The patch enables handling atomic code in the guest. This should be preferably done in cpu_handle_exception(), but the current assumptions regarding when we can execute atomic sections cause a deadlock. The current mechanism discards the flags which were set in atomic execution. We ensure they are properly saved by calling the cc->cpu_exec_enter/leave() functions around the loop. As we are running cpu_exec_step_atomic() from the outermost loop we need to avoid an abort() when single stepping over atomic code since debug exception longjmp will point to the the setlongjmp in cpu_exec(). We do this by setting a new jmp_env so that it jumps back here on an exception. Signed-off-by: Pranith Kumar <bobby.prani@gmail.com> [AJB: tweak title, merge with new patches, add mmap_lock] Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net> CC: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			698 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  emulator main execution loop
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003-2005 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "trace-root.h"
 | 
						|
#include "disas/disas.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "tcg.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
#include "sysemu/qtest.h"
 | 
						|
#include "qemu/timer.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#include "qemu/rcu.h"
 | 
						|
#include "exec/tb-hash.h"
 | 
						|
#include "exec/log.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
 | 
						|
#include "hw/i386/apic.h"
 | 
						|
#endif
 | 
						|
#include "sysemu/replay.h"
 | 
						|
 | 
						|
/* -icount align implementation. */
 | 
						|
 | 
						|
typedef struct SyncClocks {
 | 
						|
    int64_t diff_clk;
 | 
						|
    int64_t last_cpu_icount;
 | 
						|
    int64_t realtime_clock;
 | 
						|
} SyncClocks;
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
/* Allow the guest to have a max 3ms advance.
 | 
						|
 * The difference between the 2 clocks could therefore
 | 
						|
 * oscillate around 0.
 | 
						|
 */
 | 
						|
#define VM_CLOCK_ADVANCE 3000000
 | 
						|
#define THRESHOLD_REDUCE 1.5
 | 
						|
#define MAX_DELAY_PRINT_RATE 2000000000LL
 | 
						|
#define MAX_NB_PRINTS 100
 | 
						|
 | 
						|
static void align_clocks(SyncClocks *sc, const CPUState *cpu)
 | 
						|
{
 | 
						|
    int64_t cpu_icount;
 | 
						|
 | 
						|
    if (!icount_align_option) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
 | 
						|
    sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
 | 
						|
    sc->last_cpu_icount = cpu_icount;
 | 
						|
 | 
						|
    if (sc->diff_clk > VM_CLOCK_ADVANCE) {
 | 
						|
#ifndef _WIN32
 | 
						|
        struct timespec sleep_delay, rem_delay;
 | 
						|
        sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
 | 
						|
        sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
 | 
						|
        if (nanosleep(&sleep_delay, &rem_delay) < 0) {
 | 
						|
            sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
 | 
						|
        } else {
 | 
						|
            sc->diff_clk = 0;
 | 
						|
        }
 | 
						|
#else
 | 
						|
        Sleep(sc->diff_clk / SCALE_MS);
 | 
						|
        sc->diff_clk = 0;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void print_delay(const SyncClocks *sc)
 | 
						|
{
 | 
						|
    static float threshold_delay;
 | 
						|
    static int64_t last_realtime_clock;
 | 
						|
    static int nb_prints;
 | 
						|
 | 
						|
    if (icount_align_option &&
 | 
						|
        sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
 | 
						|
        nb_prints < MAX_NB_PRINTS) {
 | 
						|
        if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
 | 
						|
            (-sc->diff_clk / (float)1000000000LL <
 | 
						|
             (threshold_delay - THRESHOLD_REDUCE))) {
 | 
						|
            threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
 | 
						|
            printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
 | 
						|
                   threshold_delay - 1,
 | 
						|
                   threshold_delay);
 | 
						|
            nb_prints++;
