Update our copy of libvixl to upstream 1.6. There are no changes of any particular interest to QEMU, so this is simply keeping up with current upstream. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1412091418-25744-1-git-send-email-peter.maydell@linaro.org
		
			
				
	
	
		
			2290 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2290 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2013, ARM Limited
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistributions of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//   * Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//   * Neither the name of ARM Limited nor the names of its contributors may be
 | 
						|
//     used to endorse or promote products derived from this software without
 | 
						|
//     specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
 | 
						|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | 
						|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | 
						|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 | 
						|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
#ifndef VIXL_A64_ASSEMBLER_A64_H_
 | 
						|
#define VIXL_A64_ASSEMBLER_A64_H_
 | 
						|
 | 
						|
#include <list>
 | 
						|
#include <stack>
 | 
						|
 | 
						|
#include "globals.h"
 | 
						|
#include "utils.h"
 | 
						|
#include "code-buffer.h"
 | 
						|
#include "a64/instructions-a64.h"
 | 
						|
 | 
						|
namespace vixl {
 | 
						|
 | 
						|
typedef uint64_t RegList;
 | 
						|
static const int kRegListSizeInBits = sizeof(RegList) * 8;
 | 
						|
 | 
						|
 | 
						|
// Registers.
 | 
						|
 | 
						|
// Some CPURegister methods can return Register and FPRegister types, so we
 | 
						|
// need to declare them in advance.
 | 
						|
class Register;
 | 
						|
class FPRegister;
 | 
						|
 | 
						|
 | 
						|
class CPURegister {
 | 
						|
 public:
 | 
						|
  enum RegisterType {
 | 
						|
    // The kInvalid value is used to detect uninitialized static instances,
 | 
						|
    // which are always zero-initialized before any constructors are called.
 | 
						|
    kInvalid = 0,
 | 
						|
    kRegister,
 | 
						|
    kFPRegister,
 | 
						|
    kNoRegister
 | 
						|
  };
 | 
						|
 | 
						|
  CPURegister() : code_(0), size_(0), type_(kNoRegister) {
 | 
						|
    VIXL_ASSERT(!IsValid());
 | 
						|
    VIXL_ASSERT(IsNone());
 | 
						|
  }
 | 
						|
 | 
						|
  CPURegister(unsigned code, unsigned size, RegisterType type)
 | 
						|
      : code_(code), size_(size), type_(type) {
 | 
						|
    VIXL_ASSERT(IsValidOrNone());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned code() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return code_;
 | 
						|
  }
 | 
						|
 | 
						|
  RegisterType type() const {
 | 
						|
    VIXL_ASSERT(IsValidOrNone());
 | 
						|
    return type_;
 | 
						|
  }
 | 
						|
 | 
						|
  RegList Bit() const {
 | 
						|
    VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
 | 
						|
    return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned size() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return size_;
 | 
						|
  }
 | 
						|
 | 
						|
  int SizeInBytes() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    VIXL_ASSERT(size() % 8 == 0);
 | 
						|
    return size_ / 8;
 | 
						|
  }
 | 
						|
 | 
						|
  int SizeInBits() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return size_;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is32Bits() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return size_ == 32;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is64Bits() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return size_ == 64;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsValid() const {
 | 
						|
    if (IsValidRegister() || IsValidFPRegister()) {
 | 
						|
      VIXL_ASSERT(!IsNone());
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      VIXL_ASSERT(IsNone());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsValidRegister() const {
 | 
						|
    return IsRegister() &&
 | 
						|
           ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
 | 
						|
           ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsValidFPRegister() const {
 | 
						|
    return IsFPRegister() &&
 | 
						|
           ((size_ == kSRegSize) || (size_ == kDRegSize)) &&
 | 
						|
           (code_ < kNumberOfFPRegisters);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsNone() const {
 | 
						|
    // kNoRegister types should always have size 0 and code 0.
 | 
						|
    VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
 | 
						|
    VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
 | 
						|
 | 
						|
    return type_ == kNoRegister;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Aliases(const CPURegister& other) const {
 | 
						|
    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
 | 
						|
    return (code_ == other.code_) && (type_ == other.type_);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Is(const CPURegister& other) const {
 | 
						|
    VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
 | 
						|
    return Aliases(other) && (size_ == other.size_);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IsZero() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return IsRegister() && (code_ == kZeroRegCode);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IsSP() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return IsRegister() && (code_ == kSPRegInternalCode);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IsRegister() const {
 | 
						|
    return type_ == kRegister;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IsFPRegister() const {
 | 
						|
    return type_ == kFPRegister;
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsW() const { return IsValidRegister() && Is32Bits(); }
 | 
						|
  bool IsX() const { return IsValidRegister() && Is64Bits(); }
 | 
						|
  bool IsS() const { return IsValidFPRegister() && Is32Bits(); }
 | 
						|
  bool IsD() const { return IsValidFPRegister() && Is64Bits(); }
 | 
						|
 | 
						|
  const Register& W() const;
 | 
						|
  const Register& X() const;
 | 
						|
  const FPRegister& S() const;
 | 
						|
  const FPRegister& D() const;
 | 
						|
 | 
						|
  inline bool IsSameSizeAndType(const CPURegister& other) const {
 | 
						|
    return (size_ == other.size_) && (type_ == other.type_);
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  unsigned code_;
 | 
						|
  unsigned size_;
 | 
						|
  RegisterType type_;
 | 
						|
 | 
						|
 private:
 | 
						|
  bool IsValidOrNone() const {
 | 
						|
    return IsValid() || IsNone();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class Register : public CPURegister {
 | 
						|
 public:
 | 
						|
  Register() : CPURegister() {}
 | 
						|
  inline explicit Register(const CPURegister& other)
 | 
						|
      : CPURegister(other.code(), other.size(), other.type()) {
 | 
						|
    VIXL_ASSERT(IsValidRegister());
 | 
						|
  }
 | 
						|
  Register(unsigned code, unsigned size)
 | 
						|
      : CPURegister(code, size, kRegister) {}
 | 
						|
 | 
						|
  bool IsValid() const {
 | 
						|
    VIXL_ASSERT(IsRegister() || IsNone());
 | 
						|
    return IsValidRegister();
 | 
						|
  }
 | 
						|
 | 
						|
  static const Register& WRegFromCode(unsigned code);
 | 
						|
  static const Register& XRegFromCode(unsigned code);
 | 
						|
 | 
						|
  // V8 compatibility.
 | 
						|
  static const int kNumRegisters = kNumberOfRegisters;
 | 
						|
  static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
 | 
						|
 | 
						|
 private:
 | 
						|
  static const Register wregisters[];
 | 
						|
  static const Register xregisters[];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class FPRegister : public CPURegister {
 | 
						|
 public:
 | 
						|
  inline FPRegister() : CPURegister() {}
 | 
						|
  inline explicit FPRegister(const CPURegister& other)
 | 
						|
      : CPURegister(other.code(), other.size(), other.type()) {
 | 
						|
    VIXL_ASSERT(IsValidFPRegister());
 | 
						|
  }
 | 
						|
  inline FPRegister(unsigned code, unsigned size)
 | 
						|
      : CPURegister(code, size, kFPRegister) {}
 | 
						|
 | 
						|
  bool IsValid() const {
 | 
						|
    VIXL_ASSERT(IsFPRegister() || IsNone());
 | 
						|
    return IsValidFPRegister();
 | 
						|
  }
 | 
						|
 | 
						|
  static const FPRegister& SRegFromCode(unsigned code);
 | 
						|
  static const FPRegister& DRegFromCode(unsigned code);
 | 
						|
 | 
						|
  // V8 compatibility.
