 8641136c54
			
		
	
	
		8641136c54
		
	
	
	
	
		
			
			Added Vector Base Address remapping on ARM v7. Signed-off-by: Nathan Rossi <nathan.rossi@xilinx.com> Signed-off-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com> [PMM: removed spurious mask of value with 1<<31] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			933 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			933 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM virtual CPU header
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #ifndef CPU_ARM_H
 | |
| #define CPU_ARM_H
 | |
| 
 | |
| #include "config.h"
 | |
| 
 | |
| #if defined(TARGET_AARCH64)
 | |
|   /* AArch64 definitions */
 | |
| #  define TARGET_LONG_BITS 64
 | |
| #  define ELF_MACHINE EM_AARCH64
 | |
| #else
 | |
| #  define TARGET_LONG_BITS 32
 | |
| #  define ELF_MACHINE EM_ARM
 | |
| #endif
 | |
| 
 | |
| #define CPUArchState struct CPUARMState
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "exec/cpu-defs.h"
 | |
| 
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #define TARGET_HAS_ICE 1
 | |
| 
 | |
| #define EXCP_UDEF            1   /* undefined instruction */
 | |
| #define EXCP_SWI             2   /* software interrupt */
 | |
| #define EXCP_PREFETCH_ABORT  3
 | |
| #define EXCP_DATA_ABORT      4
 | |
| #define EXCP_IRQ             5
 | |
| #define EXCP_FIQ             6
 | |
| #define EXCP_BKPT            7
 | |
| #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
 | |
| #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
 | |
| #define EXCP_STREX          10
 | |
| 
 | |
| #define ARMV7M_EXCP_RESET   1
 | |
| #define ARMV7M_EXCP_NMI     2
 | |
| #define ARMV7M_EXCP_HARD    3
 | |
| #define ARMV7M_EXCP_MEM     4
 | |
| #define ARMV7M_EXCP_BUS     5
 | |
| #define ARMV7M_EXCP_USAGE   6
 | |
| #define ARMV7M_EXCP_SVC     11
 | |
| #define ARMV7M_EXCP_DEBUG   12
 | |
| #define ARMV7M_EXCP_PENDSV  14
 | |
| #define ARMV7M_EXCP_SYSTICK 15
 | |
| 
 | |
| /* ARM-specific interrupt pending bits.  */
 | |
| #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
 | |
| 
 | |
| /* Meanings of the ARMCPU object's two inbound GPIO lines */
 | |
| #define ARM_CPU_IRQ 0
 | |
| #define ARM_CPU_FIQ 1
 | |
| 
 | |
| typedef void ARMWriteCPFunc(void *opaque, int cp_info,
 | |
|                             int srcreg, int operand, uint32_t value);
 | |
| typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
 | |
|                                int dstreg, int operand);
 | |
| 
 | |
| struct arm_boot_info;
 | |
| 
 | |
| #define NB_MMU_MODES 2
 | |
| 
 | |
| /* We currently assume float and double are IEEE single and double
 | |
|    precision respectively.
 | |
|    Doing runtime conversions is tricky because VFP registers may contain
 | |
|    integer values (eg. as the result of a FTOSI instruction).
 | |
|    s<2n> maps to the least significant half of d<n>
 | |
|    s<2n+1> maps to the most significant half of d<n>
 | |
|  */
 | |
| 
 | |
| /* CPU state for each instance of a generic timer (in cp15 c14) */
 | |
| typedef struct ARMGenericTimer {
 | |
|     uint64_t cval; /* Timer CompareValue register */
 | |
|     uint32_t ctl; /* Timer Control register */
 | |
| } ARMGenericTimer;
 | |
| 
 | |
| #define GTIMER_PHYS 0
 | |
| #define GTIMER_VIRT 1
 | |
| #define NUM_GTIMERS 2
 | |
| 
 | |
| /* Scale factor for generic timers, ie number of ns per tick.
 | |
|  * This gives a 62.5MHz timer.
 | |
|  */
 | |
| #define GTIMER_SCALE 16
 | |
| 
 | |
| typedef struct CPUARMState {
 | |
|     /* Regs for current mode.  */
 | |
|     uint32_t regs[16];
 | |
| 
 | |
|     /* 32/64 switch only happens when taking and returning from
 | |
|      * exceptions so the overlap semantics are taken care of then
 | |
|      * instead of having a complicated union.
 | |
|      */
 | |
|     /* Regs for A64 mode.  */
 | |
|     uint64_t xregs[32];
 | |
|     uint64_t pc;
 | |
|     /* TODO: pstate doesn't correspond to an architectural register;
 | |
|      * it would be better modelled as the underlying fields.
 | |
|      */
 | |
|     uint32_t pstate;
 | |
|     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 | |
| 
 | |
|     /* Frequently accessed CPSR bits are stored separately for efficiency.
