 c45e5b5b30
			
		
	
	
		c45e5b5b30
		
	
	
	
	
		
			
			All PCI nics are switched to EFI-enabled roms by default. They are composed from three images (legacy, efi ia32 & efi x86), so classic pxe booting will continue to work. Exception: eepro100 is not switched, it uses a single rom for all emulated eepro100 variants, then goes patch the rom header on the fly with the correct PCI IDs. I doubt that will work as-is with the efi roms. Keep old roms for 1.4+older machine types via compat properties, needed because the efi-enabled roms are larger so the pci rom bar size would change. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
		
			
				
	
	
		
			790 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			790 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU NE2000 emulation
 | |
|  *
 | |
|  * Copyright (c) 2003-2004 Fabrice Bellard
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "hw/hw.h"
 | |
| #include "hw/pci/pci.h"
 | |
| #include "net/net.h"
 | |
| #include "hw/ne2000.h"
 | |
| #include "hw/loader.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| 
 | |
| /* debug NE2000 card */
 | |
| //#define DEBUG_NE2000
 | |
| 
 | |
| #define MAX_ETH_FRAME_SIZE 1514
 | |
| 
 | |
| #define E8390_CMD	0x00  /* The command register (for all pages) */
 | |
| /* Page 0 register offsets. */
 | |
| #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
 | |
| #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
 | |
| #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
 | |
| #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
 | |
| #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
 | |
| #define EN0_TSR		0x04	/* Transmit status reg RD */
 | |
| #define EN0_TPSR	0x04	/* Transmit starting page WR */
 | |
| #define EN0_NCR		0x05	/* Number of collision reg RD */
 | |
| #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
 | |
| #define EN0_FIFO	0x06	/* FIFO RD */
 | |
| #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
 | |
| #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
 | |
| #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
 | |
| #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
 | |
| #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
 | |
| #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
 | |
| #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
 | |
| #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
 | |
| #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
 | |
| #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
 | |
| #define EN0_RSR		0x0c	/* rx status reg RD */
 | |
| #define EN0_RXCR	0x0c	/* RX configuration reg WR */
 | |
| #define EN0_TXCR	0x0d	/* TX configuration reg WR */
 | |
| #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
 | |
| #define EN0_DCFG	0x0e	/* Data configuration reg WR */
 | |
| #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
 | |
| #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
 | |
| #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
 | |
| 
 | |
| #define EN1_PHYS        0x11
 | |
| #define EN1_CURPAG      0x17
 | |
| #define EN1_MULT        0x18
 | |
| 
 | |
| #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
 | |
| #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
 | |
| 
 | |
| #define EN3_CONFIG0	0x33
 | |
| #define EN3_CONFIG1	0x34
 | |
| #define EN3_CONFIG2	0x35
 | |
| #define EN3_CONFIG3	0x36
 | |
| 
 | |
| /*  Register accessed at EN_CMD, the 8390 base addr.  */
 | |
| #define E8390_STOP	0x01	/* Stop and reset the chip */
 | |
| #define E8390_START	0x02	/* Start the chip, clear reset */
 | |
| #define E8390_TRANS	0x04	/* Transmit a frame */
 | |
| #define E8390_RREAD	0x08	/* Remote read */
 | |
| #define E8390_RWRITE	0x10	/* Remote write  */
