
When commit 0bacd8b3046f ('i386: Don't set CPUClass::cpu_def on "max" model') removed the CPUClass::cpu_def field, we kept using the x86_cpu_load_def() helper directly in max_x86_cpu_initfn(), emulating the previous behavior when CPUClass::cpu_def was set. However, x86_cpu_load_def() is intended to help initialization of CPU models from the builtin_x86_defs table, and does lots of other steps that are not necessary for "max". One of the things x86_cpu_load_def() do is to set the properties listed at tcg_default_props/kvm_default_props. We must not do that on the "max" CPU model, otherwise under KVM we will incorrectly report all KVM features as always available, and the "svm" feature as always unavailable. The latter caused the bug reported at: https://bugzilla.redhat.com/show_bug.cgi?id=1467599 ("Unable to start domain: the CPU is incompatible with host CPU: Host CPU does not provide required features: svm") Replace x86_cpu_load_def() with simple object_property_set*() calls. In addition to fixing the above bug, this makes the KVM branch in max_x86_cpu_initfn() very similar to the existing TCG branch. For reference, the full list of steps performed by x86_cpu_load_def() is: * Setting min-level and min-xlevel. Already done by max_x86_cpu_initfn(). * Setting family/model/stepping/model-id. Done by the code added to max_x86_cpu_initfn() in this patch. * Copying def->features. Wrong because "-cpu max" features need to be calculated at realize time. This was not a problem in the current code because host_cpudef.features was all zeroes. * x86_cpu_apply_props() calls. This causes the bug above, and shouldn't be done. * Setting CPUID_EXT_HYPERVISOR. Not needed because it is already reported by x86_cpu_get_supported_feature_word(), and because "-cpu max" features need to be calculated at realize time. * Setting CPU vendor to host CPU vendor if on KVM mode. Redundant, because max_x86_cpu_initfn() already sets it to the host CPU vendor. Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Message-Id: <20170712162058.10538-5-ehabkost@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
…
…
…
QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: http://qemu-project.org/Hosts/Linux http://qemu-project.org/Hosts/Mac http://qemu-project.org/Hosts/W32 Submitting patches ================== The QEMU source code is maintained under the GIT version control system. git clone git://git.qemu-project.org/qemu.git When submitting patches, the preferred approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the HACKING and CODING_STYLE files. Additional information on submitting patches can be found online via the QEMU website http://qemu-project.org/Contribute/SubmitAPatch http://qemu-project.org/Contribute/TrivialPatches Bug reporting ============= The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs found when running code built from QEMU git or upstream released sources should be reported via: https://bugs.launchpad.net/qemu/ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via launchpad. For additional information on bug reporting consult: http://qemu-project.org/Contribute/ReportABug Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC - qemu-devel@nongnu.org http://lists.nongnu.org/mailman/listinfo/qemu-devel - #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: http://qemu-project.org/Contribute/StartHere -- End
Description
Languages
C
90.3%
Dylan
2.5%
Python
2.1%
C++
2%
Shell
1.7%
Other
1.4%