 | 
						|
  static const int kNumRegisters = kNumberOfFPRegisters;
 | 
						|
  static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
 | 
						|
 | 
						|
 private:
 | 
						|
  static const FPRegister sregisters[];
 | 
						|
  static const FPRegister dregisters[];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// No*Reg is used to indicate an unused argument, or an error case. Note that
 | 
						|
// these all compare equal (using the Is() method). The Register and FPRegister
 | 
						|
// variants are provided for convenience.
 | 
						|
const Register NoReg;
 | 
						|
const FPRegister NoFPReg;
 | 
						|
const CPURegister NoCPUReg;
 | 
						|
 | 
						|
 | 
						|
#define DEFINE_REGISTERS(N)  \
 | 
						|
const Register w##N(N, kWRegSize);  \
 | 
						|
const Register x##N(N, kXRegSize);
 | 
						|
REGISTER_CODE_LIST(DEFINE_REGISTERS)
 | 
						|
#undef DEFINE_REGISTERS
 | 
						|
const Register wsp(kSPRegInternalCode, kWRegSize);
 | 
						|
const Register sp(kSPRegInternalCode, kXRegSize);
 | 
						|
 | 
						|
 | 
						|
#define DEFINE_FPREGISTERS(N)  \
 | 
						|
const FPRegister s##N(N, kSRegSize);  \
 | 
						|
const FPRegister d##N(N, kDRegSize);
 | 
						|
REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
 | 
						|
#undef DEFINE_FPREGISTERS
 | 
						|
 | 
						|
 | 
						|
// Registers aliases.
 | 
						|
const Register ip0 = x16;
 | 
						|
const Register ip1 = x17;
 | 
						|
const Register lr = x30;
 | 
						|
const Register xzr = x31;
 | 
						|
const Register wzr = w31;
 | 
						|
 | 
						|
 | 
						|
// AreAliased returns true if any of the named registers overlap. Arguments
 | 
						|
// set to NoReg are ignored. The system stack pointer may be specified.
 | 
						|
bool AreAliased(const CPURegister& reg1,
 | 
						|
                const CPURegister& reg2,
 | 
						|
                const CPURegister& reg3 = NoReg,
 | 
						|
                const CPURegister& reg4 = NoReg,
 | 
						|
                const CPURegister& reg5 = NoReg,
 | 
						|
                const CPURegister& reg6 = NoReg,
 | 
						|
                const CPURegister& reg7 = NoReg,
 | 
						|
                const CPURegister& reg8 = NoReg);
 | 
						|
 | 
						|
 | 
						|
// AreSameSizeAndType returns true if all of the specified registers have the
 | 
						|
// same size, and are of the same type. The system stack pointer may be
 | 
						|
// specified. Arguments set to NoReg are ignored, as are any subsequent
 | 
						|
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
 | 
						|
bool AreSameSizeAndType(const CPURegister& reg1,
 | 
						|
                        const CPURegister& reg2,
 | 
						|
                        const CPURegister& reg3 = NoCPUReg,
 | 
						|
                        const CPURegister& reg4 = NoCPUReg,
 | 
						|
                        const CPURegister& reg5 = NoCPUReg,
 | 
						|
                        const CPURegister& reg6 = NoCPUReg,
 | 
						|
                        const CPURegister& reg7 = NoCPUReg,
 | 
						|
                        const CPURegister& reg8 = NoCPUReg);
 | 
						|
 | 
						|
 | 
						|
// Lists of registers.
 | 
						|
class CPURegList {
 | 
						|
 public:
 | 
						|
  inline explicit CPURegList(CPURegister reg1,
 | 
						|
                             CPURegister reg2 = NoCPUReg,
 | 
						|
                             CPURegister reg3 = NoCPUReg,
 | 
						|
                             CPURegister reg4 = NoCPUReg)
 | 
						|
      : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
 | 
						|
        size_(reg1.size()), type_(reg1.type()) {
 | 
						|
    VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
  }
 | 
						|
 | 
						|
  inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
 | 
						|
      : list_(list), size_(size), type_(type) {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
  }
 | 
						|
 | 
						|
  inline CPURegList(CPURegister::RegisterType type, unsigned size,
 | 
						|
                    unsigned first_reg, unsigned last_reg)
 | 
						|
      : size_(size), type_(type) {
 | 
						|
    VIXL_ASSERT(((type == CPURegister::kRegister) &&
 | 
						|
                 (last_reg < kNumberOfRegisters)) ||
 | 
						|
                ((type == CPURegister::kFPRegister) &&
 | 
						|
                 (last_reg < kNumberOfFPRegisters)));
 | 
						|
    VIXL_ASSERT(last_reg >= first_reg);
 | 
						|
    list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
 | 
						|
    list_ &= ~((UINT64_C(1) << first_reg) - 1);
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
  }
 | 
						|
 | 
						|
  inline CPURegister::RegisterType type() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return type_;
 | 
						|
  }
 | 
						|
 | 
						|
  // Combine another CPURegList into this one. Registers that already exist in
 | 
						|
  // this list are left unchanged. The type and size of the registers in the
 | 
						|
  // 'other' list must match those in this list.
 | 
						|
  void Combine(const CPURegList& other) {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    VIXL_ASSERT(other.type() == type_);
 | 
						|
    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
 | 
						|
    list_ |= other.list();
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove every register in the other CPURegList from this one. Registers that
 | 
						|
  // do not exist in this list are ignored. The type and size of the registers
 | 
						|
  // in the 'other' list must match those in this list.
 | 
						|
  void Remove(const CPURegList& other) {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    VIXL_ASSERT(other.type() == type_);
 | 
						|
    VIXL_ASSERT(other.RegisterSizeInBits() == size_);
 | 
						|
    list_ &= ~other.list();
 | 
						|
  }
 | 
						|
 | 
						|
  // Variants of Combine and Remove which take a single register.
 | 
						|
  inline void Combine(const CPURegister& other) {
 | 
						|
    VIXL_ASSERT(other.type() == type_);
 | 
						|
    VIXL_ASSERT(other.size() == size_);
 | 
						|
    Combine(other.code());
 | 
						|
  }
 | 
						|
 | 
						|
  inline void Remove(const CPURegister& other) {
 | 
						|
    VIXL_ASSERT(other.type() == type_);
 | 
						|
    VIXL_ASSERT(other.size() == size_);
 | 
						|
    Remove(other.code());
 | 
						|
  }
 | 
						|
 | 
						|
  // Variants of Combine and Remove which take a single register by its code;
 | 
						|
  // the type and size of the register is inferred from this list.
 | 
						|
  inline void Combine(int code) {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
 | 
						|
    list_ |= (UINT64_C(1) << code);
 | 
						|
  }
 | 
						|
 | 
						|
  inline void Remove(int code) {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
 | 
						|
    list_ &= ~(UINT64_C(1) << code);
 | 
						|
  }
 | 
						|
 | 
						|
  inline RegList list() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return list_;
 | 
						|
  }
 | 
						|
 | 
						|
  inline void set_list(RegList new_list) {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    list_ = new_list;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove all callee-saved registers from the list. This can be useful when
 | 
						|
  // preparing registers for an AAPCS64 function call, for example.
 | 
						|
  void RemoveCalleeSaved();
 | 
						|
 | 
						|
  CPURegister PopLowestIndex();
 | 
						|
  CPURegister PopHighestIndex();
 | 
						|
 | 
						|
  // AAPCS64 callee-saved registers.