 | 
						|
            last_realtime_clock = sc->realtime_clock;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void init_delay_params(SyncClocks *sc,
 | 
						|
                              const CPUState *cpu)
 | 
						|
{
 | 
						|
    if (!icount_align_option) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
 | 
						|
    sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
 | 
						|
    sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
 | 
						|
    if (sc->diff_clk < max_delay) {
 | 
						|
        max_delay = sc->diff_clk;
 | 
						|
    }
 | 
						|
    if (sc->diff_clk > max_advance) {
 | 
						|
        max_advance = sc->diff_clk;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Print every 2s max if the guest is late. We limit the number
 | 
						|
       of printed messages to NB_PRINT_MAX(currently 100) */
 | 
						|
    print_delay(sc);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void align_clocks(SyncClocks *sc, const CPUState *cpu)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif /* CONFIG USER ONLY */
 | 
						|
 | 
						|
/* Execute a TB, and fix up the CPU state afterwards if necessary */
 | 
						|
static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    uintptr_t ret;
 | 
						|
    TranslationBlock *last_tb;
 | 
						|
    int tb_exit;
 | 
						|
    uint8_t *tb_ptr = itb->tc_ptr;
 | 
						|
 | 
						|
    qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
 | 
						|
                           "Trace %p [%d: " TARGET_FMT_lx "] %s\n",
 | 
						|
                           itb->tc_ptr, cpu->cpu_index, itb->pc,
 | 
						|
                           lookup_symbol(itb->pc));
 | 
						|
 | 
						|
#if defined(DEBUG_DISAS)
 | 
						|
    if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
 | 
						|
        && qemu_log_in_addr_range(itb->pc)) {
 | 
						|
        qemu_log_lock();
 | 
						|
#if defined(TARGET_I386)
 | 
						|
        log_cpu_state(cpu, CPU_DUMP_CCOP);
 | 
						|
#else
 | 
						|
        log_cpu_state(cpu, 0);
 | 
						|
#endif
 | 
						|
        qemu_log_unlock();
 | 
						|
    }
 | 
						|
#endif /* DEBUG_DISAS */
 | 
						|
 | 
						|
    cpu->can_do_io = !use_icount;
 | 
						|
    ret = tcg_qemu_tb_exec(env, tb_ptr);
 | 
						|
    cpu->can_do_io = 1;
 | 
						|
    last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
 | 
						|
    tb_exit = ret & TB_EXIT_MASK;
 | 
						|
    trace_exec_tb_exit(last_tb, tb_exit);
 | 
						|
 | 
						|
    if (tb_exit > TB_EXIT_IDX1) {
 | 
						|
        /* We didn't start executing this TB (eg because the instruction
 | 
						|
         * counter hit zero); we must restore the guest PC to the address
 | 
						|
         * of the start of the TB.
 | 
						|
         */
 | 
						|
        CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
        qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
 | 
						|
                               "Stopped execution of TB chain before %p ["
 | 
						|
                               TARGET_FMT_lx "] %s\n",
 | 
						|
                               last_tb->tc_ptr, last_tb->pc,
 | 
						|
                               lookup_symbol(last_tb->pc));
 | 
						|
        if (cc->synchronize_from_tb) {
 | 
						|
            cc->synchronize_from_tb(cpu, last_tb);
 | 
						|
        } else {
 | 
						|
            assert(cc->set_pc);
 | 
						|
            cc->set_pc(cpu, last_tb->pc);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (tb_exit == TB_EXIT_REQUESTED) {
 | 
						|
        /* We were asked to stop executing TBs (probably a pending
 | 
						|
         * interrupt. We've now stopped, so clear the flag.
 | 
						|
         */
 | 
						|
        atomic_set(&cpu->tcg_exit_req, 0);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
/* Execute the code without caching the generated code. An interpreter
 | 
						|
   could be used if available. */
 | 
						|
static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
 | 
						|
                             TranslationBlock *orig_tb, bool ignore_icount)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
 | 
						|
    /* Should never happen.
