 5425a2164c
			
		
	
	
		5425a2164c
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2657 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			587 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			587 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU ESP/NCR53C9x emulation
 | |
|  * 
 | |
|  * Copyright (c) 2005-2006 Fabrice Bellard
 | |
|  * 
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "vl.h"
 | |
| 
 | |
| /* debug ESP card */
 | |
| //#define DEBUG_ESP
 | |
| 
 | |
| /*
 | |
|  * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), also
 | |
|  * produced as NCR89C100. See
 | |
|  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
 | |
|  * and
 | |
|  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
 | |
|  */
 | |
| 
 | |
| #ifdef DEBUG_ESP
 | |
| #define DPRINTF(fmt, args...) \
 | |
| do { printf("ESP: " fmt , ##args); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, args...)
 | |
| #endif
 | |
| 
 | |
| #define ESP_MAXREG 0x3f
 | |
| #define TI_BUFSZ 32
 | |
| /* The HBA is ID 7, so for simplicitly limit to 7 devices.  */
 | |
| #define ESP_MAX_DEVS      7
 | |
| 
 | |
| typedef struct ESPState ESPState;
 | |
| 
 | |
| struct ESPState {
 | |
|     BlockDriverState **bd;
 | |
|     uint8_t rregs[ESP_MAXREG];
 | |
|     uint8_t wregs[ESP_MAXREG];
 | |
|     int32_t ti_size;
 | |
|     uint32_t ti_rptr, ti_wptr;
 | |
|     uint8_t ti_buf[TI_BUFSZ];
 | |
|     int sense;
 | |
|     int dma;
 | |
|     SCSIDevice *scsi_dev[MAX_DISKS];
 | |
|     SCSIDevice *current_dev;
 | |
|     uint8_t cmdbuf[TI_BUFSZ];
 | |
|     int cmdlen;
 | |
|     int do_cmd;
 | |
| 
 | |
|     /* The amount of data left in the current DMA transfer.  */
 | |
|     uint32_t dma_left;
 | |
|     /* The size of the current DMA transfer.  Zero if no transfer is in
 | |
|        progress.  */
 | |
|     uint32_t dma_counter;
 | |
|     uint8_t *async_buf;
 | |
|     uint32_t async_len;
 | |
|     void *dma_opaque;
 | |
| };
 | |
| 
 | |
| #define STAT_DO 0x00
 | |
| #define STAT_DI 0x01
 | |
| #define STAT_CD 0x02
 | |
| #define STAT_ST 0x03
 | |
| #define STAT_MI 0x06
 | |
| #define STAT_MO 0x07
 | |
| 
 | |
| #define STAT_TC 0x10
 | |
| #define STAT_PE 0x20
 | |
| #define STAT_GE 0x40
 | |
| #define STAT_IN 0x80
 | |
| 
 | |
| #define INTR_FC 0x08
 | |
| #define INTR_BS 0x10
 | |
| #define INTR_DC 0x20
 | |
| #define INTR_RST 0x80
 | |
| 
 | |
| #define SEQ_0 0x0
 | |
| #define SEQ_CD 0x4
 | |
| 
 | |
| static int get_cmd(ESPState *s, uint8_t *buf)
 | |
| {
 | |
|     uint32_t dmalen;
 | |
|     int target;
 | |
| 
 | |
|     dmalen = s->rregs[0] | (s->rregs[1] << 8);
 | |
|     target = s->wregs[4] & 7;
 | |
|     DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
 | |
|     if (s->dma) {
 | |
|         espdma_memory_read(s->dma_opaque, buf, dmalen);
 | |
|     } else {
 | |
| 	buf[0] = 0;
 | |
| 	memcpy(&buf[1], s->ti_buf, dmalen);
 | |
| 	dmalen++;
 | |
|     }
 | |
| 
 | |
|     s->ti_size = 0;
 | |
|     s->ti_rptr = 0;
 | |
|     s->ti_wptr = 0;
