 6ee093c907
			
		
	
	
		6ee093c907
		
	
	
	
	
		
			
			Signed-off-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
			
				
	
	
		
			520 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU 8253/8254 interval timer emulation
 | |
|  *
 | |
|  * Copyright (c) 2003-2004 Fabrice Bellard
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "hw.h"
 | |
| #include "pc.h"
 | |
| #include "isa.h"
 | |
| #include "qemu-timer.h"
 | |
| 
 | |
| //#define DEBUG_PIT
 | |
| 
 | |
| #define RW_STATE_LSB 1
 | |
| #define RW_STATE_MSB 2
 | |
| #define RW_STATE_WORD0 3
 | |
| #define RW_STATE_WORD1 4
 | |
| 
 | |
| typedef struct PITChannelState {
 | |
|     int count; /* can be 65536 */
 | |
|     uint16_t latched_count;
 | |
|     uint8_t count_latched;
 | |
|     uint8_t status_latched;
 | |
|     uint8_t status;
 | |
|     uint8_t read_state;
 | |
|     uint8_t write_state;
 | |
|     uint8_t write_latch;
 | |
|     uint8_t rw_mode;
 | |
|     uint8_t mode;
 | |
|     uint8_t bcd; /* not supported */
 | |
|     uint8_t gate; /* timer start */
 | |
|     int64_t count_load_time;
 | |
|     /* irq handling */
 | |
|     int64_t next_transition_time;
 | |
|     QEMUTimer *irq_timer;
 | |
|     qemu_irq irq;
 | |
| } PITChannelState;
 | |
| 
 | |
| struct PITState {
 | |
|     PITChannelState channels[3];
 | |
| };
 | |
| 
 | |
| static PITState pit_state;
 | |
| 
 | |
| static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
 | |
| 
 | |
| static int pit_get_count(PITChannelState *s)
 | |
| {
 | |
|     uint64_t d;
 | |
|     int counter;
 | |
| 
 | |
|     d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ,
 | |
|                  get_ticks_per_sec());
 | |
|     switch(s->mode) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|     case 4:
 | |
|     case 5:
 | |
|         counter = (s->count - d) & 0xffff;
 | |
|         break;
 | |
|     case 3:
 | |
|         /* XXX: may be incorrect for odd counts */
 | |
|         counter = s->count - ((2 * d) % s->count);
 | |
|         break;
 | |
|     default:
 | |
|         counter = s->count - (d % s->count);
 | |
|         break;
 | |
|     }
 | |
|     return counter;
 | |
| }
 | |
| 
 | |
| /* get pit output bit */
 | |
| static int pit_get_out1(PITChannelState *s, int64_t current_time)
 | |
| {
 | |
|     uint64_t d;
 | |
|     int out;
 | |
| 
 | |
|     d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
 | |
|                  get_ticks_per_sec());
 | |
|     switch(s->mode) {
 | |
|     default:
 | |
|     case 0:
 | |
|         out = (d >= s->count);
 | |
|         break;
 | |
|     case 1:
 | |
|         out = (d < s->count);
 | |
|         break;
 | |
|     case 2:
 | |
|         if ((d % s->count) == 0 && d != 0)
 | |
|             out = 1;
 | |
|         else
 | |
|             out = 0;
 | |
|         break;
 | |
|     case 3:
 | |
|         out = (d % s->count) < ((s->count + 1) >> 1);
 | |
|         break;
 | |
|     case 4:
 | |
|     case 5:
 | |
|         out = (d == s->count);
 | |
|         break;
 | |
|     }
 | |
|     return out;
 | |
| }
 | |
| 
 | |
| int pit_get_out(PITState *pit, int channel, int64_t current_time)
 | |
| {
 | |
|     PITChannelState *s = &pit->channels[channel];
 | |
|     return pit_get_out1(s, current_time);
 | |
| }
 | |
| 
 | |
| /* return -1 if no transition will occur.  */
 | |
| static int64_t pit_get_next_transition_time(PITChannelState *s,
 | |
|                                             int64_t current_time)
 | |
| {
 | |
|     uint64_t d, next_time, base;
 | |
|     int period2;
 | |
| 
 | |
|     d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
 | |
|                  get_ticks_per_sec());
 | |
|     switch(s->mode) {
 | |
|     default:
 | |
|     case 0:
 | |
|     case 1:
 | |
|         if (d < s->count)
 | |
|             next_time = s->count;
 | |
|         else
 | |
|             return -1;
 | |
|         break;
 | |
|     case 2:
 | |
|         base = (d / s->count) * s->count;
 | |
|         if ((d - base) == 0 && d != 0)
 | |