 | 
						|
       We only end up here when an existing TB is too long.  */
 | 
						|
    if (max_cycles > CF_COUNT_MASK)
 | 
						|
        max_cycles = CF_COUNT_MASK;
 | 
						|
 | 
						|
    tb_lock();
 | 
						|
    tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
 | 
						|
                     max_cycles | CF_NOCACHE
 | 
						|
                         | (ignore_icount ? CF_IGNORE_ICOUNT : 0));
 | 
						|
    tb->orig_tb = orig_tb;
 | 
						|
    tb_unlock();
 | 
						|
 | 
						|
    /* execute the generated code */
 | 
						|
    trace_exec_tb_nocache(tb, tb->pc);
 | 
						|
    cpu_tb_exec(cpu, tb);
 | 
						|
 | 
						|
    tb_lock();
 | 
						|
    tb_phys_invalidate(tb, -1);
 | 
						|
    tb_free(tb);
 | 
						|
    tb_unlock();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void cpu_exec_step(CPUState *cpu)
 | 
						|
{
 | 
						|
    CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
    CPUArchState *env = (CPUArchState *)cpu->env_ptr;
 | 
						|
    TranslationBlock *tb;
 | 
						|
    target_ulong cs_base, pc;
 | 
						|
    uint32_t flags;
 | 
						|
 | 
						|
    cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
 | 
						|
    if (sigsetjmp(cpu->jmp_env, 0) == 0) {
 | 
						|
        mmap_lock();
 | 
						|
        tb_lock();
 | 
						|
        tb = tb_gen_code(cpu, pc, cs_base, flags,
 | 
						|
                         1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
 | 
						|
        tb->orig_tb = NULL;
 | 
						|
        tb_unlock();
 | 
						|
        mmap_unlock();
 | 
						|
 | 
						|
        cc->cpu_exec_enter(cpu);
 | 
						|
        /* execute the generated code */
 | 
						|
        trace_exec_tb_nocache(tb, pc);
 | 
						|
        cpu_tb_exec(cpu, tb);
 | 
						|
        cc->cpu_exec_exit(cpu);
 | 
						|
 | 
						|
        tb_lock();
 | 
						|
        tb_phys_invalidate(tb, -1);
 | 
						|
        tb_free(tb);
 | 
						|
        tb_unlock();
 | 
						|
    } else {
 | 
						|
        /* We may have exited due to another problem here, so we need
 | 
						|
         * to reset any tb_locks we may have taken but didn't release.
 | 
						|
         * The mmap_lock is dropped by tb_gen_code if it runs out of
 | 
						|
         * memory.
 | 
						|
         */
 | 
						|
#ifndef CONFIG_SOFTMMU
 | 
						|
        tcg_debug_assert(!have_mmap_lock());
 | 
						|
#endif
 | 
						|
        tb_lock_reset();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void cpu_exec_step_atomic(CPUState *cpu)
 | 
						|
{
 | 
						|
    start_exclusive();
 | 
						|
 | 
						|
    /* Since we got here, we know that parallel_cpus must be true.  */
 | 
						|
    parallel_cpus = false;
 | 
						|
    cpu_exec_step(cpu);
 | 
						|
    parallel_cpus = true;
 | 
						|
 | 
						|
    end_exclusive();
 | 
						|
}
 | 
						|
 | 
						|
struct tb_desc {
 | 
						|
    target_ulong pc;
 | 
						|
    target_ulong cs_base;
 | 
						|
    CPUArchState *env;
 | 
						|
    tb_page_addr_t phys_page1;
 | 
						|
    uint32_t flags;
 | 
						|
};
 | 
						|
 | 
						|
static bool tb_cmp(const void *p, const void *d)
 | 
						|
{
 | 
						|
    const TranslationBlock *tb = p;
 | 
						|
    const struct tb_desc *desc = d;
 | 
						|
 | 
						|
    if (tb->pc == desc->pc &&
 | 
						|
        tb->page_addr[0] == desc->phys_page1 &&
 | 
						|
        tb->cs_base == desc->cs_base &&
 | 
						|
        tb->flags == desc->flags &&
 | 
						|
        !atomic_read(&tb->invalid)) {
 | 
						|
        /* check next page if needed */
 | 
						|
        if (tb->page_addr[1] == -1) {
 | 
						|
            return true;
 | 
						|
        } else {