 | |
| 
 | |
|     if (s->current_dev) {
 | |
|         /* Started a new command before the old one finished.  Cancel it.  */
 | |
|         scsi_cancel_io(s->current_dev, 0);
 | |
|         s->async_len = 0;
 | |
|     }
 | |
| 
 | |
|     if (target >= MAX_DISKS || !s->scsi_dev[target]) {
 | |
|         // No such drive
 | |
| 	s->rregs[4] = STAT_IN;
 | |
| 	s->rregs[5] = INTR_DC;
 | |
| 	s->rregs[6] = SEQ_0;
 | |
| 	espdma_raise_irq(s->dma_opaque);
 | |
| 	return 0;
 | |
|     }
 | |
|     s->current_dev = s->scsi_dev[target];
 | |
|     return dmalen;
 | |
| }
 | |
| 
 | |
| static void do_cmd(ESPState *s, uint8_t *buf)
 | |
| {
 | |
|     int32_t datalen;
 | |
|     int lun;
 | |
| 
 | |
|     DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
 | |
|     lun = buf[0] & 7;
 | |
|     datalen = scsi_send_command(s->current_dev, 0, &buf[1], lun);
 | |
|     s->ti_size = datalen;
 | |
|     if (datalen != 0) {
 | |
|         s->rregs[4] = STAT_IN | STAT_TC;
 | |
|         s->dma_left = 0;
 | |
|         s->dma_counter = 0;
 | |
|         if (datalen > 0) {
 | |
|             s->rregs[4] |= STAT_DI;
 | |
|             scsi_read_data(s->current_dev, 0);
 | |
|         } else {
 | |
|             s->rregs[4] |= STAT_DO;
 | |
|             scsi_write_data(s->current_dev, 0);
 | |
|         }
 | |
|     }
 | |
|     s->rregs[5] = INTR_BS | INTR_FC;
 | |
|     s->rregs[6] = SEQ_CD;
 | |
|     espdma_raise_irq(s->dma_opaque);
 | |
| }
 | |
| 
 | |
| static void handle_satn(ESPState *s)
 | |
| {
 | |
|     uint8_t buf[32];
 | |
|     int len;
 | |
| 
 | |
|     len = get_cmd(s, buf);
 | |
|     if (len)
 | |
|         do_cmd(s, buf);
 | |
| }
 | |
| 
 | |
| static void handle_satn_stop(ESPState *s)
 | |
| {
 | |
|     s->cmdlen = get_cmd(s, s->cmdbuf);
 | |
|     if (s->cmdlen) {
 | |
|         DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
 | |
|         s->do_cmd = 1;
 | |
|         s->rregs[4] = STAT_IN | STAT_TC | STAT_CD;
 | |
|         s->rregs[5] = INTR_BS | INTR_FC;
 | |
|         s->rregs[6] = SEQ_CD;
 | |
|         espdma_raise_irq(s->dma_opaque);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void write_response(ESPState *s)
 | |
| {
 | |
|     DPRINTF("Transfer status (sense=%d)\n", s->sense);
 | |
|     s->ti_buf[0] = s->sense;
 | |
|     s->ti_buf[1] = 0;
 | |
|     if (s->dma) {
 | |
|         espdma_memory_write(s->dma_opaque, s->ti_buf, 2);
 | |
| 	s->rregs[4] = STAT_IN | STAT_TC | STAT_ST;
 | |
| 	s->rregs[5] = INTR_BS | INTR_FC;
 | |
| 	s->rregs[6] = SEQ_CD;
 | |
|     } else {
 | |
| 	s->ti_size = 2;
 | |
| 	s->ti_rptr = 0;
 | |
| 	s->ti_wptr = 0;
 | |
| 	s->rregs[7] = 2;
 | |
|     }
 | |
|     espdma_raise_irq(s->dma_opaque);
 | |
| }
 | |
| 
 | |
| static void esp_dma_done(ESPState *s)
 | |
| {
 | |
|     s->rregs[4] |= STAT_IN | STAT_TC;
 | |
|     s->rregs[5] = INTR_BS;
 | |
|     s->rregs[6] = 0;
 | |
|     s->rregs[7] = 0;
 | |
|     s->rregs[0] = 0;
 | |
|     s->rregs[1] = 0;
 | |
|     espdma_raise_irq(s->dma_opaque);
 | |
| }
 | |