 | |
|        This contains all the other bits.  Use cpsr_{read,write} to access
 | |
|        the whole CPSR.  */
 | |
|     uint32_t uncached_cpsr;
 | |
|     uint32_t spsr;
 | |
| 
 | |
|     /* Banked registers.  */
 | |
|     uint32_t banked_spsr[6];
 | |
|     uint32_t banked_r13[6];
 | |
|     uint32_t banked_r14[6];
 | |
| 
 | |
|     /* These hold r8-r12.  */
 | |
|     uint32_t usr_regs[5];
 | |
|     uint32_t fiq_regs[5];
 | |
| 
 | |
|     /* cpsr flag cache for faster execution */
 | |
|     uint32_t CF; /* 0 or 1 */
 | |
|     uint32_t VF; /* V is the bit 31. All other bits are undefined */
 | |
|     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 | |
|     uint32_t ZF; /* Z set if zero.  */
 | |
|     uint32_t QF; /* 0 or 1 */
 | |
|     uint32_t GE; /* cpsr[19:16] */
 | |
|     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 | |
|     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 | |
| 
 | |
|     /* System control coprocessor (cp15) */
 | |
|     struct {
 | |
|         uint32_t c0_cpuid;
 | |
|         uint32_t c0_cssel; /* Cache size selection.  */
 | |
|         uint32_t c1_sys; /* System control register.  */
 | |
|         uint32_t c1_coproc; /* Coprocessor access register.  */
 | |
|         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 | |
|         uint32_t c1_scr; /* secure config register.  */
 | |
|         uint32_t c2_base0; /* MMU translation table base 0.  */
 | |
|         uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
 | |
|         uint32_t c2_base1; /* MMU translation table base 0.  */
 | |
|         uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
 | |
|         uint32_t c2_control; /* MMU translation table base control.  */
 | |
|         uint32_t c2_mask; /* MMU translation table base selection mask.  */
 | |
|         uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
 | |
|         uint32_t c2_data; /* MPU data cachable bits.  */
 | |
|         uint32_t c2_insn; /* MPU instruction cachable bits.  */
 | |
|         uint32_t c3; /* MMU domain access control register
 | |
|                         MPU write buffer control.  */
 | |
|         uint32_t c5_insn; /* Fault status registers.  */
 | |
|         uint32_t c5_data;
 | |
|         uint32_t c6_region[8]; /* MPU base/size registers.  */
 | |
|         uint32_t c6_insn; /* Fault address registers.  */
 | |
|         uint32_t c6_data;
 | |
|         uint32_t c7_par;  /* Translation result. */
 | |
|         uint32_t c7_par_hi;  /* Translation result, high 32 bits */
 | |
|         uint32_t c9_insn; /* Cache lockdown registers.  */
 | |
|         uint32_t c9_data;
 | |
|         uint32_t c9_pmcr; /* performance monitor control register */
 | |
|         uint32_t c9_pmcnten; /* perf monitor counter enables */
 | |
|         uint32_t c9_pmovsr; /* perf monitor overflow status */
 | |
|         uint32_t c9_pmxevtyper; /* perf monitor event type */
 | |
|         uint32_t c9_pmuserenr; /* perf monitor user enable */
 | |
|         uint32_t c9_pminten; /* perf monitor interrupt enables */
 | |
|         uint32_t c12_vbar; /* vector base address register */
 | |
|         uint32_t c13_fcse; /* FCSE PID.  */
 | |
|         uint32_t c13_context; /* Context ID.  */
 | |
|         uint32_t c13_tls1; /* User RW Thread register.  */
 | |
|         uint32_t c13_tls2; /* User RO Thread register.  */
 | |
|         uint32_t c13_tls3; /* Privileged Thread register.  */
 | |
|         uint32_t c14_cntfrq; /* Counter Frequency register */
 | |
|         uint32_t c14_cntkctl; /* Timer Control register */
 | |
|         ARMGenericTimer c14_timer[NUM_GTIMERS];
 | |
|         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 | |
|         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 | |
|         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 | |
|         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 | |
|         uint32_t c15_threadid; /* TI debugger thread-ID.  */
 | |
|         uint32_t c15_config_base_address; /* SCU base address.  */
 | |
|         uint32_t c15_diagnostic; /* diagnostic register */
 | |
|         uint32_t c15_power_diagnostic;
 | |
|         uint32_t c15_power_control; /* power control */
 | |
|     } cp15;
 | |
| 
 | |
|     /* System registers (AArch64) */
 | |
|     struct {
 | |
|         uint64_t tpidr_el0;
 | |
|     } sr;
 | |
| 
 | |
|     struct {
 | |
|         uint32_t other_sp;
 | |
|         uint32_t vecbase;
 | |
|         uint32_t basepri;
 | |
|         uint32_t control;
 | |
|         int current_sp;
 | |
|         int exception;
 | |
|         int pending_exception;
 | |
|     } v7m;
 | |
| 
 | |
|     /* Thumb-2 EE state.  */
 | |
|     uint32_t teecr;
 | |
|     uint32_t teehbr;
 | |
| 
 | |
|     /* VFP coprocessor state.  */
 | |
|     struct {
 | |
|         /* VFP/Neon register state. Note that the mapping between S, D and Q
 | |
|          * views of the register bank differs between AArch64 and AArch32:
 | |
|          * In AArch32:
 | |
|          *  Qn = regs[2n+1]:regs[2n]
 | |
|          *  Dn = regs[n]
 | |
|          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
 | |
|          * (and regs[32] to regs[63] are inaccessible)
 | |
|          * In AArch64:
 | |
|          *  Qn = regs[2n+1]:regs[2n]
 | |
|          *  Dn = regs[2n]
 | |
|          *  Sn = regs[2n] bits 31..0
 | |
|          * This corresponds to the architecturally defined mapping between
 | |
|          * the two execution states, and means we do not need to explicitly
 | |
|          * map these registers when changing states.