 | 
						|
  static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
 | 
						|
  static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
 | 
						|
 | 
						|
  // AAPCS64 caller-saved registers. Note that this includes lr.
 | 
						|
  static CPURegList GetCallerSaved(unsigned size = kXRegSize);
 | 
						|
  static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
 | 
						|
 | 
						|
  inline bool IsEmpty() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return list_ == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IncludesAliasOf(const CPURegister& other) const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return (type_ == other.type()) && ((other.Bit() & list_) != 0);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IncludesAliasOf(int code) const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return ((code & list_) != 0);
 | 
						|
  }
 | 
						|
 | 
						|
  inline int Count() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return CountSetBits(list_, kRegListSizeInBits);
 | 
						|
  }
 | 
						|
 | 
						|
  inline unsigned RegisterSizeInBits() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return size_;
 | 
						|
  }
 | 
						|
 | 
						|
  inline unsigned RegisterSizeInBytes() const {
 | 
						|
    int size_in_bits = RegisterSizeInBits();
 | 
						|
    VIXL_ASSERT((size_in_bits % 8) == 0);
 | 
						|
    return size_in_bits / 8;
 | 
						|
  }
 | 
						|
 | 
						|
  inline unsigned TotalSizeInBytes() const {
 | 
						|
    VIXL_ASSERT(IsValid());
 | 
						|
    return RegisterSizeInBytes() * Count();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  RegList list_;
 | 
						|
  unsigned size_;
 | 
						|
  CPURegister::RegisterType type_;
 | 
						|
 | 
						|
  bool IsValid() const;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// AAPCS64 callee-saved registers.
 | 
						|
extern const CPURegList kCalleeSaved;
 | 
						|
extern const CPURegList kCalleeSavedFP;
 | 
						|
 | 
						|
 | 
						|
// AAPCS64 caller-saved registers. Note that this includes lr.
 | 
						|
extern const CPURegList kCallerSaved;
 | 
						|
extern const CPURegList kCallerSavedFP;
 | 
						|
 | 
						|
 | 
						|
// Operand.
 | 
						|
class Operand {
 | 
						|
 public:
 | 
						|
  // #<immediate>
 | 
						|
  // where <immediate> is int64_t.
 | 
						|
  // This is allowed to be an implicit constructor because Operand is
 | 
						|
  // a wrapper class that doesn't normally perform any type conversion.
 | 
						|
  Operand(int64_t immediate);           // NOLINT(runtime/explicit)
 | 
						|
 | 
						|
  // rm, {<shift> #<shift_amount>}
 | 
						|
  // where <shift> is one of {LSL, LSR, ASR, ROR}.
 | 
						|
  //       <shift_amount> is uint6_t.
 | 
						|
  // This is allowed to be an implicit constructor because Operand is
 | 
						|
  // a wrapper class that doesn't normally perform any type conversion.
 | 
						|
  Operand(Register reg,
 | 
						|
          Shift shift = LSL,
 | 
						|
          unsigned shift_amount = 0);   // NOLINT(runtime/explicit)
 | 
						|
 | 
						|
  // rm, {<extend> {#<shift_amount>}}
 | 
						|
  // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
 | 
						|
  //       <shift_amount> is uint2_t.
 | 
						|
  explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
 | 
						|
 | 
						|
  bool IsImmediate() const;
 | 
						|
  bool IsShiftedRegister() const;
 | 
						|
  bool IsExtendedRegister() const;
 | 
						|
  bool IsZero() const;
 | 
						|
 | 
						|
  // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
 | 
						|
  // which helps in the encoding of instructions that use the stack pointer.
 | 
						|
  Operand ToExtendedRegister() const;
 | 
						|
 | 
						|
  int64_t immediate() const {
 | 
						|
    VIXL_ASSERT(IsImmediate());
 | 
						|
    return immediate_;
 | 
						|
  }
 | 
						|
 | 
						|
  Register reg() const {
 | 
						|
    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
 | 
						|
    return reg_;
 | 
						|
  }
 | 
						|
 | 
						|
  Shift shift() const {
 | 
						|
    VIXL_ASSERT(IsShiftedRegister());
 | 
						|
    return shift_;
 | 
						|
  }
 | 
						|
 | 
						|
  Extend extend() const {
 | 
						|
    VIXL_ASSERT(IsExtendedRegister());
 | 
						|
    return extend_;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned shift_amount() const {
 | 
						|
    VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
 | 
						|
    return shift_amount_;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  int64_t immediate_;
 | 
						|
  Register reg_;
 | 
						|
  Shift shift_;
 | 
						|
  Extend extend_;
 | 
						|
  unsigned shift_amount_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// MemOperand represents the addressing mode of a load or store instruction.
 | 
						|
class MemOperand {
 | 
						|
 public:
 | 
						|
  explicit MemOperand(Register base,
 | 
						|
                      int64_t offset = 0,
 | 
						|
                      AddrMode addrmode = Offset);
 | 
						|
  explicit MemOperand(Register base,
 | 
						|
                      Register regoffset,
 | 
						|
                      Shift shift = LSL,
 | 
						|
                      unsigned shift_amount = 0);
 | 
						|
  explicit MemOperand(Register base,
 | 
						|
                      Register regoffset,
 | 
						|
                      Extend extend,
 | 
						|
                      unsigned shift_amount = 0);
 | 
						|
  explicit MemOperand(Register base,
 | 
						|
                      const Operand& offset,
 | 
						|
                      AddrMode addrmode = Offset);
 | 
						|
 | 
						|
  const Register& base() const { return base_; }
 | 
						|
  const Register& regoffset() const { return regoffset_; }
 | 
						|
  int64_t offset() const { return offset_; }
 | 
						|
  AddrMode addrmode() const { return addrmode_; }
 | 
						|
  Shift shift() const { return shift_; }
 | 
						|
  Extend extend() const { return extend_; }
 | 
						|
  unsigned shift_amount() const { return shift_amount_; }
 | 
						|
  bool IsImmediateOffset() const;
 | 
						|
  bool IsRegisterOffset() const;
 | 
						|
  bool IsPreIndex() const;
 | 
						|
  bool IsPostIndex() const;
 | 
						|
 | 
						|
 private:
 | 
						|
  Register base_;
 | 
						|
  Register regoffset_;
 | 
						|
  int64_t offset_;
 | 
						|
  AddrMode addrmode_;
 | 
						|
  Shift shift_;
 | 
						|
  Extend extend_;
 | 
						|
  unsigned shift_amount_;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
class Label {
 | 
						|
 public:
 | 
						|
  Label() : location_(kLocationUnbound) {}
 | 
						|
  ~Label() {
 | 
						|
    // If the label has been linked to, it needs to be bound to a target.
 | 
						|
    VIXL_ASSERT(!IsLinked() || IsBound());
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool IsBound() const { return location_ >= 0; }
 | 
						|
  inline bool IsLinked() const { return !links_.empty(); }
 | 
						|
 | 
						|
 private:
 | 
						|
  // The list of linked instructions is stored in a stack-like structure. We
 | 
						|
  // don't use std::stack directly because it's slow for the common case where
 | 
						|
  // only one or two instructions refer to a label, and labels themselves are
 | 
						|
  // short-lived. This class behaves like std::stack, but the first few links
 | 
						|
  // are preallocated (configured by kPreallocatedLinks).
 | 
						|
  //
 | 
						|
  // If more than N links are required, this falls back to std::stack.
