 85016c983c
			
		
	
	
		85016c983c
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3860 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			570 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			570 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*============================================================================
 | |
| 
 | |
| This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
 | |
| Arithmetic Package, Release 2b.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
 | |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
 | |
| RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
 | |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
 | |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
 | |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
 | |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
 | |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) the source code for the derivative work includes prominent notice that
 | |
| the work is derivative, and (2) the source code includes prominent notice with
 | |
| these four paragraphs for those parts of this code that are retained.
 | |
| 
 | |
| =============================================================================*/
 | |
| 
 | |
| #if defined(TARGET_MIPS) || defined(TARGET_HPPA)
 | |
| #define SNAN_BIT_IS_ONE		1
 | |
| #else
 | |
| #define SNAN_BIT_IS_ONE		0
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Underflow tininess-detection mode, statically initialized to default value.
 | |
| | (The declaration in `softfloat.h' must match the `int8' type here.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| int8 float_detect_tininess = float_tininess_after_rounding;
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Raises the exceptions specified by `flags'.  Floating-point traps can be
 | |
| | defined here if desired.  It is currently not possible for such a trap
 | |
| | to substitute a result value.  If traps are not implemented, this routine
 | |
| | should be simply `float_exception_flags |= flags;'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| void float_raise( int8 flags STATUS_PARAM )
 | |
| {
 | |
|     STATUS(float_exception_flags) |= flags;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Internal canonical NaN format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| typedef struct {
 | |
|     flag sign;
 | |
|     bits64 high, low;
 | |
| } commonNaNT;
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated single-precision NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if defined(TARGET_SPARC)
 | |
| #define float32_default_nan make_float32(0x7FFFFFFF)
 | |
| #elif defined(TARGET_POWERPC)
 | |
| #define float32_default_nan make_float32(0x7FC00000)
 | |
| #elif defined(TARGET_HPPA)
 | |
| #define float32_default_nan make_float32(0x7FA00000)
 | |
| #elif SNAN_BIT_IS_ONE
 | |
| #define float32_default_nan make_float32(0x7FBFFFFF)
 | |
| #else
 | |
| #define float32_default_nan make_float32(0xFFC00000)
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_is_nan( float32 a_ )
 | |
| {
 | |
|     uint32_t a = float32_val(a_);
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 | |
| #else
 | |
|     return ( 0xFF800000 <= (bits32) ( a<<1 ) );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is a signaling
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_is_signaling_nan( float32 a_ )
 | |
| {
 | |
|     uint32_t a = float32_val(a_);
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return ( 0xFF800000 <= (bits32) ( a<<1 ) );
 | |
| #else
 | |
|     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point NaN
 | |
| | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | |
| | exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
 | |
|     z.sign = float32_val(a)>>31;
 | |
|     z.low = 0;
 | |
|     z.high = ( (bits64) float32_val(a) )<<41;
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the single-
 | |
| | precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 commonNaNToFloat32( commonNaNT a )
 | |
| {
 | |
|     bits32 mantissa = a.high>>41;
 | |
|     if ( mantissa )
 | |
|         return make_float32(
 | |
|             ( ( (bits32) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
 | |
|     else
 | |
|         return float32_default_nan;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two single-precision floating-point values `a' and `b', one of which
 | |
| | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | |
| | signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | |
|     bits32 av, bv, res;
 | |
| 
 | |
|     aIsNaN = float32_is_nan( a );
 | |
|     aIsSignalingNaN = float32_is_signaling_nan( a );
 | |
|     bIsNaN = float32_is_nan( b );
 | |
|     bIsSignalingNaN = float32_is_signaling_nan( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     av &= ~0x00400000;
 | |
|     bv &= ~0x00400000;
 | |
| #else
 | |
|     av |= 0x00400000;
 | |
|     bv |= 0x00400000;
 | |
| #endif
 | |
|     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     if ( aIsSignalingNaN ) {
 | |
|         if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | |
|         res = bIsNaN ? bv : av;
 | |
|     }
 | |
|     else if ( aIsNaN ) {
 | |
|         if ( bIsSignalingNaN | ! bIsNaN )
 | |