 | 
						|
            tb_page_addr_t phys_page2;
 | 
						|
            target_ulong virt_page2;
 | 
						|
 | 
						|
            virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
 | 
						|
            phys_page2 = get_page_addr_code(desc->env, virt_page2);
 | 
						|
            if (tb->page_addr[1] == phys_page2) {
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static TranslationBlock *tb_htable_lookup(CPUState *cpu,
 | 
						|
                                          target_ulong pc,
 | 
						|
                                          target_ulong cs_base,
 | 
						|
                                          uint32_t flags)
 | 
						|
{
 | 
						|
    tb_page_addr_t phys_pc;
 | 
						|
    struct tb_desc desc;
 | 
						|
    uint32_t h;
 | 
						|
 | 
						|
    desc.env = (CPUArchState *)cpu->env_ptr;
 | 
						|
    desc.cs_base = cs_base;
 | 
						|
    desc.flags = flags;
 | 
						|
    desc.pc = pc;
 | 
						|
    phys_pc = get_page_addr_code(desc.env, pc);
 | 
						|
    desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
 | 
						|
    h = tb_hash_func(phys_pc, pc, flags);
 | 
						|
    return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h);
 | 
						|
}
 | 
						|
 | 
						|
static inline TranslationBlock *tb_find(CPUState *cpu,
 | 
						|
                                        TranslationBlock *last_tb,
 | 
						|
                                        int tb_exit)
 | 
						|
{
 | 
						|
    CPUArchState *env = (CPUArchState *)cpu->env_ptr;
 | 
						|
    TranslationBlock *tb;
 | 
						|
    target_ulong cs_base, pc;
 | 
						|
    uint32_t flags;
 | 
						|
    bool have_tb_lock = false;
 | 
						|
 | 
						|
    /* we record a subset of the CPU state. It will
 | 
						|
       always be the same before a given translated block
 | 
						|
       is executed. */
 | 
						|
    cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
 | 
						|
    tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]);
 | 
						|
    if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
 | 
						|
                 tb->flags != flags)) {
 | 
						|
        tb = tb_htable_lookup(cpu, pc, cs_base, flags);
 | 
						|
        if (!tb) {
 | 
						|
 | 
						|
            /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
 | 
						|
             * taken outside tb_lock. As system emulation is currently
 | 
						|
             * single threaded the locks are NOPs.
 | 
						|
             */
 | 
						|
            mmap_lock();
 | 
						|
            tb_lock();
 | 
						|
            have_tb_lock = true;
 | 
						|
 | 
						|
            /* There's a chance that our desired tb has been translated while
 | 
						|
             * taking the locks so we check again inside the lock.
 | 
						|
             */
 | 
						|
            tb = tb_htable_lookup(cpu, pc, cs_base, flags);
 | 
						|
            if (!tb) {
 | 
						|
                /* if no translated code available, then translate it now */
 | 
						|
                tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
 | 
						|
            }
 | 
						|
 | 
						|
            mmap_unlock();
 | 
						|
        }
 | 
						|
 | 
						|
        /* We add the TB in the virtual pc hash table for the fast lookup */
 | 
						|
        atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
 | 
						|
    }
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    /* We don't take care of direct jumps when address mapping changes in
 | 
						|
     * system emulation. So it's not safe to make a direct jump to a TB
 | 
						|
     * spanning two pages because the mapping for the second page can change.