 | |
| #define E8390_NODMA	0x20	/* Remote DMA */
 | |
| #define E8390_PAGE0	0x00	/* Select page chip registers */
 | |
| #define E8390_PAGE1	0x40	/* using the two high-order bits */
 | |
| #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
 | |
| 
 | |
| /* Bits in EN0_ISR - Interrupt status register */
 | |
| #define ENISR_RX	0x01	/* Receiver, no error */
 | |
| #define ENISR_TX	0x02	/* Transmitter, no error */
 | |
| #define ENISR_RX_ERR	0x04	/* Receiver, with error */
 | |
| #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
 | |
| #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
 | |
| #define ENISR_COUNTERS	0x20	/* Counters need emptying */
 | |
| #define ENISR_RDC	0x40	/* remote dma complete */
 | |
| #define ENISR_RESET	0x80	/* Reset completed */
 | |
| #define ENISR_ALL	0x3f	/* Interrupts we will enable */
 | |
| 
 | |
| /* Bits in received packet status byte and EN0_RSR*/
 | |
| #define ENRSR_RXOK	0x01	/* Received a good packet */
 | |
| #define ENRSR_CRC	0x02	/* CRC error */
 | |
| #define ENRSR_FAE	0x04	/* frame alignment error */
 | |
| #define ENRSR_FO	0x08	/* FIFO overrun */
 | |
| #define ENRSR_MPA	0x10	/* missed pkt */
 | |
| #define ENRSR_PHY	0x20	/* physical/multicast address */
 | |
| #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
 | |
| #define ENRSR_DEF	0x80	/* deferring */
 | |
| 
 | |
| /* Transmitted packet status, EN0_TSR. */
 | |
| #define ENTSR_PTX 0x01	/* Packet transmitted without error */
 | |
| #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
 | |
| #define ENTSR_COL 0x04	/* The transmit collided at least once. */
 | |
| #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
 | |
| #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
 | |
| #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
 | |
| #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
 | |
| #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
 | |
| 
 | |
| typedef struct PCINE2000State {
 | |
|     PCIDevice dev;
 | |
|     NE2000State ne2000;
 | |
| } PCINE2000State;
 | |
| 
 | |
| void ne2000_reset(NE2000State *s)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     s->isr = ENISR_RESET;
 | |
|     memcpy(s->mem, &s->c.macaddr, 6);
 | |
|     s->mem[14] = 0x57;
 | |
|     s->mem[15] = 0x57;
 | |
| 
 | |
|     /* duplicate prom data */
 | |
|     for(i = 15;i >= 0; i--) {
 | |
|         s->mem[2 * i] = s->mem[i];
 | |
|         s->mem[2 * i + 1] = s->mem[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ne2000_update_irq(NE2000State *s)
 | |
| {
 | |
|     int isr;
 | |
|     isr = (s->isr & s->imr) & 0x7f;
 | |
| #if defined(DEBUG_NE2000)
 | |
|     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
 | |
| 	   isr ? 1 : 0, s->isr, s->imr);
 | |
| #endif
 | |
|     qemu_set_irq(s->irq, (isr != 0));
 | |
| }
 | |
| 
 | |
| static int ne2000_buffer_full(NE2000State *s)
 | |
| {
 | |
|     int avail, index, boundary;
 | |
| 
 | |
|     index = s->curpag << 8;
 | |
|     boundary = s->boundary << 8;
 | |
|     if (index < boundary)
 | |
|         avail = boundary - index;
 | |
|     else
 | |
|         avail = (s->stop - s->start) - (index - boundary);
 | |
|     if (avail < (MAX_ETH_FRAME_SIZE + 4))
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int ne2000_can_receive(NetClientState *nc)
 | |
| {
 | |
|     NE2000State *s = qemu_get_nic_opaque(nc);
 | |
| 
 | |
|     if (s->cmd & E8390_STOP)
 | |
|         return 1;
 | |
|     return !ne2000_buffer_full(s);
 | |
| }
 | |
| 
 | |
| #define MIN_BUF_SIZE 60
 | |
| 
 | |
| ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
 | |
| {
 | |
|     NE2000State *s = qemu_get_nic_opaque(nc);
 | |
|     int size = size_;
 | |
|     uint8_t *p;
 | |
|     unsigned int total_len, next, avail, len, index, mcast_idx;