 | 
						|
  class LinksStack {
 | 
						|
   public:
 | 
						|
    LinksStack() : size_(0), links_extended_(NULL) {}
 | 
						|
    ~LinksStack() {
 | 
						|
      delete links_extended_;
 | 
						|
    }
 | 
						|
 | 
						|
    size_t size() const {
 | 
						|
      return size_;
 | 
						|
    }
 | 
						|
 | 
						|
    bool empty() const {
 | 
						|
      return size_ == 0;
 | 
						|
    }
 | 
						|
 | 
						|
    void push(ptrdiff_t value) {
 | 
						|
      if (size_ < kPreallocatedLinks) {
 | 
						|
        links_[size_] = value;
 | 
						|
      } else {
 | 
						|
        if (links_extended_ == NULL) {
 | 
						|
          links_extended_ = new std::stack<ptrdiff_t>();
 | 
						|
        }
 | 
						|
        VIXL_ASSERT(size_ == (links_extended_->size() + kPreallocatedLinks));
 | 
						|
        links_extended_->push(value);
 | 
						|
      }
 | 
						|
      size_++;
 | 
						|
    }
 | 
						|
 | 
						|
    ptrdiff_t top() const {
 | 
						|
      return (size_ <= kPreallocatedLinks) ? links_[size_ - 1]
 | 
						|
                                           : links_extended_->top();
 | 
						|
    }
 | 
						|
 | 
						|
    void pop() {
 | 
						|
      size_--;
 | 
						|
      if (size_ >= kPreallocatedLinks) {
 | 
						|
        links_extended_->pop();
 | 
						|
        VIXL_ASSERT(size_ == (links_extended_->size() + kPreallocatedLinks));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
   private:
 | 
						|
    static const size_t kPreallocatedLinks = 4;
 | 
						|
 | 
						|
    size_t size_;
 | 
						|
    ptrdiff_t links_[kPreallocatedLinks];
 | 
						|
    std::stack<ptrdiff_t> * links_extended_;
 | 
						|
  };
 | 
						|
 | 
						|
  inline ptrdiff_t location() const { return location_; }
 | 
						|
 | 
						|
  inline void Bind(ptrdiff_t location) {
 | 
						|
    // Labels can only be bound once.
 | 
						|
    VIXL_ASSERT(!IsBound());
 | 
						|
    location_ = location;
 | 
						|
  }
 | 
						|
 | 
						|
  inline void AddLink(ptrdiff_t instruction) {
 | 
						|
    // If a label is bound, the assembler already has the information it needs
 | 
						|
    // to write the instruction, so there is no need to add it to links_.
 | 
						|
    VIXL_ASSERT(!IsBound());
 | 
						|
    links_.push(instruction);
 | 
						|
  }
 | 
						|
 | 
						|
  inline ptrdiff_t GetAndRemoveNextLink() {
 | 
						|
    VIXL_ASSERT(IsLinked());
 | 
						|
    ptrdiff_t link = links_.top();
 | 
						|
    links_.pop();
 | 
						|
    return link;
 | 
						|
  }
 | 
						|
 | 
						|
  // The offsets of the instructions that have linked to this label.
 | 
						|
  LinksStack links_;
 | 
						|
  // The label location.
 | 
						|
  ptrdiff_t location_;
 | 
						|
 | 
						|
  static const ptrdiff_t kLocationUnbound = -1;
 | 
						|
 | 
						|
  // It is not safe to copy labels, so disable the copy constructor by declaring
 | 
						|
  // it private (without an implementation).
 | 
						|
  Label(const Label&);
 | 
						|
 | 
						|
  // The Assembler class is responsible for binding and linking labels, since
 | 
						|
  // the stored offsets need to be consistent with the Assembler's buffer.
 | 
						|
  friend class Assembler;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// A literal is a 32-bit or 64-bit piece of data stored in the instruction
 | 
						|
// stream and loaded through a pc relative load. The same literal can be
 | 
						|
// referred to by multiple instructions but a literal can only reside at one
 | 
						|
// place in memory. A literal can be used by a load before or after being
 | 
						|
// placed in memory.
 | 
						|
//
 | 
						|
// Internally an offset of 0 is associated with a literal which has been
 | 
						|
// neither used nor placed. Then two possibilities arise:
 | 
						|
//  1) the label is placed, the offset (stored as offset + 1) is used to
 | 
						|
//     resolve any subsequent load using the label.
 | 
						|
//  2) the label is not placed and offset is the offset of the last load using
 | 
						|
//     the literal (stored as -offset -1). If multiple loads refer to this
 | 
						|
//     literal then the last load holds the offset of the preceding load and
 | 
						|
//     all loads form a chain. Once the offset is placed all the loads in the
 | 
						|
//     chain are resolved and future loads fall back to possibility 1.
 | 
						|
class RawLiteral {
 | 
						|
 public:
 | 
						|
  RawLiteral() : size_(0), offset_(0), raw_value_(0) {}
 | 
						|
 | 
						|
  size_t size() {
 | 
						|
    VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
 | 
						|
    VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
 | 
						|
    VIXL_ASSERT((size_ == kXRegSizeInBytes) || (size_ == kWRegSizeInBytes));
 | 
						|
    return size_;
 | 
						|
  }
 | 
						|
  uint64_t raw_value64() {
 | 
						|
    VIXL_ASSERT(size_ == kXRegSizeInBytes);
 | 
						|
    return raw_value_;
 | 
						|
  }
 | 
						|
  uint32_t raw_value32() {
 | 
						|
    VIXL_ASSERT(size_ == kWRegSizeInBytes);
 | 
						|
    VIXL_ASSERT(is_uint32(raw_value_) || is_int32(raw_value_));
 | 
						|
    return static_cast<uint32_t>(raw_value_);
 | 
						|
  }
 | 
						|
  bool IsUsed() { return offset_ < 0; }
 | 
						|
  bool IsPlaced() { return offset_ > 0; }
 | 
						|
 | 
						|
 protected:
 | 
						|
  ptrdiff_t offset() {
 | 
						|
    VIXL_ASSERT(IsPlaced());
 | 
						|
    return offset_ - 1;
 | 
						|
  }
 | 
						|
  void set_offset(ptrdiff_t offset) {
 | 
						|
    VIXL_ASSERT(offset >= 0);
 | 
						|
    VIXL_ASSERT(IsWordAligned(offset));
 | 
						|
    VIXL_ASSERT(!IsPlaced());
 | 
						|
    offset_ = offset + 1;
 | 
						|
  }
 | 
						|
  ptrdiff_t last_use() {
 | 
						|
    VIXL_ASSERT(IsUsed());
 | 
						|
    return -offset_ - 1;
 | 
						|
  }
 | 
						|
  void set_last_use(ptrdiff_t offset) {
 | 
						|
    VIXL_ASSERT(offset >= 0);
 | 
						|
    VIXL_ASSERT(IsWordAligned(offset));
 | 
						|
    VIXL_ASSERT(!IsPlaced());
 | 
						|
    offset_ = -offset - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t size_;
 | 
						|
  ptrdiff_t offset_;
 | 
						|
  uint64_t raw_value_;
 | 
						|
 | 
						|
  friend class Assembler;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template <typename T>
 | 
						|
class Literal : public RawLiteral {
 | 
						|
 public:
 | 
						|
  explicit Literal(T value) {
 | 
						|
    size_ = sizeof(value);
 | 
						|
    memcpy(&raw_value_, &value, sizeof(value));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Control whether or not position-independent code should be emitted.
 | 
						|
enum PositionIndependentCodeOption {
 | 
						|
  // All code generated will be position-independent; all branches and
 | 
						|
  // references to labels generated with the Label class will use PC-relative
 | 
						|
  // addressing.