 | 
						|
     */
 | 
						|
    if (tb->page_addr[1] != -1) {
 | 
						|
        last_tb = NULL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* See if we can patch the calling TB. */
 | 
						|
    if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
 | 
						|
        if (!have_tb_lock) {
 | 
						|
            tb_lock();
 | 
						|
            have_tb_lock = true;
 | 
						|
        }
 | 
						|
        if (!tb->invalid) {
 | 
						|
            tb_add_jump(last_tb, tb_exit, tb);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (have_tb_lock) {
 | 
						|
        tb_unlock();
 | 
						|
    }
 | 
						|
    return tb;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool cpu_handle_halt(CPUState *cpu)
 | 
						|
{
 | 
						|
    if (cpu->halted) {
 | 
						|
#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
 | 
						|
        if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
 | 
						|
            && replay_interrupt()) {
 | 
						|
            X86CPU *x86_cpu = X86_CPU(cpu);
 | 
						|
            qemu_mutex_lock_iothread();
 | 
						|
            apic_poll_irq(x86_cpu->apic_state);
 | 
						|
            cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
 | 
						|
            qemu_mutex_unlock_iothread();
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        if (!cpu_has_work(cpu)) {
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        cpu->halted = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline void cpu_handle_debug_exception(CPUState *cpu)
 | 
						|
{
 | 
						|
    CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
    CPUWatchpoint *wp;
 | 
						|
 | 
						|
    if (!cpu->watchpoint_hit) {
 | 
						|
        QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 | 
						|
            wp->flags &= ~BP_WATCHPOINT_HIT;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cc->debug_excp_handler(cpu);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
 | 
						|
{
 | 
						|
    if (cpu->exception_index >= 0) {
 | 
						|
        if (cpu->exception_index >= EXCP_INTERRUPT) {
 | 
						|
            /* exit request from the cpu execution loop */
 | 
						|
            *ret = cpu->exception_index;
 | 
						|
            if (*ret == EXCP_DEBUG) {
 | 
						|
                cpu_handle_debug_exception(cpu);
 | 
						|
            }
 | 
						|
            cpu->exception_index = -1;
 | 
						|
            return true;
 | 
						|
        } else {
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
            /* if user mode only, we simulate a fake exception
 | 
						|
               which will be handled outside the cpu execution
 | 
						|
               loop */
 | 
						|
#if defined(TARGET_I386)
 | 
						|
            CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
            cc->do_interrupt(cpu);
 | 
						|
#endif
 | 
						|
            *ret = cpu->exception_index;
 | 
						|
            cpu->exception_index = -1;
 | 
						|
            return true;
 | 
						|
#else
 | 
						|
            if (replay_exception()) {
 | 
						|
                CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
                qemu_mutex_lock_iothread();
 | 
						|
                cc->do_interrupt(cpu);
 | 
						|
                qemu_mutex_unlock_iothread();
 | 
						|
                cpu->exception_index = -1;
 | 
						|
            } else if (!replay_has_interrupt()) {
 | 
						|
                /* give a chance to iothread in replay mode */
 | 
						|
                *ret = EXCP_INTERRUPT;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
#endif
 | 
						|
        }
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    } else if (replay_has_exception()
 | 
						|
               && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
 | 
						|
        /* try to cause an exception pending in the log */
 | 
						|
        cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true);
 | 
						|
        *ret = -1;
 | 
						|
        return true;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool cpu_handle_interrupt(CPUState *cpu,
 | 
						|
                                        TranslationBlock **last_tb)
 | 
						|
{
 | 
						|
    CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
 | 
						|
    if (unlikely(atomic_read(&cpu->interrupt_request))) {
 | 
						|
