270 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Microblaze helper routines.
 | |
|  *
 | |
|  *  Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <assert.h>
 | |
| #include "exec.h"
 | |
| #include "helper.h"
 | |
| #include "host-utils.h"
 | |
| 
 | |
| #define D(x)
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #define MMUSUFFIX _mmu
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| /* Try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     CPUState *saved_env;
 | |
|     unsigned long pc;
 | |
|     int ret;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
| 
 | |
|     ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | |
|     if (unlikely(ret)) {
 | |
|         if (retaddr) {
 | |
|             /* now we have a real cpu fault */
 | |
|             pc = (unsigned long)retaddr;
 | |
|             tb = tb_find_pc(pc);
 | |
|             if (tb) {
 | |
|                 /* the PC is inside the translated code. It means that we have
 | |
|                    a virtual CPU fault */
 | |
|                 cpu_restore_state(tb, env, pc, NULL);
 | |
|             }
 | |
|         }
 | |
|         cpu_loop_exit();
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void helper_raise_exception(uint32_t index)
 | |
| {
 | |
|     env->exception_index = index;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| void helper_debug(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
 | |
|         if ((i + 1) % 4 == 0)
 | |
|             qemu_log("\n");
 | |
|     }
 | |
|     qemu_log("\n\n");
 | |
| }
 | |
| 
 | |
| static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
 | |
| {
 | |
|     uint32_t cout = 0;
 | |
| 
 | |
|     if ((b == ~0) && cin)
 | |
|         cout = 1;
 | |
|     else if ((~0 - a) < (b + cin))
 | |
|         cout = 1;
 | |
|     return cout;
 | |
| }
 | |
| 
 | |
| uint32_t helper_cmp(uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t t;
 | |
| 
 | |
|     t = b + ~a + 1;
 | |
|     if ((b & 0x80000000) ^ (a & 0x80000000))
 | |
|         t = (t & 0x7fffffff) | (b & 0x80000000);
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| uint32_t helper_cmpu(uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t t;
 | |
| 
 | |
|     t = b + ~a + 1;
 | |
|     if ((b & 0x80000000) ^ (a & 0x80000000))
 | |
|         t = (t & 0x7fffffff) | (a & 0x80000000);
 | |
|     return t;
 | |
| }
 | |
| 
 | |
| uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
 | |
| {
 | |
|     uint32_t d, cf = 0, ncf;
 | |
| 
 | |
|     if (c)
 | |
|         cf = env->sregs[SR_MSR] >> 31;
 | |
|     assert(cf == 0 || cf == 1);
 | |
|     d = a + b + cf;
 | |
| 
 | |
|     if (!k) {
 | |
|         ncf = compute_carry(a, b, cf);
 | |
|         assert(ncf == 0 || ncf == 1);
 | |
|         if (ncf)
 | |
|             env->sregs[SR_MSR] |= MSR_C | MSR_CC;
 | |
|         else
 | |
|             env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
 | |
|     }
 | |
|     D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
 | |
|                d, a, b, cf, ncf, k, c));
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| uint32_t helper_subkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
 | |
| {
 | |
|     uint32_t d, cf = 1, ncf;
 | |
| 
 | |
|     if (c)
 | |
|         cf = env->sregs[SR_MSR] >> 31; 
 | |
|     assert(cf == 0 || cf == 1);
 | |
|     d = b + ~a + cf;
 | |
| 
 | |
|     if (!k) {
 | |
|         ncf = compute_carry(b, ~a, cf);
 | |
|         assert(ncf == 0 || ncf == 1);
 | |
|         if (ncf)
 | |
|             env->sregs[SR_MSR] |= MSR_C | MSR_CC;
 | |
|         else
 | |
|             env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
 | |
|     }
 | |
|     D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
 | |
|                d, a, b, cf, ncf, k, c));
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| static inline int div_prepare(uint32_t a, uint32_t b)
 | |
| {
 | |
|     if (b == 0) {
 | |
|         env->sregs[SR_MSR] |= MSR_DZ;
 | |
| 
 | |
|         if ((env->sregs[SR_MSR] & MSR_EE)
 | |
|             && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
 | |
|             env->sregs[SR_ESR] = ESR_EC_DIVZERO;
 | |
|             helper_raise_exception(EXCP_HW_EXCP);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     env->sregs[SR_MSR] &= ~MSR_DZ;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| uint32_t helper_divs(uint32_t a, uint32_t b)
 | |
| {
 | |
|     if (!div_prepare(a, b))
 | |
|         return 0;
 | |
|     return (int32_t)a / (int32_t)b;
 | |
| }
 | |
| 
 | |
| uint32_t helper_divu(uint32_t a, uint32_t b)
 | |
| {
 | |
|     if (!div_prepare(a, b))
 | |
|         return 0;
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
 | |
| {
 | |
|     unsigned int i;
 | |
|     uint32_t mask = 0xff000000;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         if ((a & mask) == (b & mask))
 | |
|             return i + 1;
 | |
|         mask >>= 8;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
 | |
| {
 | |
|     if (addr & mask) {
 | |
|             qemu_log_mask(CPU_LOG_INT,
 | |
|                           "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
 | |
|                           addr, mask, wr, dr);
 | |
|             env->sregs[SR_EAR] = addr;
 | |
|             env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
 | |
|                                  | (dr & 31) << 5;
 | |
|             if (mask == 3) {
 | |
|                 env->sregs[SR_ESR] |= 1 << 11;
 | |
|             }
 | |
|             if (!(env->sregs[SR_MSR] & MSR_EE)) {
 | |
|                 return;
 | |
|             }
 | |
|             helper_raise_exception(EXCP_HW_EXCP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* Writes/reads to the MMU's special regs end up here.  */
 | |
| uint32_t helper_mmu_read(uint32_t rn)
 | |
| {
 | |
|     return mmu_read(env, rn);
 | |
| }
 | |
| 
 | |
| void helper_mmu_write(uint32_t rn, uint32_t v)
 | |
| {
 | |
|     mmu_write(env, rn, v);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
 | |
|                           int is_asi, int size)
 | |
| {
 | |
|     CPUState *saved_env;
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
 | |
|              addr, is_write, is_exec);
 | |
|     if (!(env->sregs[SR_MSR] & MSR_EE)) {
 | |
|         env = saved_env;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     env->sregs[SR_EAR] = addr;
 | |
|     if (is_exec) {
 | |
|         if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
 | |
|             env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
 | |
|             helper_raise_exception(EXCP_HW_EXCP);
 | |
|         }
 | |
|     } else {
 | |
|         if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
 | |
|             env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
 | |
|             helper_raise_exception(EXCP_HW_EXCP);
 | |
|         }
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | 