 | |
|     uint8_t buf1[60];
 | |
|     static const uint8_t broadcast_macaddr[6] =
 | |
|         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 | |
| 
 | |
| #if defined(DEBUG_NE2000)
 | |
|     printf("NE2000: received len=%d\n", size);
 | |
| #endif
 | |
| 
 | |
|     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
 | |
|         return -1;
 | |
| 
 | |
|     /* XXX: check this */
 | |
|     if (s->rxcr & 0x10) {
 | |
|         /* promiscuous: receive all */
 | |
|     } else {
 | |
|         if (!memcmp(buf,  broadcast_macaddr, 6)) {
 | |
|             /* broadcast address */
 | |
|             if (!(s->rxcr & 0x04))
 | |
|                 return size;
 | |
|         } else if (buf[0] & 0x01) {
 | |
|             /* multicast */
 | |
|             if (!(s->rxcr & 0x08))
 | |
|                 return size;
 | |
|             mcast_idx = compute_mcast_idx(buf);
 | |
|             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
 | |
|                 return size;
 | |
|         } else if (s->mem[0] == buf[0] &&
 | |
|                    s->mem[2] == buf[1] &&
 | |
|                    s->mem[4] == buf[2] &&
 | |
|                    s->mem[6] == buf[3] &&
 | |
|                    s->mem[8] == buf[4] &&
 | |
|                    s->mem[10] == buf[5]) {
 | |
|             /* match */
 | |
|         } else {
 | |
|             return size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* if too small buffer, then expand it */
 | |
|     if (size < MIN_BUF_SIZE) {
 | |
|         memcpy(buf1, buf, size);
 | |
|         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
 | |
|         buf = buf1;
 | |
|         size = MIN_BUF_SIZE;
 | |
|     }
 | |
| 
 | |
|     index = s->curpag << 8;
 | |
|     /* 4 bytes for header */
 | |
|     total_len = size + 4;
 | |
|     /* address for next packet (4 bytes for CRC) */
 | |
|     next = index + ((total_len + 4 + 255) & ~0xff);
 | |
|     if (next >= s->stop)
 | |
|         next -= (s->stop - s->start);
 | |
|     /* prepare packet header */
 | |
|     p = s->mem + index;
 | |
|     s->rsr = ENRSR_RXOK; /* receive status */
 | |
|     /* XXX: check this */
 | |
|     if (buf[0] & 0x01)
 | |
|         s->rsr |= ENRSR_PHY;
 | |
|     p[0] = s->rsr;
 | |
|     p[1] = next >> 8;
 | |
|     p[2] = total_len;
 | |
|     p[3] = total_len >> 8;
 | |
|     index += 4;
 | |
| 
 | |
|     /* write packet data */
 | |
|     while (size > 0) {
 | |
|         if (index <= s->stop)
 | |
|             avail = s->stop - index;
 | |
|         else
 | |
|             avail = 0;
 | |
|         len = size;
 | |
|         if (len > avail)
 | |
|             len = avail;
 | |
|         memcpy(s->mem + index, buf, len);
 | |
|         buf += len;
 | |
|         index += len;
 | |
|         if (index == s->stop)
 | |
|             index = s->start;
 | |
|         size -= len;
 | |
|     }
 | |
|     s->curpag = next >> 8;
 | |
| 
 | |
|     /* now we can signal we have received something */
 | |
|     s->isr |= ENISR_RX;
 | |
|     ne2000_update_irq(s);
 | |
| 
 | |
|     return size_;
 | |
| }
 | |
| 
 | |
| static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
|     int offset, page, index;
 | |
| 
 | |
|     addr &= 0xf;
 | |
| #ifdef DEBUG_NE2000
 | |
|     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
 | |
| #endif
 | |
|     if (addr == E8390_CMD) {
 | |
|         /* control register */
 | |
|         s->cmd = val;
 | |
|         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
 | |
|             s->isr &= ~ENISR_RESET;
 | |
|             /* test specific case: zero length transfer */
 | |
|             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
 | |
|                 s->rcnt == 0) {