| 
 | |
| static void esp_do_dma(ESPState *s)
 | |
| {
 | |
|     uint32_t len;
 | |
|     int to_device;
 | |
| 
 | |
|     to_device = (s->ti_size < 0);
 | |
|     len = s->dma_left;
 | |
|     if (s->do_cmd) {
 | |
|         DPRINTF("command len %d + %d\n", s->cmdlen, len);
 | |
|         espdma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
 | |
|         s->ti_size = 0;
 | |
|         s->cmdlen = 0;
 | |
|         s->do_cmd = 0;
 | |
|         do_cmd(s, s->cmdbuf);
 | |
|         return;
 | |
|     }
 | |
|     if (s->async_len == 0) {
 | |
|         /* Defer until data is available.  */
 | |
|         return;
 | |
|     }
 | |
|     if (len > s->async_len) {
 | |
|         len = s->async_len;
 | |
|     }
 | |
|     if (to_device) {
 | |
|         espdma_memory_read(s->dma_opaque, s->async_buf, len);
 | |
|     } else {
 | |
|         espdma_memory_write(s->dma_opaque, s->async_buf, len);
 | |
|     }
 | |
|     s->dma_left -= len;
 | |
|     s->async_buf += len;
 | |
|     s->async_len -= len;
 | |
|     if (to_device)
 | |
|         s->ti_size += len;
 | |
|     else
 | |
|         s->ti_size -= len;
 | |
|     if (s->async_len == 0) {
 | |
|         if (to_device) {
 | |
|             // ti_size is negative
 | |
|             scsi_write_data(s->current_dev, 0);
 | |
|         } else {
 | |
|             scsi_read_data(s->current_dev, 0);
 | |
|             /* If there is still data to be read from the device then
 | |
|                complete the DMA operation immeriately.  Otherwise defer
 | |
|                until the scsi layer has completed.  */
 | |
|             if (s->dma_left == 0 && s->ti_size > 0) {
 | |
|                 esp_dma_done(s);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* Partially filled a scsi buffer. Complete immediately.  */
 | |
|         esp_dma_done(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void esp_command_complete(void *opaque, int reason, uint32_t tag,
 | |
|                                  uint32_t arg)
 | |
| {
 | |
|     ESPState *s = (ESPState *)opaque;
 | |
| 
 | |
|     if (reason == SCSI_REASON_DONE) {
 | |
|         DPRINTF("SCSI Command complete\n");
 | |
|         if (s->ti_size != 0)
 | |
|             DPRINTF("SCSI command completed unexpectedly\n");
 | |
|         s->ti_size = 0;
 | |
|         s->dma_left = 0;
 | |
|         s->async_len = 0;
 | |
|         if (arg)
 | |
|             DPRINTF("Command failed\n");
 | |
|         s->sense = arg;
 | |
|         s->rregs[4] = STAT_ST;
 | |
|         esp_dma_done(s);
 | |
|         s->current_dev = NULL;
 | |
|     } else {
 | |
|         DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
 | |
|         s->async_len = arg;
 | |
|         s->async_buf = scsi_get_buf(s->current_dev, 0);
 | |
|         if (s->dma_left) {
 | |
|             esp_do_dma(s);
 | |
|         } else if (s->dma_counter != 0 && s->ti_size <= 0) {
 | |
|             /* If this was the last part of a DMA transfer then the
 | |
|                completion interrupt is deferred to here.  */