 | 
						|
  PositionIndependentCode,
 | 
						|
 | 
						|
  // Allow VIXL to generate code that refers to absolute addresses. With this
 | 
						|
  // option, it will not be possible to copy the code buffer and run it from a
 | 
						|
  // different address; code must be generated in its final location.
 | 
						|
  PositionDependentCode,
 | 
						|
 | 
						|
  // Allow VIXL to assume that the bottom 12 bits of the address will be
 | 
						|
  // constant, but that the top 48 bits may change. This allows `adrp` to
 | 
						|
  // function in systems which copy code between pages, but otherwise maintain
 | 
						|
  // 4KB page alignment.
 | 
						|
  PageOffsetDependentCode
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Control how scaled- and unscaled-offset loads and stores are generated.
 | 
						|
enum LoadStoreScalingOption {
 | 
						|
  // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
 | 
						|
  // register-offset, pre-index or post-index instructions if necessary.
 | 
						|
  PreferScaledOffset,
 | 
						|
 | 
						|
  // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
 | 
						|
  // register-offset, pre-index or post-index instructions if necessary.
 | 
						|
  PreferUnscaledOffset,
 | 
						|
 | 
						|
  // Require scaled-immediate-offset instructions.
 | 
						|
  RequireScaledOffset,
 | 
						|
 | 
						|
  // Require unscaled-immediate-offset instructions.
 | 
						|
  RequireUnscaledOffset
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// Assembler.
 | 
						|
class Assembler {
 | 
						|
 public:
 | 
						|
  Assembler(size_t capacity,
 | 
						|
            PositionIndependentCodeOption pic = PositionIndependentCode);
 | 
						|
  Assembler(byte* buffer, size_t capacity,
 | 
						|
            PositionIndependentCodeOption pic = PositionIndependentCode);
 | 
						|
 | 
						|
  // The destructor asserts that one of the following is true:
 | 
						|
  //  * The Assembler object has not been used.
 | 
						|
  //  * Nothing has been emitted since the last Reset() call.
 | 
						|
  //  * Nothing has been emitted since the last FinalizeCode() call.
 | 
						|
  ~Assembler();
 | 
						|
 | 
						|
  // System functions.
 | 
						|
 | 
						|
  // Start generating code from the beginning of the buffer, discarding any code
 | 
						|
  // and data that has already been emitted into the buffer.
 | 
						|
  void Reset();
 | 
						|
 | 
						|
  // Finalize a code buffer of generated instructions. This function must be
 | 
						|
  // called before executing or copying code from the buffer.
 | 
						|
  void FinalizeCode();
 | 
						|
 | 
						|
  // Label.
 | 
						|
  // Bind a label to the current PC.
 | 
						|
  void bind(Label* label);
 | 
						|
 | 
						|
  // Bind a label to a specified offset from the start of the buffer.
 | 
						|
  void BindToOffset(Label* label, ptrdiff_t offset);
 | 
						|
 | 
						|
  // Place a literal at the current PC.
 | 
						|
  void place(RawLiteral* literal);
 | 
						|
 | 
						|
  ptrdiff_t CursorOffset() const {
 | 
						|
    return buffer_->CursorOffset();
 | 
						|
  }
 | 
						|
 | 
						|
  ptrdiff_t BufferEndOffset() const {
 | 
						|
    return static_cast<ptrdiff_t>(buffer_->capacity());
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the address of an offset in the buffer.
 | 
						|
  template <typename T>
 | 
						|
  inline T GetOffsetAddress(ptrdiff_t offset) {
 | 
						|
    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
 | 
						|
    return buffer_->GetOffsetAddress<T>(offset);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the address of a bound label.
 | 
						|
  template <typename T>
 | 
						|
  inline T GetLabelAddress(const Label * label) {
 | 
						|
    VIXL_ASSERT(label->IsBound());
 | 
						|
    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
 | 
						|
    return GetOffsetAddress<T>(label->location());
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the address of the cursor.
 | 
						|
  template <typename T>
 | 
						|
  inline T GetCursorAddress() {
 | 
						|
    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
 | 
						|
    return GetOffsetAddress<T>(CursorOffset());
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the address of the start of the buffer.
 | 
						|
  template <typename T>
 | 
						|
  inline T GetStartAddress() {
 | 
						|
    VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
 | 
						|
    return GetOffsetAddress<T>(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Instruction set functions.
 | 
						|
 | 
						|
  // Branch / Jump instructions.
 | 
						|
  // Branch to register.
 | 
						|
  void br(const Register& xn);
 | 
						|
 | 
						|
  // Branch with link to register.
 | 
						|
  void blr(const Register& xn);
 | 
						|
 | 
						|
  // Branch to register with return hint.
 | 
						|
  void ret(const Register& xn = lr);
 | 
						|
 | 
						|
  // Unconditional branch to label.
 | 
						|
  void b(Label* label);
 | 
						|
 | 
						|
  // Conditional branch to label.
 | 
						|
  void b(Label* label, Condition cond);
 | 
						|
 | 
						|
  // Unconditional branch to PC offset.
 | 
						|
  void b(int imm26);
 | 
						|
 | 
						|
  // Conditional branch to PC offset.
 | 
						|
  void b(int imm19, Condition cond);
 | 
						|
 | 
						|
  // Branch with link to label.
 | 
						|
  void bl(Label* label);
 | 
						|
 | 
						|
  // Branch with link to PC offset.
 | 
						|
  void bl(int imm26);
 | 
						|
 | 
						|
  // Compare and branch to label if zero.
 | 
						|
  void cbz(const Register& rt, Label* label);
 | 
						|
 | 
						|
  // Compare and branch to PC offset if zero.
 | 
						|
  void cbz(const Register& rt, int imm19);
 | 
						|
 | 
						|
  // Compare and branch to label if not zero.
 | 
						|
  void cbnz(const Register& rt, Label* label);
 | 
						|
 | 
						|
  // Compare and branch to PC offset if not zero.
 | 
						|
  void cbnz(const Register& rt, int imm19);
 | 
						|
 | 
						|
  // Test bit and branch to label if zero.
 | 
						|
  void tbz(const Register& rt, unsigned bit_pos, Label* label);
 | 
						|
 | 
						|
  // Test bit and branch to PC offset if zero.
 | 
						|
  void tbz(const Register& rt, unsigned bit_pos, int imm14);
 | 
						|
 | 
						|
  // Test bit and branch to label if not zero.
 | 
						|
  void tbnz(const Register& rt, unsigned bit_pos, Label* label);
 | 
						|
 | 
						|
  // Test bit and branch to PC offset if not zero.
 | 
						|
  void tbnz(const Register& rt, unsigned bit_pos, int imm14);
 | 
						|
 | 
						|
  // Address calculation instructions.
 | 
						|
  // Calculate a PC-relative address. Unlike for branches the offset in adr is
 | 
						|
  // unscaled (i.e. the result can be unaligned).
 | 
						|
 | 
						|
  // Calculate the address of a label.
 | 
						|
  void adr(const Register& rd, Label* label);
 | 
						|
 | 
						|
  // Calculate the address of a PC offset.
 | 
						|
  void adr(const Register& rd, int imm21);
 | 
						|
 | 
						|
  // Calculate the page address of a label.
 | 
						|
  void adrp(const Register& rd, Label* label);
 | 
						|
 | 
						|
  // Calculate the page address of a PC offset.
 | 
						|
  void adrp(const Register& rd, int imm21);
 | 
						|
 | 
						|
  // Data Processing instructions.
 | 
						|
  // Add.
 | 
						|
  void add(const Register& rd,
 | 
						|
           const Register& rn,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Add and update status flags.