 | |
|          */
 | |
|         float64 regs[64];
 | |
| 
 | |
|         uint32_t xregs[16];
 | |
|         /* We store these fpcsr fields separately for convenience.  */
 | |
|         int vec_len;
 | |
|         int vec_stride;
 | |
| 
 | |
|         /* scratch space when Tn are not sufficient.  */
 | |
|         uint32_t scratch[8];
 | |
| 
 | |
|         /* fp_status is the "normal" fp status. standard_fp_status retains
 | |
|          * values corresponding to the ARM "Standard FPSCR Value", ie
 | |
|          * default-NaN, flush-to-zero, round-to-nearest and is used by
 | |
|          * any operations (generally Neon) which the architecture defines
 | |
|          * as controlled by the standard FPSCR value rather than the FPSCR.
 | |
|          *
 | |
|          * To avoid having to transfer exception bits around, we simply
 | |
|          * say that the FPSCR cumulative exception flags are the logical
 | |
|          * OR of the flags in the two fp statuses. This relies on the
 | |
|          * only thing which needs to read the exception flags being
 | |
|          * an explicit FPSCR read.
 | |
|          */
 | |
|         float_status fp_status;
 | |
|         float_status standard_fp_status;
 | |
|     } vfp;
 | |
|     uint32_t exclusive_addr;
 | |
|     uint32_t exclusive_val;
 | |
|     uint32_t exclusive_high;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     uint32_t exclusive_test;
 | |
|     uint32_t exclusive_info;
 | |
| #endif
 | |
| 
 | |
|     /* iwMMXt coprocessor state.  */
 | |
|     struct {
 | |
|         uint64_t regs[16];
 | |
|         uint64_t val;
 | |
| 
 | |
|         uint32_t cregs[16];
 | |
|     } iwmmxt;
 | |
| 
 | |
|     /* For mixed endian mode.  */
 | |
|     bool bswap_code;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     /* For usermode syscall translation.  */
 | |
|     int eabi;
 | |
| #endif
 | |
| 
 | |
|     CPU_COMMON
 | |
| 
 | |
|     /* These fields after the common ones so they are preserved on reset.  */
 | |
| 
 | |
|     /* Internal CPU feature flags.  */
 | |
|     uint64_t features;
 | |
| 
 | |
|     void *nvic;
 | |
|     const struct arm_boot_info *boot_info;
 | |
| } CPUARMState;
 | |
| 
 | |
| #include "cpu-qom.h"
 | |
| 
 | |
| ARMCPU *cpu_arm_init(const char *cpu_model);
 | |
| void arm_translate_init(void);
 | |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 | |
| int cpu_arm_exec(CPUARMState *s);
 | |
| int bank_number(int mode);
 | |
| void switch_mode(CPUARMState *, int);
 | |
| uint32_t do_arm_semihosting(CPUARMState *env);
 | |
| 
 | |
| static inline bool is_a64(CPUARMState *env)
 | |
| {
 | |
|     return env->aarch64;
 | |
| }
 | |
| 
 | |
| #define PSTATE_N_SHIFT 3
 | |
| #define PSTATE_N  (1 << PSTATE_N_SHIFT)
 | |
| #define PSTATE_Z_SHIFT 2
 | |
| #define PSTATE_Z  (1 << PSTATE_Z_SHIFT)
 | |
| #define PSTATE_C_SHIFT 1
 | |
| #define PSTATE_C  (1 << PSTATE_C_SHIFT)
 | |
| #define PSTATE_V_SHIFT 0
 | |
| #define PSTATE_V  (1 << PSTATE_V_SHIFT)
 | |
| 
 | |
| /* you can call this signal handler from your SIGBUS and SIGSEGV
 | |
|    signal handlers to inform the virtual CPU of exceptions. non zero
 | |
|    is returned if the signal was handled by the virtual CPU.  */
 | |
| int cpu_arm_signal_handler(int host_signum, void *pinfo,
 | |
|                            void *puc);
 | |
| int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