 | |
|                 s->isr |= ENISR_RDC;
 | |
|                 ne2000_update_irq(s);
 | |
|             }
 | |
|             if (val & E8390_TRANS) {
 | |
|                 index = (s->tpsr << 8);
 | |
|                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
 | |
|                 if (index >= NE2000_PMEM_END)
 | |
|                     index -= NE2000_PMEM_SIZE;
 | |
|                 /* fail safe: check range on the transmitted length  */
 | |
|                 if (index + s->tcnt <= NE2000_PMEM_END) {
 | |
|                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
 | |
|                                      s->tcnt);
 | |
|                 }
 | |
|                 /* signal end of transfer */
 | |
|                 s->tsr = ENTSR_PTX;
 | |
|                 s->isr |= ENISR_TX;
 | |
|                 s->cmd &= ~E8390_TRANS;
 | |
|                 ne2000_update_irq(s);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         page = s->cmd >> 6;
 | |
|         offset = addr | (page << 4);
 | |
|         switch(offset) {
 | |
|         case EN0_STARTPG:
 | |
|             s->start = val << 8;
 | |
|             break;
 | |
|         case EN0_STOPPG:
 | |
|             s->stop = val << 8;
 | |
|             break;
 | |
|         case EN0_BOUNDARY:
 | |
|             s->boundary = val;
 | |
|             break;
 | |
|         case EN0_IMR:
 | |
|             s->imr = val;
 | |
|             ne2000_update_irq(s);
 | |
|             break;
 | |
|         case EN0_TPSR:
 | |
|             s->tpsr = val;
 | |
|             break;
 | |
|         case EN0_TCNTLO:
 | |
|             s->tcnt = (s->tcnt & 0xff00) | val;
 | |
|             break;
 | |
|         case EN0_TCNTHI:
 | |
|             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
 | |
|             break;
 | |
|         case EN0_RSARLO:
 | |
|             s->rsar = (s->rsar & 0xff00) | val;
 | |
|             break;
 | |
|         case EN0_RSARHI:
 | |
|             s->rsar = (s->rsar & 0x00ff) | (val << 8);
 | |
|             break;
 | |
|         case EN0_RCNTLO:
 | |
|             s->rcnt = (s->rcnt & 0xff00) | val;
 | |
|             break;
 | |
|         case EN0_RCNTHI:
 | |
|             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
 | |
|             break;
 | |
|         case EN0_RXCR:
 | |
|             s->rxcr = val;
 | |
|             break;
 | |
|         case EN0_DCFG:
 | |
|             s->dcfg = val;
 | |
|             break;
 | |
|         case EN0_ISR:
 | |
|             s->isr &= ~(val & 0x7f);
 | |
|             ne2000_update_irq(s);
 | |
|             break;
 | |
|         case EN1_PHYS ... EN1_PHYS + 5:
 | |
|             s->phys[offset - EN1_PHYS] = val;
 | |
|             break;
 | |
|         case EN1_CURPAG:
 | |
|             s->curpag = val;
 | |
|             break;
 | |
|         case EN1_MULT ... EN1_MULT + 7:
 | |
|             s->mult[offset - EN1_MULT] = val;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
|     int offset, page, ret;
 | |
| 
 | |
|     addr &= 0xf;
 | |
|     if (addr == E8390_CMD) {
 | |
|         ret = s->cmd;
 | |
|     } else {
 | |
|         page = s->cmd >> 6;
 | |
|         offset = addr | (page << 4);
 | |
|         switch(offset) {
 | |
|         case EN0_TSR:
 | |
|             ret = s->tsr;
 | |
|             break;
 | |
|         case EN0_BOUNDARY:
 | |
|             ret = s->boundary;
 | |
|             break;
 | |
|         case EN0_ISR:
 | |
|             ret = s->isr;
 | |
|             break;
 | |
| 	case EN0_RSARLO:
 | |
| 	    ret = s->rsar & 0x00ff;
 | |
| 	    break;
 | |
| 	case EN0_RSARHI:
 | |
| 	    ret = s->rsar >> 8;
 | |
| 	    break;
 | |
|         case EN1_PHYS ... EN1_PHYS + 5:
 | |