 | |
|             esp_dma_done(s);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void handle_ti(ESPState *s)
 | |
| {
 | |
|     uint32_t dmalen, minlen;
 | |
| 
 | |
|     dmalen = s->rregs[0] | (s->rregs[1] << 8);
 | |
|     if (dmalen==0) {
 | |
|       dmalen=0x10000;
 | |
|     }
 | |
|     s->dma_counter = dmalen;
 | |
| 
 | |
|     if (s->do_cmd)
 | |
|         minlen = (dmalen < 32) ? dmalen : 32;
 | |
|     else if (s->ti_size < 0)
 | |
|         minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
 | |
|     else
 | |
|         minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
 | |
|     DPRINTF("Transfer Information len %d\n", minlen);
 | |
|     if (s->dma) {
 | |
|         s->dma_left = minlen;
 | |
|         s->rregs[4] &= ~STAT_TC;
 | |
|         esp_do_dma(s);
 | |
|     } else if (s->do_cmd) {
 | |
|         DPRINTF("command len %d\n", s->cmdlen);
 | |
|         s->ti_size = 0;
 | |
|         s->cmdlen = 0;
 | |
|         s->do_cmd = 0;
 | |
|         do_cmd(s, s->cmdbuf);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void esp_reset(void *opaque)
 | |
| {
 | |
|     ESPState *s = opaque;
 | |
| 
 | |
|     memset(s->rregs, 0, ESP_MAXREG);
 | |
|     memset(s->wregs, 0, ESP_MAXREG);
 | |
|     s->rregs[0x0e] = 0x4; // Indicate fas100a
 | |
|     s->ti_size = 0;
 | |
|     s->ti_rptr = 0;
 | |
|     s->ti_wptr = 0;
 | |
|     s->dma = 0;
 | |
|     s->do_cmd = 0;
 | |
| }
 | |
| 
 | |
| static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     ESPState *s = opaque;
 | |
|     uint32_t saddr;
 | |
| 
 | |
|     saddr = (addr & ESP_MAXREG) >> 2;
 | |
|     DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
 | |
|     switch (saddr) {
 | |
|     case 2:
 | |
| 	// FIFO
 | |
| 	if (s->ti_size > 0) {
 | |
| 	    s->ti_size--;
 | |
|             if ((s->rregs[4] & 6) == 0) {
 | |
|                 /* Data in/out.  */
 | |
|                 fprintf(stderr, "esp: PIO data read not implemented\n");
 | |
|                 s->rregs[2] = 0;
 | |
|             } else {
 | |
|                 s->rregs[2] = s->ti_buf[s->ti_rptr++];
 | |
|             }
 | |
|             espdma_raise_irq(s->dma_opaque);
 | |
| 	}
 | |
| 	if (s->ti_size == 0) {
 | |
|             s->ti_rptr = 0;
 | |
|             s->ti_wptr = 0;
 | |
|         }
 | |
| 	break;
 | |
|     case 5:
 | |
|         // interrupt
 | |
|         // Clear interrupt/error status bits
 | |
|         s->rregs[4] &= ~(STAT_IN | STAT_GE | STAT_PE);
 | |
| 	espdma_clear_irq(s->dma_opaque);
 | |
|         break;
 | |
|     default:
 | |
| 	break;
 | |
|     }
 | |
|     return s->rregs[saddr];
 | |
| }
 | |
| 
 | |
| static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     ESPState *s = opaque;
 | |
|     uint32_t saddr;
 | |
| 
 | |
|     saddr = (addr & ESP_MAXREG) >> 2;
 | |
|     DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val);
 | |
|     switch (saddr) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|         s->rregs[4] &= ~STAT_TC;
 | |