 | |
|                               int mmu_idx);
 | |
| #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
 | |
| 
 | |
| #define CPSR_M (0x1fU)
 | |
| #define CPSR_T (1U << 5)
 | |
| #define CPSR_F (1U << 6)
 | |
| #define CPSR_I (1U << 7)
 | |
| #define CPSR_A (1U << 8)
 | |
| #define CPSR_E (1U << 9)
 | |
| #define CPSR_IT_2_7 (0xfc00U)
 | |
| #define CPSR_GE (0xfU << 16)
 | |
| #define CPSR_RESERVED (0xfU << 20)
 | |
| #define CPSR_J (1U << 24)
 | |
| #define CPSR_IT_0_1 (3U << 25)
 | |
| #define CPSR_Q (1U << 27)
 | |
| #define CPSR_V (1U << 28)
 | |
| #define CPSR_C (1U << 29)
 | |
| #define CPSR_Z (1U << 30)
 | |
| #define CPSR_N (1U << 31)
 | |
| #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
 | |
| 
 | |
| #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
 | |
| #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
 | |
| /* Bits writable in user mode.  */
 | |
| #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
 | |
| /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
 | |
| #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
 | |
| 
 | |
| /* Return the current CPSR value.  */
 | |
| uint32_t cpsr_read(CPUARMState *env);
 | |
| /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
 | |
| 
 | |
| /* Return the current xPSR value.  */
 | |
| static inline uint32_t xpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return (env->NF & 0x80000000) | (ZF << 30)
 | |
|         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | env->v7m.exception;
 | |
| }
 | |
| 
 | |
| /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
 | |
| static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     if (mask & CPSR_NZCV) {
 | |
|         env->ZF = (~val) & CPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & CPSR_Q)
 | |
|         env->QF = ((val & CPSR_Q) != 0);
 | |
|     if (mask & (1 << 24))
 | |
|         env->thumb = ((val & (1 << 24)) != 0);
 | |
|     if (mask & CPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & CPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & 0x1ff) {
 | |
|         env->v7m.exception = val & 0x1ff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the current FPSCR value.  */
 | |
| uint32_t vfp_get_fpscr(CPUARMState *env);
 | |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val);
 | |
| 
 | |
| enum arm_cpu_mode {
 | |
|   ARM_CPU_MODE_USR = 0x10,
 | |
|   ARM_CPU_MODE_FIQ = 0x11,
 | |
|   ARM_CPU_MODE_IRQ = 0x12,
 | |
|   ARM_CPU_MODE_SVC = 0x13,
 | |
|   ARM_CPU_MODE_ABT = 0x17,
 | |
|   ARM_CPU_MODE_UND = 0x1b,
 | |
|   ARM_CPU_MODE_SYS = 0x1f
 | |
| };
 | |
| 
 | |
| /* VFP system registers.  */
 | |
| #define ARM_VFP_FPSID   0
 | |
| #define ARM_VFP_FPSCR   1
 | |
| #define ARM_VFP_MVFR1   6
 | |
| #define ARM_VFP_MVFR0   7
 | |
| #define ARM_VFP_FPEXC   8
 | |
| #define ARM_VFP_FPINST  9
 | |
| #define ARM_VFP_FPINST2 10
 | |
| 
 | |
| /* iwMMXt coprocessor control registers.  */
 | |
| #define ARM_IWMMXT_wCID		0
 | |
| #define ARM_IWMMXT_wCon		1
 | |
| #define ARM_IWMMXT_wCSSF	2
 | |
| #define ARM_IWMMXT_wCASF	3
 | |
| #define ARM_IWMMXT_wCGR0	8
 | |
| #define ARM_IWMMXT_wCGR1	9
 | |
| #define ARM_IWMMXT_wCGR2	10
 | |
| #define ARM_IWMMXT_wCGR3	11
 | |
| 
 | |
| /* If adding a feature bit which corresponds to a Linux ELF
 | |
|  * HWCAP bit, remember to update the feature-bit-to-hwcap
 | |
|  * mapping in linux-user/elfload.c:get_elf_hwcap().