|             ret = s->phys[offset - EN1_PHYS];
 | |
|             break;
 | |
|         case EN1_CURPAG:
 | |
|             ret = s->curpag;
 | |
|             break;
 | |
|         case EN1_MULT ... EN1_MULT + 7:
 | |
|             ret = s->mult[offset - EN1_MULT];
 | |
|             break;
 | |
|         case EN0_RSR:
 | |
|             ret = s->rsr;
 | |
|             break;
 | |
|         case EN2_STARTPG:
 | |
|             ret = s->start >> 8;
 | |
|             break;
 | |
|         case EN2_STOPPG:
 | |
|             ret = s->stop >> 8;
 | |
|             break;
 | |
| 	case EN0_RTL8029ID0:
 | |
| 	    ret = 0x50;
 | |
| 	    break;
 | |
| 	case EN0_RTL8029ID1:
 | |
| 	    ret = 0x43;
 | |
| 	    break;
 | |
| 	case EN3_CONFIG0:
 | |
| 	    ret = 0;		/* 10baseT media */
 | |
| 	    break;
 | |
| 	case EN3_CONFIG2:
 | |
| 	    ret = 0x40;		/* 10baseT active */
 | |
| 	    break;
 | |
| 	case EN3_CONFIG3:
 | |
| 	    ret = 0x40;		/* Full duplex */
 | |
| 	    break;
 | |
|         default:
 | |
|             ret = 0x00;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| #ifdef DEBUG_NE2000
 | |
|     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
 | |
|                                      uint32_t val)
 | |
| {
 | |
|     if (addr < 32 ||
 | |
|         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 | |
|         s->mem[addr] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
 | |
|                                      uint32_t val)
 | |
| {
 | |
|     addr &= ~1; /* XXX: check exact behaviour if not even */
 | |
|     if (addr < 32 ||
 | |
|         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 | |
|         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
 | |
|                                      uint32_t val)
 | |
| {
 | |
|     addr &= ~1; /* XXX: check exact behaviour if not even */
 | |
|     if (addr < 32 ||
 | |
|         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 | |
|         cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
 | |
| {
 | |
|     if (addr < 32 ||
 | |
|         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 | |
|         return s->mem[addr];
 | |
|     } else {
 | |
|         return 0xff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
 | |
| {
 | |
|     addr &= ~1; /* XXX: check exact behaviour if not even */
 | |
|     if (addr < 32 ||
 | |
|         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 | |
|         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
 | |
|     } else {
 | |
|         return 0xffff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
 | |
| {
 | |
|     addr &= ~1; /* XXX: check exact behaviour if not even */
 | |
|     if (addr < 32 ||
 | |
|         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
 | |
|         return le32_to_cpupu((uint32_t *)(s->mem + addr));
 | |
|     } else {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void ne2000_dma_update(NE2000State *s, int len)
 | |
| {
 | |
|     s->rsar += len;
 | |
|     /* wrap */
 | |
|     /* XXX: check what to do if rsar > stop */
 | |
|     if (s->rsar == s->stop)
 | |
|         s->rsar = s->start;
 | |
| 
 | |
|     if (s->rcnt <= len) {
 | |
|         s->rcnt = 0;
 | |
|         /* signal end of transfer */
 | |
|         s->isr |= ENISR_RDC;
 | |
|         ne2000_update_irq(s);
 | |
|     } else {
 | |
|         s->rcnt -= len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
| 
 | |
| #ifdef DEBUG_NE2000
 | |
|     printf("NE2000: asic write val=0x%04x\n", val);
 | |
| #endif
 | |
|     if (s->rcnt == 0)
 | |
|         return;
 | |
|     if (s->dcfg & 0x01) {
 | |
|         /* 16 bit access */
 | |
|         ne2000_mem_writew(s, s->rsar, val);
 | |
|         ne2000_dma_update(s, 2);