|         break;
 | |
|     case 2:
 | |
| 	// FIFO
 | |
|         if (s->do_cmd) {
 | |
|             s->cmdbuf[s->cmdlen++] = val & 0xff;
 | |
|         } else if ((s->rregs[4] & 6) == 0) {
 | |
|             uint8_t buf;
 | |
|             buf = val & 0xff;
 | |
|             s->ti_size--;
 | |
|             fprintf(stderr, "esp: PIO data write not implemented\n");
 | |
|         } else {
 | |
|             s->ti_size++;
 | |
|             s->ti_buf[s->ti_wptr++] = val & 0xff;
 | |
|         }
 | |
| 	break;
 | |
|     case 3:
 | |
|         s->rregs[saddr] = val;
 | |
| 	// Command
 | |
| 	if (val & 0x80) {
 | |
| 	    s->dma = 1;
 | |
|             /* Reload DMA counter.  */
 | |
|             s->rregs[0] = s->wregs[0];
 | |
|             s->rregs[1] = s->wregs[1];
 | |
| 	} else {
 | |
| 	    s->dma = 0;
 | |
| 	}
 | |
| 	switch(val & 0x7f) {
 | |
| 	case 0:
 | |
| 	    DPRINTF("NOP (%2.2x)\n", val);
 | |
| 	    break;
 | |
| 	case 1:
 | |
| 	    DPRINTF("Flush FIFO (%2.2x)\n", val);
 | |
|             //s->ti_size = 0;
 | |
| 	    s->rregs[5] = INTR_FC;
 | |
| 	    s->rregs[6] = 0;
 | |
| 	    break;
 | |
| 	case 2:
 | |
| 	    DPRINTF("Chip reset (%2.2x)\n", val);
 | |
| 	    esp_reset(s);
 | |
| 	    break;
 | |
| 	case 3:
 | |
| 	    DPRINTF("Bus reset (%2.2x)\n", val);
 | |
| 	    s->rregs[5] = INTR_RST;
 | |
|             if (!(s->wregs[8] & 0x40)) {
 | |
|                 espdma_raise_irq(s->dma_opaque);
 | |
|             }
 | |
| 	    break;
 | |
| 	case 0x10:
 | |
| 	    handle_ti(s);
 | |
| 	    break;
 | |
| 	case 0x11:
 | |
| 	    DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
 | |
| 	    write_response(s);
 | |
| 	    break;
 | |
| 	case 0x12:
 | |
| 	    DPRINTF("Message Accepted (%2.2x)\n", val);
 | |
| 	    write_response(s);
 | |
| 	    s->rregs[5] = INTR_DC;
 | |
| 	    s->rregs[6] = 0;
 | |
| 	    break;
 | |
| 	case 0x1a:
 | |
| 	    DPRINTF("Set ATN (%2.2x)\n", val);
 | |
| 	    break;
 | |
| 	case 0x42:
 | |
| 	    DPRINTF("Set ATN (%2.2x)\n", val);
 | |
| 	    handle_satn(s);
 | |
| 	    break;
 | |
| 	case 0x43:
 | |
| 	    DPRINTF("Set ATN & stop (%2.2x)\n", val);
 | |
| 	    handle_satn_stop(s);
 | |
| 	    break;
 | |
| 	default:
 | |
| 	    DPRINTF("Unhandled ESP command (%2.2x)\n", val);
 | |
| 	    break;
 | |
| 	}
 | |
| 	break;
 | |
|     case 4 ... 7:
 | |
| 	break;
 | |
|     case 8:
 | |
|         s->rregs[saddr] = val;
 | |
|         break;
 | |
|     case 9 ... 10:
 | |
|         break;
 | |
|     case 11:
 | |
|         s->rregs[saddr] = val & 0x15;
 | |
|         break;
 | |
|     case 12 ... 15:
 | |
|         s->rregs[saddr] = val;
 | |
|         break;
 | |
|     default:
 | |
| 	break;
 | |
|     }
 | |
|     s->wregs[saddr] = val;
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc *esp_mem_read[3] = {
 | |
|     esp_mem_readb,
 | |
|     esp_mem_readb,
 | |
|     esp_mem_readb,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc *esp_mem_write[3] = {
 | |
|     esp_mem_writeb,
 | |
|     esp_mem_writeb,
 | |