        int interrupt_request;
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        interrupt_request = cpu->interrupt_request;
 | 
						|
        if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
 | 
						|
            /* Mask out external interrupts for this step. */
 | 
						|
            interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
 | 
						|
        }
 | 
						|
        if (interrupt_request & CPU_INTERRUPT_DEBUG) {
 | 
						|
            cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
 | 
						|
            cpu->exception_index = EXCP_DEBUG;
 | 
						|
            qemu_mutex_unlock_iothread();
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
 | 
						|
            /* Do nothing */
 | 
						|
        } else if (interrupt_request & CPU_INTERRUPT_HALT) {
 | 
						|
            replay_interrupt();
 | 
						|
            cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
 | 
						|
            cpu->halted = 1;
 | 
						|
            cpu->exception_index = EXCP_HLT;
 | 
						|
            qemu_mutex_unlock_iothread();
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
#if defined(TARGET_I386)
 | 
						|
        else if (interrupt_request & CPU_INTERRUPT_INIT) {
 | 
						|
            X86CPU *x86_cpu = X86_CPU(cpu);
 | 
						|
            CPUArchState *env = &x86_cpu->env;
 | 
						|
            replay_interrupt();
 | 
						|
            cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
 | 
						|
            do_cpu_init(x86_cpu);
 | 
						|
            cpu->exception_index = EXCP_HALTED;
 | 
						|
            qemu_mutex_unlock_iothread();
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
#else
 | 
						|
        else if (interrupt_request & CPU_INTERRUPT_RESET) {
 | 
						|
            replay_interrupt();
 | 
						|
            cpu_reset(cpu);
 | 
						|
            qemu_mutex_unlock_iothread();
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        /* The target hook has 3 exit conditions:
 | 
						|
           False when the interrupt isn't processed,
 | 
						|
           True when it is, and we should restart on a new TB,
 | 
						|
           and via longjmp via cpu_loop_exit.  */
 | 
						|
        else {
 | 
						|
            if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
 | 
						|
                replay_interrupt();
 | 
						|
                *last_tb = NULL;
 | 
						|
            }
 | 
						|
            /* The target hook may have updated the 'cpu->interrupt_request';
 | 
						|
             * reload the 'interrupt_request' value */
 | 
						|
            interrupt_request = cpu->interrupt_request;
 | 
						|
        }
 | 
						|
        if (interrupt_request & CPU_INTERRUPT_EXITTB) {
 | 
						|
            cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
 | 
						|
            /* ensure that no TB jump will be modified as
 | 
						|
               the program flow was changed */
 | 
						|
            *last_tb = NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if (unlikely(atomic_read(&cpu->exit_request) || replay_has_interrupt())) {
 | 
						|
        atomic_set(&cpu->exit_request, 0);
 | 
						|
        cpu->exception_index = EXCP_INTERRUPT;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
 | 
						|
                                    TranslationBlock **last_tb, int *tb_exit,
 | 
						|
                                    SyncClocks *sc)
 | 
						|
{
 | 
						|
    uintptr_t ret;
 | 
						|
 | 
						|
    if (unlikely(atomic_read(&cpu->exit_request))) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    trace_exec_tb(tb, tb->pc);
 | 
						|
    ret = cpu_tb_exec(cpu, tb);
 | 
						|
    tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
 | 
						|
    *tb_exit = ret & TB_EXIT_MASK;
 | 
						|
    switch (*tb_exit) {
 | 
						|
    case TB_EXIT_REQUESTED:
 | 
						|
        /* Something asked us to stop executing chained TBs; just
 | 
						|
         * continue round the main loop. Whatever requested the exit
 | 
						|
         * will also have set something else (eg interrupt_request)
 | 
						|
         * which we will handle next time around the loop.  But we
 | 
						|
         * need to ensure the tcg_exit_req read in generated code
 | 
						|
         * comes before the next read of cpu->exit_request or
 | 
						|
         * cpu->interrupt_request.