|             res = av;
 | |
|         else {
 | |
|  returnLargerSignificand:
 | |
|             if ( (bits32) ( av<<1 ) < (bits32) ( bv<<1 ) )
 | |
|                 res = bv;
 | |
|             else if ( (bits32) ( bv<<1 ) < (bits32) ( av<<1 ) )
 | |
|                 res = av;
 | |
|             else
 | |
|                 res = ( av < bv ) ? av : bv;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         res = bv;
 | |
|     }
 | |
|     return make_float32(res);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated double-precision NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if defined(TARGET_SPARC)
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
 | |
| #elif defined(TARGET_POWERPC)
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
 | |
| #elif defined(TARGET_HPPA)
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FF4000000000000 ))
 | |
| #elif SNAN_BIT_IS_ONE
 | |
| #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
 | |
| #else
 | |
| #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_is_nan( float64 a_ )
 | |
| {
 | |
|     bits64 a = float64_val(a_);
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return
 | |
|            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 | |
|         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 | |
| #else
 | |
|     return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is a signaling
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_is_signaling_nan( float64 a_ )
 | |
| {
 | |
|     bits64 a = float64_val(a_);
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
 | |
| #else
 | |
|     return
 | |
|            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 | |
|         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point NaN
 | |
| | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | |
| | exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     z.sign = float64_val(a)>>63;
 | |
|     z.low = 0;
 | |
|     z.high = float64_val(a)<<12;
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the double-
 | |
| | precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 commonNaNToFloat64( commonNaNT a )
 | |
| {
 | |
|     bits64 mantissa = a.high>>12;
 | |
| 
 | |
|     if ( mantissa )
 | |
|         return make_float64(
 | |
|               ( ( (bits64) a.sign )<<63 )
 | |
|             | LIT64( 0x7FF0000000000000 )
 | |
|             | ( a.high>>12 ));
 | |
|     else
 | |
|         return float64_default_nan;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two double-precision floating-point values `a' and `b', one of which
 | |
| | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | |
| | signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | |
|     bits64 av, bv, res;
 | |
| 
 | |
|     aIsNaN = float64_is_nan( a );
 | |
|     aIsSignalingNaN = float64_is_signaling_nan( a );
 | |
|     bIsNaN = float64_is_nan( b );
 | |
|     bIsSignalingNaN = float64_is_signaling_nan( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     av &= ~LIT64( 0x0008000000000000 );
 | |
|     bv &= ~LIT64( 0x0008000000000000 );
 | |
| #else
 | |
|     av |= LIT64( 0x0008000000000000 );
 | |
|     bv |= LIT64( 0x0008000000000000 );
 | |
| #endif
 | |
|     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     if ( aIsSignalingNaN ) {
 | |
|         if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | |
|         res = bIsNaN ? bv : av;
 | |
|     }
 | |
|     else if ( aIsNaN ) {
 | |
|         if ( bIsSignalingNaN | ! bIsNaN )
 | |
|             res = av;
 | |
|         else {
 | |
|  returnLargerSignificand:
 | |
|             if ( (bits64) ( av<<1 ) < (bits64) ( bv<<1 ) )
 | |
|                 res = bv;
 | |
|             else if ( (bits64) ( bv<<1 ) < (bits64) ( av<<1 ) )
 | |
|                 res = av;
 | |
|             else
 | |
|                 res = ( av < bv ) ? av : bv;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         res = bv;
 | |
|     }
 | |
|     return make_float64(res);
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated extended double-precision NaN.  The
 | |
| | `high' and `low' values hold the most- and least-significant bits,
 | |
| | respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if SNAN_BIT_IS_ONE
 | |
| #define floatx80_default_nan_high 0x7FFF
 | |
| #define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
 | |
| #else
 | |
| #define floatx80_default_nan_high 0xFFFF
 | |
| #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is a
 | |
| | quiet NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_is_nan( floatx80 a )
 | |
| {
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     bits64 aLow;
 | |
| 
 | |
|     aLow = a.low & ~ LIT64( 0x4000000000000000 );
 | |
|     return
 | |
|            ( ( a.high & 0x7FFF ) == 0x7FFF )
 | |
|         && (bits64) ( aLow<<1 )
 | |
|         && ( a.low == aLow );
 | |
| #else
 | |
|     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is a
 | |
| | signaling NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_is_signaling_nan( floatx80 a )
 | |
| {
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
 | |
| #else
 | |
|     bits64 aLow;
 | |
| 
 | |
|     aLow = a.low & ~ LIT64( 0x4000000000000000 );
 | |
|     return
 | |