 | |
|     } else {
 | |
|         /* 8 bit access */
 | |
|         ne2000_mem_writeb(s, s->rsar, val);
 | |
|         ne2000_dma_update(s, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
|     int ret;
 | |
| 
 | |
|     if (s->dcfg & 0x01) {
 | |
|         /* 16 bit access */
 | |
|         ret = ne2000_mem_readw(s, s->rsar);
 | |
|         ne2000_dma_update(s, 2);
 | |
|     } else {
 | |
|         /* 8 bit access */
 | |
|         ret = ne2000_mem_readb(s, s->rsar);
 | |
|         ne2000_dma_update(s, 1);
 | |
|     }
 | |
| #ifdef DEBUG_NE2000
 | |
|     printf("NE2000: asic read val=0x%04x\n", ret);
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
| 
 | |
| #ifdef DEBUG_NE2000
 | |
|     printf("NE2000: asic writel val=0x%04x\n", val);
 | |
| #endif
 | |
|     if (s->rcnt == 0)
 | |
|         return;
 | |
|     /* 32 bit access */
 | |
|     ne2000_mem_writel(s, s->rsar, val);
 | |
|     ne2000_dma_update(s, 4);
 | |
| }
 | |
| 
 | |
| static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
|     int ret;
 | |
| 
 | |
|     /* 32 bit access */
 | |
|     ret = ne2000_mem_readl(s, s->rsar);
 | |
|     ne2000_dma_update(s, 4);
 | |
| #ifdef DEBUG_NE2000
 | |
|     printf("NE2000: asic readl val=0x%04x\n", ret);
 | |
| #endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     /* nothing to do (end of reset pulse) */
 | |
| }
 | |
| 
 | |
| static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
|     ne2000_reset(s);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ne2000_post_load(void* opaque, int version_id)
 | |
| {
 | |
|     NE2000State* s = opaque;
 | |
| 
 | |
|     if (version_id < 2) {
 | |
|         s->rxcr = 0x0c;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| const VMStateDescription vmstate_ne2000 = {
 | |
|     .name = "ne2000",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 0,
 | |
|     .minimum_version_id_old = 0,
 | |
|     .post_load = ne2000_post_load,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
 | |
|         VMSTATE_UINT8(cmd, NE2000State),
 | |
|         VMSTATE_UINT32(start, NE2000State),
 | |
|         VMSTATE_UINT32(stop, NE2000State),
 | |
|         VMSTATE_UINT8(boundary, NE2000State),
 | |
|         VMSTATE_UINT8(tsr, NE2000State),
 | |
|         VMSTATE_UINT8(tpsr, NE2000State),
 | |
|         VMSTATE_UINT16(tcnt, NE2000State),
 | |
|         VMSTATE_UINT16(rcnt, NE2000State),
 | |
|         VMSTATE_UINT32(rsar, NE2000State),
 | |
|         VMSTATE_UINT8(rsr, NE2000State),
 | |
|         VMSTATE_UINT8(isr, NE2000State),
 | |
|         VMSTATE_UINT8(dcfg, NE2000State),
 | |
|         VMSTATE_UINT8(imr, NE2000State),
 | |
|         VMSTATE_BUFFER(phys, NE2000State),
 | |
|         VMSTATE_UINT8(curpag, NE2000State),
 | |
|         VMSTATE_BUFFER(mult, NE2000State),
 | |
|         VMSTATE_UNUSED(4), /* was irq */
 | |
|         VMSTATE_BUFFER(mem, NE2000State),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_pci_ne2000 = {
 | |
|     .name = "ne2000",
 | |
|     .version_id = 3,
 | |
|     .minimum_version_id = 3,
 | |
|     .minimum_version_id_old = 3,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
 | |
|         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static uint64_t ne2000_read(void *opaque, hwaddr addr,
 | |
|                             unsigned size)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
| 
 | |
|     if (addr < 0x10 && size == 1) {
 | |
|         return ne2000_ioport_read(s, addr);
 | |
|     } else if (addr == 0x10) {
 | |
|         if (size <= 2) {
 | |
|             return ne2000_asic_ioport_read(s, addr);
 | |
|         } else {
 | |
|             return ne2000_asic_ioport_readl(s, addr);
 | |
|         }
 | |
|     } else if (addr == 0x1f && size == 1) {