 | 
						|
  void adds(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Compare negative.
 | 
						|
  void cmn(const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Subtract.
 | 
						|
  void sub(const Register& rd,
 | 
						|
           const Register& rn,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Subtract and update status flags.
 | 
						|
  void subs(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Compare.
 | 
						|
  void cmp(const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Negate.
 | 
						|
  void neg(const Register& rd,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Negate and update status flags.
 | 
						|
  void negs(const Register& rd,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Add with carry bit.
 | 
						|
  void adc(const Register& rd,
 | 
						|
           const Register& rn,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Add with carry bit and update status flags.
 | 
						|
  void adcs(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Subtract with carry bit.
 | 
						|
  void sbc(const Register& rd,
 | 
						|
           const Register& rn,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Subtract with carry bit and update status flags.
 | 
						|
  void sbcs(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Negate with carry bit.
 | 
						|
  void ngc(const Register& rd,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Negate with carry bit and update status flags.
 | 
						|
  void ngcs(const Register& rd,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Logical instructions.
 | 
						|
  // Bitwise and (A & B).
 | 
						|
  void and_(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Bitwise and (A & B) and update status flags.
 | 
						|
  void ands(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Bit test and set flags.
 | 
						|
  void tst(const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Bit clear (A & ~B).
 | 
						|
  void bic(const Register& rd,
 | 
						|
           const Register& rn,
 | 
						|
           const Operand& operand);
 | 
						|
 | 
						|
  // Bit clear (A & ~B) and update status flags.
 | 
						|
  void bics(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Operand& operand);
 | 
						|
 | 
						|
  // Bitwise or (A | B).
 | 
						|
  void orr(const Register& rd, const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Bitwise nor (A | ~B).
 | 
						|
  void orn(const Register& rd, const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Bitwise eor/xor (A ^ B).
 | 
						|
  void eor(const Register& rd, const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Bitwise enor/xnor (A ^ ~B).
 | 
						|
  void eon(const Register& rd, const Register& rn, const Operand& operand);
 | 
						|
 | 
						|
  // Logical shift left by variable.
 | 
						|
  void lslv(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Logical shift right by variable.
 | 
						|
  void lsrv(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Arithmetic shift right by variable.
 | 
						|
  void asrv(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Rotate right by variable.
 | 
						|
  void rorv(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Bitfield instructions.
 | 
						|
  // Bitfield move.
 | 
						|
  void bfm(const Register& rd,
 | 
						|
           const Register& rn,
 | 
						|
           unsigned immr,
 | 
						|
           unsigned imms);
 | 
						|
 | 
						|
  // Signed bitfield move.
 | 
						|
  void sbfm(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            unsigned immr,
 | 
						|
            unsigned imms);
 | 
						|
 | 
						|
  // Unsigned bitfield move.
 | 
						|
  void ubfm(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            unsigned immr,
 | 
						|
            unsigned imms);
 | 
						|
 | 
						|
  // Bfm aliases.
 | 
						|
  // Bitfield insert.
 | 
						|
  inline void bfi(const Register& rd,
 | 
						|
                  const Register& rn,
 | 
						|
                  unsigned lsb,
 | 
						|
                  unsigned width) {
 | 
						|
    VIXL_ASSERT(width >= 1);
 | 
						|
    VIXL_ASSERT(lsb + width <= rn.size());
 | 
						|
    bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Bitfield extract and insert low.
 | 
						|
  inline void bfxil(const Register& rd,
 | 
						|
                    const Register& rn,
 | 
						|
                    unsigned lsb,
 | 
						|
                    unsigned width) {
 | 
						|
    VIXL_ASSERT(width >= 1);
 | 
						|
    VIXL_ASSERT(lsb + width <= rn.size());
 | 
						|
    bfm(rd, rn, lsb, lsb + width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Sbfm aliases.
 | 
						|
  // Arithmetic shift right.
 | 
						|
  inline void asr(const Register& rd, const Register& rn, unsigned shift) {
 | 
						|
    VIXL_ASSERT(shift < rd.size());
 | 
						|
    sbfm(rd, rn, shift, rd.size() - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Signed bitfield insert with zero at right.
 | 
						|
  inline void sbfiz(const Register& rd,
 | 
						|
                    const Register& rn,
 | 
						|
                    unsigned lsb,
 | 
						|
                    unsigned width) {
 | 
						|
    VIXL_ASSERT(width >= 1);
 | 
						|
    VIXL_ASSERT(lsb + width <= rn.size());
 | 
						|
    sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Signed bitfield extract.
 | 
						|
  inline void sbfx(const Register& rd,
 | 
						|
                   const Register& rn,
 | 
						|
                   unsigned lsb,
 | 
						|
                   unsigned width) {
 | 
						|
    VIXL_ASSERT(width >= 1);
 | 
						|
    VIXL_ASSERT(lsb + width <= rn.size());
 | 
						|
    sbfm(rd, rn, lsb, lsb + width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Signed extend byte.
 | 
						|
  inline void sxtb(const Register& rd, const Register& rn) {
 | 
						|
    sbfm(rd, rn, 0, 7);
 | 
						|
  }
 | 
						|
 | 
						|
  // Signed extend halfword.
 | 
						|
  inline void sxth(const Register& rd, const Register& rn) {
 | 
						|
    sbfm(rd, rn, 0, 15);
 | 
						|
  }
 | 
						|
 | 
						|
  // Signed extend word.
 | 
						|
  inline void sxtw(const Register& rd, const Register& rn) {
 | 
						|
    sbfm(rd, rn, 0, 31);
 | 
						|
  }
 | 
						|
 | 
						|
  // Ubfm aliases.
 | 
						|
  // Logical shift left.
 | 
						|
  inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
 | 
						|
    unsigned reg_size = rd.size();
 | 
						|
    VIXL_ASSERT(shift < reg_size);
 | 
						|
    ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Logical shift right.
 | 
						|
  inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
 | 
						|
    VIXL_ASSERT(shift < rd.size());
 | 
						|
    ubfm(rd, rn, shift, rd.size() - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsigned bitfield insert with zero at right.
 | 
						|
  inline void ubfiz(const Register& rd,
 | 
						|
                    const Register& rn,
 | 
						|
                    unsigned lsb,
 | 
						|
                    unsigned width) {
 | 
						|
    VIXL_ASSERT(width >= 1);
 | 
						|
    VIXL_ASSERT(lsb + width <= rn.size());
 | 
						|
    ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsigned bitfield extract.
 | 
						|
  inline void ubfx(const Register& rd,
 | 
						|
                   const Register& rn,
 | 
						|
                   unsigned lsb,
 | 
						|
                   unsigned width) {
 | 
						|
    VIXL_ASSERT(width >= 1);
 | 
						|
    VIXL_ASSERT(lsb + width <= rn.size());
 | 
						|
    ubfm(rd, rn, lsb, lsb + width - 1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsigned extend byte.
 | 
						|
  inline void uxtb(const Register& rd, const Register& rn) {
 | 
						|
    ubfm(rd, rn, 0, 7);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsigned extend halfword.
 | 
						|
  inline void uxth(const Register& rd, const Register& rn) {
 | 
						|
    ubfm(rd, rn, 0, 15);
 | 
						|
  }
 | 
						|
 | 
						|
  // Unsigned extend word.
 | 
						|
  inline void uxtw(const Register& rd, const Register& rn) {
 | 
						|
    ubfm(rd, rn, 0, 31);
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract.
 | 
						|
  void extr(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Register& rm,
 | 
						|
            unsigned lsb);
 | 
						|
 | 
						|
  // Conditional select: rd = cond ? rn : rm.