|             next_time = base + s->count;
 | |
|         else
 | |
|             next_time = base + s->count + 1;
 | |
|         break;
 | |
|     case 3:
 | |
|         base = (d / s->count) * s->count;
 | |
|         period2 = ((s->count + 1) >> 1);
 | |
|         if ((d - base) < period2)
 | |
|             next_time = base + period2;
 | |
|         else
 | |
|             next_time = base + s->count;
 | |
|         break;
 | |
|     case 4:
 | |
|     case 5:
 | |
|         if (d < s->count)
 | |
|             next_time = s->count;
 | |
|         else if (d == s->count)
 | |
|             next_time = s->count + 1;
 | |
|         else
 | |
|             return -1;
 | |
|         break;
 | |
|     }
 | |
|     /* convert to timer units */
 | |
|     next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
 | |
|                                               PIT_FREQ);
 | |
|     /* fix potential rounding problems */
 | |
|     /* XXX: better solution: use a clock at PIT_FREQ Hz */
 | |
|     if (next_time <= current_time)
 | |
|         next_time = current_time + 1;
 | |
|     return next_time;
 | |
| }
 | |
| 
 | |
| /* val must be 0 or 1 */
 | |
| void pit_set_gate(PITState *pit, int channel, int val)
 | |
| {
 | |
|     PITChannelState *s = &pit->channels[channel];
 | |
| 
 | |
|     switch(s->mode) {
 | |
|     default:
 | |
|     case 0:
 | |
|     case 4:
 | |
|         /* XXX: just disable/enable counting */
 | |
|         break;
 | |
|     case 1:
 | |
|     case 5:
 | |
|         if (s->gate < val) {
 | |
|             /* restart counting on rising edge */
 | |
|             s->count_load_time = qemu_get_clock(vm_clock);
 | |
|             pit_irq_timer_update(s, s->count_load_time);
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|     case 3:
 | |
|         if (s->gate < val) {
 | |
|             /* restart counting on rising edge */
 | |
|             s->count_load_time = qemu_get_clock(vm_clock);
 | |
|             pit_irq_timer_update(s, s->count_load_time);
 | |
|         }
 | |
|         /* XXX: disable/enable counting */
 | |
|         break;
 | |
|     }
 | |
|     s->gate = val;
 | |
| }
 | |
| 
 | |
| int pit_get_gate(PITState *pit, int channel)
 | |
| {
 | |
|     PITChannelState *s = &pit->channels[channel];
 | |
|     return s->gate;
 | |
| }
 | |
| 
 | |
| int pit_get_initial_count(PITState *pit, int channel)
 | |
| {
 | |
|     PITChannelState *s = &pit->channels[channel];
 | |
|     return s->count;
 | |
| }
 | |
| 
 | |
| int pit_get_mode(PITState *pit, int channel)
 | |
| {
 | |
|     PITChannelState *s = &pit->channels[channel];
 | |
|     return s->mode;
 | |
| }
 | |
| 
 | |
| static inline void pit_load_count(PITChannelState *s, int val)
 | |
| {
 | |
|     if (val == 0)
 | |
|         val = 0x10000;
 | |
|     s->count_load_time = qemu_get_clock(vm_clock);
 | |
|     s->count = val;
 | |
|     pit_irq_timer_update(s, s->count_load_time);
 | |
| }
 | |
| 
 | |
| /* if already latched, do not latch again */
 | |
| static void pit_latch_count(PITChannelState *s)
 | |
| {
 | |
|     if (!s->count_latched) {
 | |
|         s->latched_count = pit_get_count(s);
 | |
|         s->count_latched = s->rw_mode;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
 | |
| {
 | |
|     PITState *pit = opaque;
 | |
|     int channel, access;
 | |
|     PITChannelState *s;
 | |
| 
 | |
|     addr &= 3;
 | |
|     if (addr == 3) {
 | |
|         channel = val >> 6;
 | |
|         if (channel == 3) {
 | |
|             /* read back command */
 | |
|             for(channel = 0; channel < 3; channel++) {
 | |
|                 s = &pit->channels[channel];
 | |
|                 if (val & (2 << channel)) {
 | |
|                     if (!(val & 0x20)) {
 | |
|                         pit_latch_count(s);
 | |
|                     }
 | |
|                     if (!(val & 0x10) && !s->status_latched) {
 | |
|                         /* status latch */
 | |
|                         /* XXX: add BCD and null count */
 | |