 | |
|  */
 | |
| enum arm_features {
 | |
|     ARM_FEATURE_VFP,
 | |
|     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
 | |
|     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
 | |
|     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
 | |
|     ARM_FEATURE_V6,
 | |
|     ARM_FEATURE_V6K,
 | |
|     ARM_FEATURE_V7,
 | |
|     ARM_FEATURE_THUMB2,
 | |
|     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
 | |
|     ARM_FEATURE_VFP3,
 | |
|     ARM_FEATURE_VFP_FP16,
 | |
|     ARM_FEATURE_NEON,
 | |
|     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
 | |
|     ARM_FEATURE_M, /* Microcontroller profile.  */
 | |
|     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
 | |
|     ARM_FEATURE_THUMB2EE,
 | |
|     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
 | |
|     ARM_FEATURE_V4T,
 | |
|     ARM_FEATURE_V5,
 | |
|     ARM_FEATURE_STRONGARM,
 | |
|     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
 | |
|     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
 | |
|     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
 | |
|     ARM_FEATURE_GENERIC_TIMER,
 | |
|     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
 | |
|     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
 | |
|     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
 | |
|     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
 | |
|     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
 | |
|     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
 | |
|     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
 | |
|     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
 | |
|     ARM_FEATURE_V8,
 | |
|     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
 | |
| };
 | |
| 
 | |
| static inline int arm_feature(CPUARMState *env, int feature)
 | |
| {
 | |
|     return (env->features & (1ULL << feature)) != 0;
 | |
| }
 | |
| 
 | |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
 | |
| 
 | |
| /* Interface between CPU and Interrupt controller.  */
 | |
| void armv7m_nvic_set_pending(void *opaque, int irq);
 | |
| int armv7m_nvic_acknowledge_irq(void *opaque);
 | |
| void armv7m_nvic_complete_irq(void *opaque, int irq);
 | |
| 
 | |
| /* Interface for defining coprocessor registers.
 | |
|  * Registers are defined in tables of arm_cp_reginfo structs
 | |
|  * which are passed to define_arm_cp_regs().
 | |
|  */
 | |
| 
 | |
| /* When looking up a coprocessor register we look for it
 | |
|  * via an integer which encodes all of:
 | |
|  *  coprocessor number
 | |
|  *  Crn, Crm, opc1, opc2 fields
 | |
|  *  32 or 64 bit register (ie is it accessed via MRC/MCR
 | |
|  *    or via MRRC/MCRR?)
 | |
|  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 | |
|  * (In this case crn and opc2 should be zero.)
 | |
|  */
 | |
| #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
 | |
|     (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
 | |
|      ((crm) << 7) | ((opc1) << 3) | (opc2))
 | |
| 
 | |
| /* Note that these must line up with the KVM/ARM register
 | |
|  * ID field definitions (kvm.c will check this, but we
 | |
|  * can't just use the KVM defines here as the kvm headers
 | |
|  * are unavailable to non-KVM-specific files)
 | |
|  */
 | |
| #define CP_REG_SIZE_SHIFT 52
 | |
| #define CP_REG_SIZE_MASK       0x00f0000000000000ULL
 | |
| #define CP_REG_SIZE_U32        0x0020000000000000ULL
 | |
| #define CP_REG_SIZE_U64        0x0030000000000000ULL
 | |
| #define CP_REG_ARM             0x4000000000000000ULL
 | |
| 
 | |
| /* Convert a full 64 bit KVM register ID to the truncated 32 bit
 | |
|  * version used as a key for the coprocessor register hashtable
 | |
|  */
 | |
| static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
 | |
| {
 | |
|     uint32_t cpregid = kvmid;
 | |
|     if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
 | |
|         cpregid |= (1 << 15);
 | |
|     }
 | |
|     return cpregid;
 | |
| }
 | |
| 
 | |
| /* Convert a truncated 32 bit hashtable key into the full
 | |
|  * 64 bit KVM register ID.
 | |
|  */
 | |
| static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
 | |
| {
 | |
|     uint64_t kvmid = cpregid & ~(1 << 15);
 | |
|     if (cpregid & (1 << 15)) {
 | |
|         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
 | |
|     } else {
 | |
|         kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
 | |
|     }
 | |
|     return kvmid;
 | |
| }
 | |
| 
 | |
| /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 | |
|  * special-behaviour cp reg and bits [15..8] indicate what behaviour
 | |
|  * it has. Otherwise it is a simple cp reg, where CONST indicates that
 | |
|  * TCG can assume the value to be constant (ie load at translate time)
 | |
|  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 | |
|  * indicates that the TB should not be ended after a write to this register
 | |
|  * (the default is that the TB ends after cp writes). OVERRIDE permits
 | |
|  * a register definition to override a previous definition for the
 | |
|  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 | |
|  * old must have the OVERRIDE bit set.
 | |
|  * NO_MIGRATE indicates that this register should be ignored for migration;
 | |
|  * (eg because any state is accessed via some other coprocessor register).
 | |
|  * IO indicates that this register does I/O and therefore its accesses
 | |
|  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 | |
|  * registers which implement clocks or timers require this.