 | 
						|
  void csel(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Register& rm,
 | 
						|
            Condition cond);
 | 
						|
 | 
						|
  // Conditional select increment: rd = cond ? rn : rm + 1.
 | 
						|
  void csinc(const Register& rd,
 | 
						|
             const Register& rn,
 | 
						|
             const Register& rm,
 | 
						|
             Condition cond);
 | 
						|
 | 
						|
  // Conditional select inversion: rd = cond ? rn : ~rm.
 | 
						|
  void csinv(const Register& rd,
 | 
						|
             const Register& rn,
 | 
						|
             const Register& rm,
 | 
						|
             Condition cond);
 | 
						|
 | 
						|
  // Conditional select negation: rd = cond ? rn : -rm.
 | 
						|
  void csneg(const Register& rd,
 | 
						|
             const Register& rn,
 | 
						|
             const Register& rm,
 | 
						|
             Condition cond);
 | 
						|
 | 
						|
  // Conditional set: rd = cond ? 1 : 0.
 | 
						|
  void cset(const Register& rd, Condition cond);
 | 
						|
 | 
						|
  // Conditional set mask: rd = cond ? -1 : 0.
 | 
						|
  void csetm(const Register& rd, Condition cond);
 | 
						|
 | 
						|
  // Conditional increment: rd = cond ? rn + 1 : rn.
 | 
						|
  void cinc(const Register& rd, const Register& rn, Condition cond);
 | 
						|
 | 
						|
  // Conditional invert: rd = cond ? ~rn : rn.
 | 
						|
  void cinv(const Register& rd, const Register& rn, Condition cond);
 | 
						|
 | 
						|
  // Conditional negate: rd = cond ? -rn : rn.
 | 
						|
  void cneg(const Register& rd, const Register& rn, Condition cond);
 | 
						|
 | 
						|
  // Rotate right.
 | 
						|
  inline void ror(const Register& rd, const Register& rs, unsigned shift) {
 | 
						|
    extr(rd, rs, rs, shift);
 | 
						|
  }
 | 
						|
 | 
						|
  // Conditional comparison.
 | 
						|
  // Conditional compare negative.
 | 
						|
  void ccmn(const Register& rn,
 | 
						|
            const Operand& operand,
 | 
						|
            StatusFlags nzcv,
 | 
						|
            Condition cond);
 | 
						|
 | 
						|
  // Conditional compare.
 | 
						|
  void ccmp(const Register& rn,
 | 
						|
            const Operand& operand,
 | 
						|
            StatusFlags nzcv,
 | 
						|
            Condition cond);
 | 
						|
 | 
						|
  // Multiply.
 | 
						|
  void mul(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Negated multiply.
 | 
						|
  void mneg(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Signed long multiply: 32 x 32 -> 64-bit.
 | 
						|
  void smull(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
 | 
						|
  void smulh(const Register& xd, const Register& xn, const Register& xm);
 | 
						|
 | 
						|
  // Multiply and accumulate.
 | 
						|
  void madd(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Register& rm,
 | 
						|
            const Register& ra);
 | 
						|
 | 
						|
  // Multiply and subtract.
 | 
						|
  void msub(const Register& rd,
 | 
						|
            const Register& rn,
 | 
						|
            const Register& rm,
 | 
						|
            const Register& ra);
 | 
						|
 | 
						|
  // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
 | 
						|
  void smaddl(const Register& rd,
 | 
						|
              const Register& rn,
 | 
						|
              const Register& rm,
 | 
						|
              const Register& ra);
 | 
						|
 | 
						|
  // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
 | 
						|
  void umaddl(const Register& rd,
 | 
						|
              const Register& rn,
 | 
						|
              const Register& rm,
 | 
						|
              const Register& ra);
 | 
						|
 | 
						|
  // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
 | 
						|
  void smsubl(const Register& rd,
 | 
						|
              const Register& rn,
 | 
						|
              const Register& rm,
 | 
						|
              const Register& ra);
 | 
						|
 | 
						|
  // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
 | 
						|
  void umsubl(const Register& rd,
 | 
						|
              const Register& rn,
 | 
						|
              const Register& rm,
 | 
						|
              const Register& ra);
 | 
						|
 | 
						|
  // Signed integer divide.
 | 
						|
  void sdiv(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Unsigned integer divide.
 | 
						|
  void udiv(const Register& rd, const Register& rn, const Register& rm);
 | 
						|
 | 
						|
  // Bit reverse.
 | 
						|
  void rbit(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Reverse bytes in 16-bit half words.
 | 
						|
  void rev16(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Reverse bytes in 32-bit words.
 | 
						|
  void rev32(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Reverse bytes.
 | 
						|
  void rev(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Count leading zeroes.
 | 
						|
  void clz(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Count leading sign bits.
 | 
						|
  void cls(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Memory instructions.
 | 
						|
  // Load integer or FP register.
 | 
						|
  void ldr(const CPURegister& rt, const MemOperand& src,
 | 
						|
           LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Store integer or FP register.
 | 
						|
  void str(const CPURegister& rt, const MemOperand& dst,
 | 
						|
           LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Load word with sign extension.
 | 
						|
  void ldrsw(const Register& rt, const MemOperand& src,
 | 
						|
             LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Load byte.
 | 
						|
  void ldrb(const Register& rt, const MemOperand& src,
 | 
						|
            LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Store byte.
 | 
						|
  void strb(const Register& rt, const MemOperand& dst,
 | 
						|
            LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Load byte with sign extension.
 | 
						|
  void ldrsb(const Register& rt, const MemOperand& src,
 | 
						|
             LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Load half-word.
 | 
						|
  void ldrh(const Register& rt, const MemOperand& src,
 | 
						|
            LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Store half-word.
 | 
						|
  void strh(const Register& rt, const MemOperand& dst,
 | 
						|
            LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Load half-word with sign extension.
 | 
						|
  void ldrsh(const Register& rt, const MemOperand& src,
 | 
						|
             LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
 | 
						|
  // Load integer or FP register (with unscaled offset).
 | 
						|
  void ldur(const CPURegister& rt, const MemOperand& src,
 | 
						|
            LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Store integer or FP register (with unscaled offset).
 | 
						|
  void stur(const CPURegister& rt, const MemOperand& src,
 | 
						|
            LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Load word with sign extension.
 | 
						|
  void ldursw(const Register& rt, const MemOperand& src,
 | 
						|
              LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Load byte (with unscaled offset).
 | 
						|
  void ldurb(const Register& rt, const MemOperand& src,
 | 
						|
             LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Store byte (with unscaled offset).
 | 
						|
  void sturb(const Register& rt, const MemOperand& dst,
 | 
						|
             LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Load byte with sign extension (and unscaled offset).
 | 
						|
  void ldursb(const Register& rt, const MemOperand& src,
 | 
						|
              LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Load half-word (with unscaled offset).
 | 
						|
  void ldurh(const Register& rt, const MemOperand& src,
 | 
						|
             LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Store half-word (with unscaled offset).
 | 
						|
  void sturh(const Register& rt, const MemOperand& dst,
 | 
						|
             LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Load half-word with sign extension (and unscaled offset).
 | 
						|
  void ldursh(const Register& rt, const MemOperand& src,
 | 
						|
              LoadStoreScalingOption option = PreferUnscaledOffset);
 | 
						|
 | 
						|
  // Load integer or FP register pair.
 | 
						|
  void ldp(const CPURegister& rt, const CPURegister& rt2,
 | 
						|
           const MemOperand& src);
 | 
						|
 | 
						|
  // Store integer or FP register pair.