|            ( ( a.high & 0x7FFF ) == 0x7FFF )
 | |
|         && (bits64) ( aLow<<1 )
 | |
|         && ( a.low == aLow );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
 | |
| | invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     z.sign = a.high>>15;
 | |
|     z.low = 0;
 | |
|     z.high = a.low;
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the extended
 | |
| | double-precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 commonNaNToFloatx80( commonNaNT a )
 | |
| {
 | |
|     floatx80 z;
 | |
| 
 | |
|     if (a.high)
 | |
|         z.low = a.high;
 | |
|     else
 | |
|         z.low = floatx80_default_nan_low;
 | |
|     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two extended double-precision floating-point values `a' and `b', one
 | |
| | of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | |
| | `b' is a signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | |
| 
 | |
|     aIsNaN = floatx80_is_nan( a );
 | |
|     aIsSignalingNaN = floatx80_is_signaling_nan( a );
 | |
|     bIsNaN = floatx80_is_nan( b );
 | |
|     bIsSignalingNaN = floatx80_is_signaling_nan( b );
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     a.low &= ~LIT64( 0xC000000000000000 );
 | |
|     b.low &= ~LIT64( 0xC000000000000000 );
 | |
| #else
 | |
|     a.low |= LIT64( 0xC000000000000000 );
 | |
|     b.low |= LIT64( 0xC000000000000000 );
 | |
| #endif
 | |
|     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     if ( aIsSignalingNaN ) {
 | |
|         if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | |
|         return bIsNaN ? b : a;
 | |
|     }
 | |
|     else if ( aIsNaN ) {
 | |
|         if ( bIsSignalingNaN | ! bIsNaN ) return a;
 | |
|  returnLargerSignificand:
 | |
|         if ( a.low < b.low ) return b;
 | |
|         if ( b.low < a.low ) return a;
 | |
|         return ( a.high < b.high ) ? a : b;
 | |
|     }
 | |
|     else {
 | |
|         return b;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated quadruple-precision NaN.  The `high' and
 | |
| | `low' values hold the most- and least-significant bits, respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if SNAN_BIT_IS_ONE
 | |
| #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
 | |
| #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
| #else
 | |
| #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
 | |
| #define float128_default_nan_low  LIT64( 0x0000000000000000 )
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_is_nan( float128 a )
 | |
| {
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return
 | |
|            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
 | |
|         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
 | |
| #else
 | |
|     return
 | |
|            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
 | |
|         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is a
 | |
| | signaling NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_is_signaling_nan( float128 a )
 | |
| {
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     return
 | |
|            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
 | |
|         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
 | |
| #else
 | |
|     return
 | |
|            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
 | |
|         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point NaN
 | |
| | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | |
| | exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     z.sign = a.high>>63;
 | |
|     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the quadruple-
 | |
| | precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 commonNaNToFloat128( commonNaNT a )
 | |
| {
 | |
|     float128 z;
 | |
| 
 | |
|     shift128Right( a.high, a.low, 16, &z.high, &z.low );
 | |
|     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two quadruple-precision floating-point values `a' and `b', one of
 | |
| | which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | |
| | `b' is a signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
 | |
| {
 | |
|     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
 | |
| 
 | |
|     aIsNaN = float128_is_nan( a );
 | |
|     aIsSignalingNaN = float128_is_signaling_nan( a );
 | |
|     bIsNaN = float128_is_nan( b );
 | |
|     bIsSignalingNaN = float128_is_signaling_nan( b );
 | |
| #if SNAN_BIT_IS_ONE
 | |
|     a.high &= ~LIT64( 0x0000800000000000 );
 | |
|     b.high &= ~LIT64( 0x0000800000000000 );
 | |
| #else
 | |
|     a.high |= LIT64( 0x0000800000000000 );
 | |
|     b.high |= LIT64( 0x0000800000000000 );
 | |
| #endif
 | |
|     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
 | |
|     if ( aIsSignalingNaN ) {
 | |
|         if ( bIsSignalingNaN ) goto returnLargerSignificand;
 | |
|         return bIsNaN ? b : a;
 | |
|     }
 | |
|     else if ( aIsNaN ) {
 | |
|         if ( bIsSignalingNaN | ! bIsNaN ) return a;
 | |
|  returnLargerSignificand:
 | |
|         if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
 | |
|         if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
 | |
|         return ( a.high < b.high ) ? a : b;
 | |
|     }
 | |
|     else {
 | |
|         return b;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 |