 | |
|  */
 | |
| #define ARM_CP_SPECIAL 1
 | |
| #define ARM_CP_CONST 2
 | |
| #define ARM_CP_64BIT 4
 | |
| #define ARM_CP_SUPPRESS_TB_END 8
 | |
| #define ARM_CP_OVERRIDE 16
 | |
| #define ARM_CP_NO_MIGRATE 32
 | |
| #define ARM_CP_IO 64
 | |
| #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
 | |
| #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
 | |
| #define ARM_LAST_SPECIAL ARM_CP_WFI
 | |
| /* Used only as a terminator for ARMCPRegInfo lists */
 | |
| #define ARM_CP_SENTINEL 0xffff
 | |
| /* Mask of only the flag bits in a type field */
 | |
| #define ARM_CP_FLAG_MASK 0x7f
 | |
| 
 | |
| /* Return true if cptype is a valid type field. This is used to try to
 | |
|  * catch errors where the sentinel has been accidentally left off the end
 | |
|  * of a list of registers.
 | |
|  */
 | |
| static inline bool cptype_valid(int cptype)
 | |
| {
 | |
|     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
 | |
|         || ((cptype & ARM_CP_SPECIAL) &&
 | |
|             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
 | |
| }
 | |
| 
 | |
| /* Access rights:
 | |
|  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 | |
|  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 | |
|  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 | |
|  * (ie any of the privileged modes in Secure state, or Monitor mode).
 | |
|  * If a register is accessible in one privilege level it's always accessible
 | |
|  * in higher privilege levels too. Since "Secure PL1" also follows this rule
 | |
|  * (ie anything visible in PL2 is visible in S-PL1, some things are only
 | |
|  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 | |
|  * terminology a little and call this PL3.
 | |
|  *
 | |
|  * If access permissions for a register are more complex than can be
 | |
|  * described with these bits, then use a laxer set of restrictions, and
 | |
|  * do the more restrictive/complex check inside a helper function.
 | |
|  */
 | |
| #define PL3_R 0x80
 | |
| #define PL3_W 0x40
 | |
| #define PL2_R (0x20 | PL3_R)
 | |
| #define PL2_W (0x10 | PL3_W)
 | |
| #define PL1_R (0x08 | PL2_R)
 | |
| #define PL1_W (0x04 | PL2_W)
 | |
| #define PL0_R (0x02 | PL1_R)
 | |
| #define PL0_W (0x01 | PL1_W)
 | |
| 
 | |
| #define PL3_RW (PL3_R | PL3_W)
 | |
| #define PL2_RW (PL2_R | PL2_W)
 | |
| #define PL1_RW (PL1_R | PL1_W)
 | |
| #define PL0_RW (PL0_R | PL0_W)
 | |
| 
 | |
| static inline int arm_current_pl(CPUARMState *env)
 | |
| {
 | |
|     if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
 | |
|         return 0;
 | |
|     }
 | |
|     /* We don't currently implement the Virtualization or TrustZone
 | |
|      * extensions, so PL2 and PL3 don't exist for us.
 | |
|      */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| typedef struct ARMCPRegInfo ARMCPRegInfo;
 | |
| 
 | |
| /* Access functions for coprocessor registers. These should return
 | |
|  * 0 on success, or one of the EXCP_* constants if access should cause
 | |
|  * an exception (in which case *value is not written).
 | |
|  */
 | |
| typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
 | |
|                      uint64_t *value);
 | |
| typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
 | |
|                       uint64_t value);
 | |
| /* Hook function for register reset */
 | |
| typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| 
 | |
| #define CP_ANY 0xff
 | |
| 
 | |
| /* Definition of an ARM coprocessor register */
 | |
| struct ARMCPRegInfo {
 | |
|     /* Name of register (useful mainly for debugging, need not be unique) */
 | |
|     const char *name;
 | |
|     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
 | |
|      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
 | |
|      * 'wildcard' field -- any value of that field in the MRC/MCR insn
 | |
|      * will be decoded to this register. The register read and write
 | |
|      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
 | |
|      * used by the program, so it is possible to register a wildcard and
 | |
|      * then behave differently on read/write if necessary.
 | |
|      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
 | |
|      * must both be zero.
 | |
|      */
 | |
|     uint8_t cp;
 | |
|     uint8_t crn;
 | |
|     uint8_t crm;
 | |
|     uint8_t opc1;
 | |
|     uint8_t opc2;
 | |
|     /* Register type: ARM_CP_* bits/values */
 | |
|     int type;
 | |
|     /* Access rights: PL*_[RW] */
 | |
|     int access;
 | |
|     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
 | |
|      * this register was defined: can be used to hand data through to the
 | |
|      * register read/write functions, since they are passed the ARMCPRegInfo*.
 | |
|      */
 | |
|     void *opaque;
 | |
|     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
 | |
|      * fieldoffset is non-zero, the reset value of the register.
 | |
|      */
 | |
|     uint64_t resetvalue;
 | |
|     /* Offset of the field in CPUARMState for this register. This is not
 | |
|      * needed if either:
 | |
|      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
 | |
|      *  2. both readfn and writefn are specified
 | |
|      */
 | |
|     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
 | |
|     /* Function for handling reads of this register. If NULL, then reads
 | |
|      * will be done by loading from the offset into CPUARMState specified
 | |
|      * by fieldoffset.