 | 
						|
         */
 | 
						|
        smp_mb();
 | 
						|
        *last_tb = NULL;
 | 
						|
        break;
 | 
						|
    case TB_EXIT_ICOUNT_EXPIRED:
 | 
						|
    {
 | 
						|
        /* Instruction counter expired.  */
 | 
						|
#ifdef CONFIG_USER_ONLY
 | 
						|
        abort();
 | 
						|
#else
 | 
						|
        int insns_left = cpu->icount_decr.u32;
 | 
						|
        *last_tb = NULL;
 | 
						|
        if (cpu->icount_extra && insns_left >= 0) {
 | 
						|
            /* Refill decrementer and continue execution.  */
 | 
						|
            cpu->icount_extra += insns_left;
 | 
						|
            insns_left = MIN(0xffff, cpu->icount_extra);
 | 
						|
            cpu->icount_extra -= insns_left;
 | 
						|
            cpu->icount_decr.u16.low = insns_left;
 | 
						|
        } else {
 | 
						|
            if (insns_left > 0) {
 | 
						|
                /* Execute remaining instructions.  */
 | 
						|
                cpu_exec_nocache(cpu, insns_left, tb, false);
 | 
						|
                align_clocks(sc, cpu);
 | 
						|
            }
 | 
						|
            cpu->exception_index = EXCP_INTERRUPT;
 | 
						|
            cpu_loop_exit(cpu);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    default:
 | 
						|
        *last_tb = tb;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* main execution loop */
 | 
						|
 | 
						|
int cpu_exec(CPUState *cpu)
 | 
						|
{
 | 
						|
    CPUClass *cc = CPU_GET_CLASS(cpu);
 | 
						|
    int ret;
 | 
						|
    SyncClocks sc;
 | 
						|
 | 
						|
    /* replay_interrupt may need current_cpu */
 | 
						|
    current_cpu = cpu;
 | 
						|
 | 
						|
    if (cpu_handle_halt(cpu)) {
 | 
						|
        return EXCP_HALTED;
 | 
						|
    }
 | 
						|
 | 
						|
    rcu_read_lock();
 | 
						|
 | 
						|
    cc->cpu_exec_enter(cpu);
 | 
						|
 | 
						|
    /* Calculate difference between guest clock and host clock.
 | 
						|
     * This delay includes the delay of the last cycle, so
 | 
						|
     * what we have to do is sleep until it is 0. As for the
 | 
						|
     * advance/delay we gain here, we try to fix it next time.
 | 
						|
     */
 | 
						|
    init_delay_params(&sc, cpu);
 | 
						|
 | 
						|
    /* prepare setjmp context for exception handling */
 | 
						|
    if (sigsetjmp(cpu->jmp_env, 0) != 0) {
 | 
						|
#if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
 | 
						|
        /* Some compilers wrongly smash all local variables after
 | 
						|
         * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
 | 
						|
         * Reload essential local variables here for those compilers.
 | 
						|
         * Newer versions of gcc would complain about this code (-Wclobbered). */
 | 
						|
        cpu = current_cpu;
 | 
						|
        cc = CPU_GET_CLASS(cpu);
 | 
						|
#else /* buggy compiler */
 | 
						|
        /* Assert that the compiler does not smash local variables. */
 | 
						|
        g_assert(cpu == current_cpu);
 | 
						|
        g_assert(cc == CPU_GET_CLASS(cpu));
 | 
						|
#endif /* buggy compiler */
 | 
						|
        cpu->can_do_io = 1;
 | 
						|
        tb_lock_reset();
 | 
						|
        if (qemu_mutex_iothread_locked()) {
 | 
						|
            qemu_mutex_unlock_iothread();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* if an exception is pending, we execute it here */
 | 
						|
    while (!cpu_handle_exception(cpu, &ret)) {
 | 
						|
        TranslationBlock *last_tb = NULL;
 | 
						|
        int tb_exit = 0;
 | 
						|
 | 
						|
        while (!cpu_handle_interrupt(cpu, &last_tb)) {
 | 
						|
            TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit);
 | 
						|
            cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit, &sc);
 | 
						|
            /* Try to align the host and virtual clocks
 | 
						|
               if the guest is in advance */
 | 
						|
            align_clocks(&sc, cpu);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cc->cpu_exec_exit(cpu);
 | 
						|
    rcu_read_unlock();
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 |