
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | 
						|
    }
 | 
						|
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 | 
						|
    if (r < 0) {
 | 
						|
        return r;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
 | 
						|
}
 | 
						|
 | 
						|
int kvm_on_sigbus(int code, void *addr)
 | 
						|
{
 | 
						|
    return kvm_arch_on_sigbus(code, addr);
 | 
						|
}
 |