|     esp_mem_writeb,
 | |
| };
 | |
| 
 | |
| static void esp_save(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     ESPState *s = opaque;
 | |
| 
 | |
|     qemu_put_buffer(f, s->rregs, ESP_MAXREG);
 | |
|     qemu_put_buffer(f, s->wregs, ESP_MAXREG);
 | |
|     qemu_put_be32s(f, &s->ti_size);
 | |
|     qemu_put_be32s(f, &s->ti_rptr);
 | |
|     qemu_put_be32s(f, &s->ti_wptr);
 | |
|     qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
 | |
|     qemu_put_be32s(f, &s->sense);
 | |
|     qemu_put_be32s(f, &s->dma);
 | |
|     qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
 | |
|     qemu_put_be32s(f, &s->cmdlen);
 | |
|     qemu_put_be32s(f, &s->do_cmd);
 | |
|     qemu_put_be32s(f, &s->dma_left);
 | |
|     // There should be no transfers in progress, so dma_counter is not saved
 | |
| }
 | |
| 
 | |
| static int esp_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     ESPState *s = opaque;
 | |
|     
 | |
|     if (version_id != 3)
 | |
|         return -EINVAL; // Cannot emulate 2
 | |
| 
 | |
|     qemu_get_buffer(f, s->rregs, ESP_MAXREG);
 | |
|     qemu_get_buffer(f, s->wregs, ESP_MAXREG);
 | |
|     qemu_get_be32s(f, &s->ti_size);
 | |
|     qemu_get_be32s(f, &s->ti_rptr);
 | |
|     qemu_get_be32s(f, &s->ti_wptr);
 | |
|     qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
 | |
|     qemu_get_be32s(f, &s->sense);
 | |
|     qemu_get_be32s(f, &s->dma);
 | |
|     qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
 | |
|     qemu_get_be32s(f, &s->cmdlen);
 | |
|     qemu_get_be32s(f, &s->do_cmd);
 | |
|     qemu_get_be32s(f, &s->dma_left);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
 | |
| {
 | |
|     ESPState *s = (ESPState *)opaque;
 | |
| 
 | |
|     if (id < 0) {
 | |
|         for (id = 0; id < ESP_MAX_DEVS; id++) {
 | |
|             if (s->scsi_dev[id] == NULL)
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     if (id >= ESP_MAX_DEVS) {
 | |
|         DPRINTF("Bad Device ID %d\n", id);
 | |
|         return;
 | |
|     }
 | |
|     if (s->scsi_dev[id]) {
 | |
|         DPRINTF("Destroying device %d\n", id);
 | |
|         scsi_disk_destroy(s->scsi_dev[id]);
 | |
|     }
 | |
|     DPRINTF("Attaching block device %d\n", id);
 | |
|     /* Command queueing is not implemented.  */
 | |
|     s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
 | |
| }
 | |
| 
 | |
| void *esp_init(BlockDriverState **bd, uint32_t espaddr, void *dma_opaque)
 | |
| {
 | |
|     ESPState *s;
 | |
|     int esp_io_memory;
 | |
| 
 | |
|     s = qemu_mallocz(sizeof(ESPState));
 | |
|     if (!s)
 | |
|         return NULL;
 | |
| 
 | |
|     s->bd = bd;
 | |
|     s->dma_opaque = dma_opaque;
 | |
| 
 | |
|     esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
 | |
|     cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory);
 | |
| 
 | |
|     esp_reset(s);
 | |
| 
 | |
|     register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
 | |
|     qemu_register_reset(esp_reset, s);
 | |
| 
 | |
|     return s;
 | |
| }
 |