|                         s->status =  (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
 | |
|                             (s->rw_mode << 4) |
 | |
|                             (s->mode << 1) |
 | |
|                             s->bcd;
 | |
|                         s->status_latched = 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             s = &pit->channels[channel];
 | |
|             access = (val >> 4) & 3;
 | |
|             if (access == 0) {
 | |
|                 pit_latch_count(s);
 | |
|             } else {
 | |
|                 s->rw_mode = access;
 | |
|                 s->read_state = access;
 | |
|                 s->write_state = access;
 | |
| 
 | |
|                 s->mode = (val >> 1) & 7;
 | |
|                 s->bcd = val & 1;
 | |
|                 /* XXX: update irq timer ? */
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         s = &pit->channels[addr];
 | |
|         switch(s->write_state) {
 | |
|         default:
 | |
|         case RW_STATE_LSB:
 | |
|             pit_load_count(s, val);
 | |
|             break;
 | |
|         case RW_STATE_MSB:
 | |
|             pit_load_count(s, val << 8);
 | |
|             break;
 | |
|         case RW_STATE_WORD0:
 | |
|             s->write_latch = val;
 | |
|             s->write_state = RW_STATE_WORD1;
 | |
|             break;
 | |
|         case RW_STATE_WORD1:
 | |
|             pit_load_count(s, s->write_latch | (val << 8));
 | |
|             s->write_state = RW_STATE_WORD0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
 | |
| {
 | |
|     PITState *pit = opaque;
 | |
|     int ret, count;
 | |
|     PITChannelState *s;
 | |
| 
 | |
|     addr &= 3;
 | |
|     s = &pit->channels[addr];
 | |
|     if (s->status_latched) {
 | |
|         s->status_latched = 0;
 | |
|         ret = s->status;
 | |
|     } else if (s->count_latched) {
 | |
|         switch(s->count_latched) {
 | |
|         default:
 | |
|         case RW_STATE_LSB:
 | |
|             ret = s->latched_count & 0xff;
 | |
|             s->count_latched = 0;
 | |
|             break;
 | |
|         case RW_STATE_MSB:
 | |
|             ret = s->latched_count >> 8;
 | |
|             s->count_latched = 0;
 | |
|             break;
 | |
|         case RW_STATE_WORD0:
 | |
|             ret = s->latched_count & 0xff;
 | |
|             s->count_latched = RW_STATE_MSB;
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         switch(s->read_state) {
 | |
|         default:
 | |
|         case RW_STATE_LSB:
 | |
|             count = pit_get_count(s);
 | |
|             ret = count & 0xff;
 | |
|             break;
 | |
|         case RW_STATE_MSB:
 | |
|             count = pit_get_count(s);
 | |
|             ret = (count >> 8) & 0xff;
 | |
|             break;
 | |
|         case RW_STATE_WORD0:
 | |
|             count = pit_get_count(s);
 | |
|             ret = count & 0xff;
 | |
|             s->read_state = RW_STATE_WORD1;
 | |
|             break;
 | |
|         case RW_STATE_WORD1:
 | |
|             count = pit_get_count(s);
 | |
|             ret = (count >> 8) & 0xff;
 | |
|             s->read_state = RW_STATE_WORD0;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
 | |
| {
 | |
|     int64_t expire_time;
 | |
|     int irq_level;
 | |
| 
 | |
|     if (!s->irq_timer)
 | |
|         return;
 | |
|     expire_time = pit_get_next_transition_time(s, current_time);
 | |
|     irq_level = pit_get_out1(s, current_time);
 | |
|     qemu_set_irq(s->irq, irq_level);
 | |
| #ifdef DEBUG_PIT
 | |
|     printf("irq_level=%d next_delay=%f\n",
 | |
|            irq_level,
 | |
|            (double)(expire_time - current_time) / get_ticks_per_sec());
 | |
| #endif
 | |
|     s->next_transition_time = expire_time;
 | |
|     if (expire_time != -1)
 | |
|         qemu_mod_timer(s->irq_timer, expire_time);
 | |
|     else
 | |
|         qemu_del_timer(s->irq_timer);
 | |
| }
 | |
| 
 | |
| static void pit_irq_timer(void *opaque)
 | |
| {
 | |
|     PITChannelState *s = opaque;
 | |
| 
 | |