 | |
|      */
 | |
|     CPReadFn *readfn;
 | |
|     /* Function for handling writes of this register. If NULL, then writes
 | |
|      * will be done by writing to the offset into CPUARMState specified
 | |
|      * by fieldoffset.
 | |
|      */
 | |
|     CPWriteFn *writefn;
 | |
|     /* Function for doing a "raw" read; used when we need to copy
 | |
|      * coprocessor state to the kernel for KVM or out for
 | |
|      * migration. This only needs to be provided if there is also a
 | |
|      * readfn and it makes an access permission check.
 | |
|      */
 | |
|     CPReadFn *raw_readfn;
 | |
|     /* Function for doing a "raw" write; used when we need to copy KVM
 | |
|      * kernel coprocessor state into userspace, or for inbound
 | |
|      * migration. This only needs to be provided if there is also a
 | |
|      * writefn and it makes an access permission check or masks out
 | |
|      * "unwritable" bits or has write-one-to-clear or similar behaviour.
 | |
|      */
 | |
|     CPWriteFn *raw_writefn;
 | |
|     /* Function for resetting the register. If NULL, then reset will be done
 | |
|      * by writing resetvalue to the field specified in fieldoffset. If
 | |
|      * fieldoffset is 0 then no reset will be done.
 | |
|      */
 | |
|     CPResetFn *resetfn;
 | |
| };
 | |
| 
 | |
| /* Macros which are lvalues for the field in CPUARMState for the
 | |
|  * ARMCPRegInfo *ri.
 | |
|  */
 | |
| #define CPREG_FIELD32(env, ri) \
 | |
|     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
 | |
| #define CPREG_FIELD64(env, ri) \
 | |
|     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
 | |
| 
 | |
| #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
 | |
| 
 | |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | |
|                                     const ARMCPRegInfo *regs, void *opaque);
 | |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | |
|                                        const ARMCPRegInfo *regs, void *opaque);
 | |
| static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
 | |
| {
 | |
|     define_arm_cp_regs_with_opaque(cpu, regs, 0);
 | |
| }
 | |
| static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
 | |
| {
 | |
|     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
 | |
| }
 | |
| const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
 | |
| 
 | |
| /* CPWriteFn that can be used to implement writes-ignored behaviour */
 | |
| int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value);
 | |
| /* CPReadFn that can be used for read-as-zero behaviour */
 | |
| int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
 | |
| 
 | |
| static inline bool cp_access_ok(CPUARMState *env,
 | |
|                                 const ARMCPRegInfo *ri, int isread)
 | |
| {
 | |
|     return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_list_to_cpustate
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * For each register listed in the ARMCPU cpreg_indexes list, write
 | |
|  * its value from the cpreg_values list into the ARMCPUState structure.
 | |
|  * This updates TCG's working data structures from KVM data or
 | |
|  * from incoming migration state.
 | |
|  *
 | |
|  * Returns: true if all register values were updated correctly,
 | |
|  * false if some register was unknown or could not be written.
 | |
|  * Note that we do not stop early on failure -- we will attempt
 | |
|  * writing all registers in the list.
 | |
|  */
 | |
| bool write_list_to_cpustate(ARMCPU *cpu);
 | |
| 
 | |
| /**
 | |
|  * write_cpustate_to_list:
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * For each register listed in the ARMCPU cpreg_indexes list, write
 | |
|  * its value from the ARMCPUState structure into the cpreg_values list.
 | |
|  * This is used to copy info from TCG's working data structures into
 | |
|  * KVM or for outbound migration.
 | |
|  *
 | |
|  * Returns: true if all register values were read correctly,
 | |
|  * false if some register was unknown or could not be read.
 | |
|  * Note that we do not stop early on failure -- we will attempt
 | |
|  * reading all registers in the list.