 | |
|         return ne2000_reset_ioport_read(s, addr);
 | |
|     }
 | |
|     return ((uint64_t)1 << (size * 8)) - 1;
 | |
| }
 | |
| 
 | |
| static void ne2000_write(void *opaque, hwaddr addr,
 | |
|                          uint64_t data, unsigned size)
 | |
| {
 | |
|     NE2000State *s = opaque;
 | |
| 
 | |
|     if (addr < 0x10 && size == 1) {
 | |
|         ne2000_ioport_write(s, addr, data);
 | |
|     } else if (addr == 0x10) {
 | |
|         if (size <= 2) {
 | |
|             ne2000_asic_ioport_write(s, addr, data);
 | |
|         } else {
 | |
|             ne2000_asic_ioport_writel(s, addr, data);
 | |
|         }
 | |
|     } else if (addr == 0x1f && size == 1) {
 | |
|         ne2000_reset_ioport_write(s, addr, data);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps ne2000_ops = {
 | |
|     .read = ne2000_read,
 | |
|     .write = ne2000_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /***********************************************************/
 | |
| /* PCI NE2000 definitions */
 | |
| 
 | |
| void ne2000_setup_io(NE2000State *s, unsigned size)
 | |
| {
 | |
|     memory_region_init_io(&s->io, &ne2000_ops, s, "ne2000", size);
 | |
| }
 | |
| 
 | |
| static void ne2000_cleanup(NetClientState *nc)
 | |
| {
 | |
|     NE2000State *s = qemu_get_nic_opaque(nc);
 | |
| 
 | |
|     s->nic = NULL;
 | |
| }
 | |
| 
 | |
| static NetClientInfo net_ne2000_info = {
 | |
|     .type = NET_CLIENT_OPTIONS_KIND_NIC,
 | |
|     .size = sizeof(NICState),
 | |
|     .can_receive = ne2000_can_receive,
 | |
|     .receive = ne2000_receive,
 | |
|     .cleanup = ne2000_cleanup,
 | |
| };
 | |
| 
 | |
| static int pci_ne2000_init(PCIDevice *pci_dev)
 | |
| {
 | |
|     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 | |
|     NE2000State *s;
 | |
|     uint8_t *pci_conf;
 | |
| 
 | |
|     pci_conf = d->dev.config;
 | |
|     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
 | |
| 
 | |
|     s = &d->ne2000;
 | |
|     ne2000_setup_io(s, 0x100);
 | |
|     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
 | |
|     s->irq = d->dev.irq[0];
 | |
| 
 | |
|     qemu_macaddr_default_if_unset(&s->c.macaddr);
 | |
|     ne2000_reset(s);
 | |
| 
 | |
|     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
 | |
|                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
 | |
|     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
 | |
| 
 | |
|     add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void pci_ne2000_exit(PCIDevice *pci_dev)
 | |
| {
 | |
|     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
 | |
|     NE2000State *s = &d->ne2000;
 | |
| 
 | |
|     memory_region_destroy(&s->io);
 | |
|     qemu_del_nic(s->nic);
 | |
| }
 | |
| 
 | |
| static Property ne2000_properties[] = {
 | |
|     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static void ne2000_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
 | |
| 
 | |
|     k->init = pci_ne2000_init;
 | |
|     k->exit = pci_ne2000_exit;
 | |
|     k->romfile = "efi-ne2k_pci.rom",
 | |
|     k->vendor_id = PCI_VENDOR_ID_REALTEK;
 | |
|     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
 | |
|     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
 | |
|     dc->vmsd = &vmstate_pci_ne2000;
 | |
|     dc->props = ne2000_properties;
 | |
| }
 | |
| 
 | |
| static const TypeInfo ne2000_info = {
 | |
|     .name          = "ne2k_pci",
 | |
|     .parent        = TYPE_PCI_DEVICE,
 | |
|     .instance_size = sizeof(PCINE2000State),
 | |
|     .class_init    = ne2000_class_init,
 | |
| };
 | |
| 
 | |
| static void ne2000_register_types(void)
 | |
| {
 | |
|     type_register_static(&ne2000_info);
 | |
| }
 | |
| 
 | |
| type_init(ne2000_register_types)
 |