|     pit_irq_timer_update(s, s->next_transition_time);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_pit_channel = {
 | |
|     .name = "pit channel",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 2,
 | |
|     .minimum_version_id_old = 2,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_INT32(count, PITChannelState),
 | |
|         VMSTATE_UINT16(latched_count, PITChannelState),
 | |
|         VMSTATE_UINT8(count_latched, PITChannelState),
 | |
|         VMSTATE_UINT8(status_latched, PITChannelState),
 | |
|         VMSTATE_UINT8(status, PITChannelState),
 | |
|         VMSTATE_UINT8(read_state, PITChannelState),
 | |
|         VMSTATE_UINT8(write_state, PITChannelState),
 | |
|         VMSTATE_UINT8(write_latch, PITChannelState),
 | |
|         VMSTATE_UINT8(rw_mode, PITChannelState),
 | |
|         VMSTATE_UINT8(mode, PITChannelState),
 | |
|         VMSTATE_UINT8(bcd, PITChannelState),
 | |
|         VMSTATE_UINT8(gate, PITChannelState),
 | |
|         VMSTATE_INT64(count_load_time, PITChannelState),
 | |
|         VMSTATE_INT64(next_transition_time, PITChannelState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     PITState *pit = opaque;
 | |
|     PITChannelState *s;
 | |
|     int i;
 | |
| 
 | |
|     if (version_id != 1)
 | |
|         return -EINVAL;
 | |
| 
 | |
|     for(i = 0; i < 3; i++) {
 | |
|         s = &pit->channels[i];
 | |
|         s->count=qemu_get_be32(f);
 | |
|         qemu_get_be16s(f, &s->latched_count);
 | |
|         qemu_get_8s(f, &s->count_latched);
 | |
|         qemu_get_8s(f, &s->status_latched);
 | |
|         qemu_get_8s(f, &s->status);
 | |
|         qemu_get_8s(f, &s->read_state);
 | |
|         qemu_get_8s(f, &s->write_state);
 | |
|         qemu_get_8s(f, &s->write_latch);
 | |
|         qemu_get_8s(f, &s->rw_mode);
 | |
|         qemu_get_8s(f, &s->mode);
 | |
|         qemu_get_8s(f, &s->bcd);
 | |
|         qemu_get_8s(f, &s->gate);
 | |
|         s->count_load_time=qemu_get_be64(f);
 | |
|         if (s->irq_timer) {
 | |
|             s->next_transition_time=qemu_get_be64(f);
 | |
|             qemu_get_timer(f, s->irq_timer);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_pit = {
 | |
|     .name = "i8254",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 2,
 | |
|     .minimum_version_id_old = 1,
 | |
|     .load_state_old = pit_load_old,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
 | |
|         VMSTATE_TIMER(channels[0].irq_timer, PITState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void pit_reset(void *opaque)
 | |
| {
 | |
|     PITState *pit = opaque;
 | |
|     PITChannelState *s;
 | |
|     int i;
 | |
| 
 | |
|     for(i = 0;i < 3; i++) {
 | |
|         s = &pit->channels[i];
 | |
|         s->mode = 3;
 | |
|         s->gate = (i != 2);
 | |
|         pit_load_count(s, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
 | |
| void hpet_pit_disable(void) {
 | |
|     PITChannelState *s;
 | |
|     s = &pit_state.channels[0];
 | |
|     if (s->irq_timer)
 | |
|         qemu_del_timer(s->irq_timer);
 | |
| }
 | |
| 
 | |
| /* When HPET is reset or leaving legacy mode, it must reenable i8254
 | |
|  * timer 0
 | |
|  */
 | |
| 
 | |
| void hpet_pit_enable(void)
 | |
| {
 | |
|     PITState *pit = &pit_state;
 | |
|     PITChannelState *s;
 | |
|     s = &pit->channels[0];
 | |
|     s->mode = 3;
 | |
|     s->gate = 1;
 | |
|     pit_load_count(s, 0);
 | |
| }
 | |
| 
 | |
| PITState *pit_init(int base, qemu_irq irq)
 | |
| {
 | |
|     PITState *pit = &pit_state;
 | |
|     PITChannelState *s;
 | |
| 
 | |
|     s = &pit->channels[0];
 | |
|     /* the timer 0 is connected to an IRQ */
 | |
|     s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
 | |
|     s->irq = irq;
 | |
| 
 | |
|     vmstate_register(base, &vmstate_pit, pit);
 | |
|     qemu_register_reset(pit_reset, pit);
 | |
|     register_ioport_write(base, 4, 1, pit_ioport_write, pit);
 | |
|     register_ioport_read(base, 3, 1, pit_ioport_read, pit);
 | |
| 
 | |
|     pit_reset(pit);
 | |
| 
 | |
|     return pit;
 | |
| }
 |