 | |
|  */
 | |
| bool write_cpustate_to_list(ARMCPU *cpu);
 | |
| 
 | |
| /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
 | |
|    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
 | |
|    conventional cores (ie. Application or Realtime profile).  */
 | |
| 
 | |
| #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
 | |
| 
 | |
| #define ARM_CPUID_TI915T      0x54029152
 | |
| #define ARM_CPUID_TI925T      0x54029252
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #define TARGET_PAGE_BITS 12
 | |
| #else
 | |
| /* The ARM MMU allows 1k pages.  */
 | |
| /* ??? Linux doesn't actually use these, and they're deprecated in recent
 | |
|    architecture revisions.  Maybe a configure option to disable them.  */
 | |
| #define TARGET_PAGE_BITS 10
 | |
| #endif
 | |
| 
 | |
| #if defined(TARGET_AARCH64)
 | |
| #  define TARGET_PHYS_ADDR_SPACE_BITS 48
 | |
| #  define TARGET_VIRT_ADDR_SPACE_BITS 64
 | |
| #else
 | |
| #  define TARGET_PHYS_ADDR_SPACE_BITS 40
 | |
| #  define TARGET_VIRT_ADDR_SPACE_BITS 32
 | |
| #endif
 | |
| 
 | |
| static inline CPUARMState *cpu_init(const char *cpu_model)
 | |
| {
 | |
|     ARMCPU *cpu = cpu_arm_init(cpu_model);
 | |
|     if (cpu) {
 | |
|         return &cpu->env;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #define cpu_exec cpu_arm_exec
 | |
| #define cpu_gen_code cpu_arm_gen_code
 | |
| #define cpu_signal_handler cpu_arm_signal_handler
 | |
| #define cpu_list arm_cpu_list
 | |
| 
 | |
| /* MMU modes definitions */
 | |
| #define MMU_MODE0_SUFFIX _kernel
 | |
| #define MMU_MODE1_SUFFIX _user
 | |
| #define MMU_USER_IDX 1
 | |
| static inline int cpu_mmu_index (CPUARMState *env)
 | |
| {
 | |
|     return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
 | |
| }
 | |
| 
 | |
| #include "exec/cpu-all.h"
 | |
| 
 | |
| /* Bit usage in the TB flags field: bit 31 indicates whether we are
 | |
|  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 | |
|  */
 | |
| #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
 | |
| #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
 | |
| 
 | |
| /* Bit usage when in AArch32 state: */
 | |
| #define ARM_TBFLAG_THUMB_SHIFT      0
 | |
| #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
 | |
| #define ARM_TBFLAG_VECLEN_SHIFT     1
 | |
| #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
 | |
| #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
 | |
| #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
| #define ARM_TBFLAG_PRIV_SHIFT       6
 | |
| #define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
 | |
| #define ARM_TBFLAG_VFPEN_SHIFT      7
 | |
| #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
 | |
| #define ARM_TBFLAG_CONDEXEC_SHIFT   8
 | |
| #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
| #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
 | |
| #define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
 | |
| 
 | |
| /* Bit usage when in AArch64 state: currently no bits defined */
 | |
| 
 | |
| /* some convenience accessor macros */
 | |
| #define ARM_TBFLAG_AARCH64_STATE(F) \
 | |
|     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
 | |
| #define ARM_TBFLAG_THUMB(F) \
 | |
|     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
 | |
| #define ARM_TBFLAG_VECLEN(F) \
 | |
|     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
 | |
| #define ARM_TBFLAG_VECSTRIDE(F) \
 | |
|     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
| #define ARM_TBFLAG_PRIV(F) \
 | |
|     (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
 | |
| #define ARM_TBFLAG_VFPEN(F) \
 | |
|     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
 | |
| #define ARM_TBFLAG_CONDEXEC(F) \
 | |
|     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
| #define ARM_TBFLAG_BSWAP_CODE(F) \
 | |
|     (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
 | |
| 
 | |
| static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
 | |
|                                         target_ulong *cs_base, int *flags)
 | |
| {
 | |
|     if (is_a64(env)) {
 | |
|         *pc = env->pc;
 | |
|         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
 | |
|     } else {
 | |
|         int privmode;
 | |
|         *pc = env->regs[15];
 | |
|         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
 | |
|             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
 | |
|             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
|             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
|             | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
 | |
|         } else {
 | |
|             privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
 | |
|         }
 | |
|         if (privmode) {
 | |
|             *flags |= ARM_TBFLAG_PRIV_MASK;
 | |
|         }
 | |
|         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
 | |
|             *flags |= ARM_TBFLAG_VFPEN_MASK;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *cs_base = 0;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_has_work(CPUState *cpu)
 | |
| {
 | |
|     return cpu->interrupt_request &
 | |
|         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
 | |
| }
 | |
| 
 | |
| #include "exec/exec-all.h"
 | |
| 
 | |
| static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
 | |
| {
 | |
|     if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
 | |
|         env->pc = tb->pc;
 | |
|     } else {
 | |
|         env->regs[15] = tb->pc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Load an instruction and return it in the standard little-endian order */
 | |
| static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
 | |
|                                     bool do_swap)
 | |
| {
 | |
|     uint32_t insn = cpu_ldl_code(env, addr);
 | |
|     if (do_swap) {
 | |
|         return bswap32(insn);
 | |
|     }
 | |
|     return insn;
 | |
| }
 | |
| 
 | |
| /* Ditto, for a halfword (Thumb) instruction */
 | |
| static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
 | |
|                                      bool do_swap)
 | |
| {
 | |
|     uint16_t insn = cpu_lduw_code(env, addr);
 | |
|     if (do_swap) {
 | |
|         return bswap16(insn);
 | |
|     }
 | |
|     return insn;
 | |
| }
 | |
| 
 | |
| #endif
 |