 | 
						|
  void stp(const CPURegister& rt, const CPURegister& rt2,
 | 
						|
           const MemOperand& dst);
 | 
						|
 | 
						|
  // Load word pair with sign extension.
 | 
						|
  void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
 | 
						|
 | 
						|
  // Load integer or FP register pair, non-temporal.
 | 
						|
  void ldnp(const CPURegister& rt, const CPURegister& rt2,
 | 
						|
            const MemOperand& src);
 | 
						|
 | 
						|
  // Store integer or FP register pair, non-temporal.
 | 
						|
  void stnp(const CPURegister& rt, const CPURegister& rt2,
 | 
						|
            const MemOperand& dst);
 | 
						|
 | 
						|
  // Load integer or FP register from literal pool.
 | 
						|
  void ldr(const CPURegister& rt, RawLiteral* literal);
 | 
						|
 | 
						|
  // Load word with sign extension from literal pool.
 | 
						|
  void ldrsw(const Register& rt, RawLiteral* literal);
 | 
						|
 | 
						|
  // Load integer or FP register from pc + imm19 << 2.
 | 
						|
  void ldr(const CPURegister& rt, int imm19);
 | 
						|
 | 
						|
  // Load word with sign extension from pc + imm19 << 2.
 | 
						|
  void ldrsw(const Register& rt, int imm19);
 | 
						|
 | 
						|
  // Store exclusive byte.
 | 
						|
  void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Store exclusive half-word.
 | 
						|
  void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Store exclusive register.
 | 
						|
  void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Load exclusive byte.
 | 
						|
  void ldxrb(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Load exclusive half-word.
 | 
						|
  void ldxrh(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Load exclusive register.
 | 
						|
  void ldxr(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Store exclusive register pair.
 | 
						|
  void stxp(const Register& rs,
 | 
						|
            const Register& rt,
 | 
						|
            const Register& rt2,
 | 
						|
            const MemOperand& dst);
 | 
						|
 | 
						|
  // Load exclusive register pair.
 | 
						|
  void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
 | 
						|
 | 
						|
  // Store-release exclusive byte.
 | 
						|
  void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Store-release exclusive half-word.
 | 
						|
  void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Store-release exclusive register.
 | 
						|
  void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Load-acquire exclusive byte.
 | 
						|
  void ldaxrb(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Load-acquire exclusive half-word.
 | 
						|
  void ldaxrh(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Load-acquire exclusive register.
 | 
						|
  void ldaxr(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Store-release exclusive register pair.
 | 
						|
  void stlxp(const Register& rs,
 | 
						|
             const Register& rt,
 | 
						|
             const Register& rt2,
 | 
						|
             const MemOperand& dst);
 | 
						|
 | 
						|
  // Load-acquire exclusive register pair.
 | 
						|
  void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
 | 
						|
 | 
						|
  // Store-release byte.
 | 
						|
  void stlrb(const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Store-release half-word.
 | 
						|
  void stlrh(const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Store-release register.
 | 
						|
  void stlr(const Register& rt, const MemOperand& dst);
 | 
						|
 | 
						|
  // Load-acquire byte.
 | 
						|
  void ldarb(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Load-acquire half-word.
 | 
						|
  void ldarh(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
  // Load-acquire register.
 | 
						|
  void ldar(const Register& rt, const MemOperand& src);
 | 
						|
 | 
						|
 | 
						|
  // Move instructions. The default shift of -1 indicates that the move
 | 
						|
  // instruction will calculate an appropriate 16-bit immediate and left shift
 | 
						|
  // that is equal to the 64-bit immediate argument. If an explicit left shift
 | 
						|
  // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
 | 
						|
  //
 | 
						|
  // For movk, an explicit shift can be used to indicate which half word should
 | 
						|
  // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
 | 
						|
  // half word with zero, whereas movk(x0, 0, 48) will overwrite the
 | 
						|
  // most-significant.
 | 
						|
 | 
						|
  // Move immediate and keep.
 | 
						|
  void movk(const Register& rd, uint64_t imm, int shift = -1) {
 | 
						|
    MoveWide(rd, imm, shift, MOVK);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move inverted immediate.
 | 
						|
  void movn(const Register& rd, uint64_t imm, int shift = -1) {
 | 
						|
    MoveWide(rd, imm, shift, MOVN);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move immediate.
 | 
						|
  void movz(const Register& rd, uint64_t imm, int shift = -1) {
 | 
						|
    MoveWide(rd, imm, shift, MOVZ);
 | 
						|
  }
 | 
						|
 | 
						|
  // Misc instructions.
 | 
						|
  // Monitor debug-mode breakpoint.
 | 
						|
  void brk(int code);
 | 
						|
 | 
						|
  // Halting debug-mode breakpoint.
 | 
						|
  void hlt(int code);
 | 
						|
 | 
						|
  // Move register to register.
 | 
						|
  void mov(const Register& rd, const Register& rn);
 | 
						|
 | 
						|
  // Move inverted operand to register.
 | 
						|
  void mvn(const Register& rd, const Operand& operand);
 | 
						|
 | 
						|
  // System instructions.
 | 
						|
  // Move to register from system register.
 | 
						|
  void mrs(const Register& rt, SystemRegister sysreg);
 | 
						|
 | 
						|
  // Move from register to system register.
 | 
						|
  void msr(SystemRegister sysreg, const Register& rt);
 | 
						|
 | 
						|
  // System hint.
 | 
						|
  void hint(SystemHint code);
 | 
						|
 | 
						|
  // Clear exclusive monitor.
 | 
						|
  void clrex(int imm4 = 0xf);
 | 
						|
 | 
						|
  // Data memory barrier.
 | 
						|
  void dmb(BarrierDomain domain, BarrierType type);
 | 
						|
 | 
						|
  // Data synchronization barrier.
 | 
						|
  void dsb(BarrierDomain domain, BarrierType type);
 | 
						|
 | 
						|
  // Instruction synchronization barrier.
 | 
						|
  void isb();
 | 
						|
 | 
						|
  // Alias for system instructions.
 | 
						|
  // No-op.
 | 
						|
  void nop() {
 | 
						|
    hint(NOP);
 | 
						|
  }
 | 
						|
 | 
						|
  // FP instructions.
 | 
						|
  // Move double precision immediate to FP register.
 | 
						|
  void fmov(const FPRegister& fd, double imm);
 | 
						|
 | 
						|
  // Move single precision immediate to FP register.
 | 
						|
  void fmov(const FPRegister& fd, float imm);
 | 
						|
 | 
						|
  // Move FP register to register.
 | 
						|
  void fmov(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Move register to FP register.
 | 
						|
  void fmov(const FPRegister& fd, const Register& rn);
 | 
						|
 | 
						|
  // Move FP register to FP register.
 | 
						|
  void fmov(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP add.
 | 
						|
  void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP subtract.
 | 
						|
  void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP multiply.
 | 
						|
  void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP fused multiply and add.
 | 
						|
  void fmadd(const FPRegister& fd,
 | 
						|
             const FPRegister& fn,
 | 
						|
             const FPRegister& fm,
 | 
						|
             const FPRegister& fa);
 | 
						|
 | 
						|
  // FP fused multiply and subtract.
 | 
						|
  void fmsub(const FPRegister& fd,
 | 
						|
             const FPRegister& fn,
 | 
						|
             const FPRegister& fm,
 | 
						|
             const FPRegister& fa);
 | 
						|
 | 
						|
  // FP fused multiply, add and negate.
 | 
						|
  void fnmadd(const FPRegister& fd,
 | 
						|
              const FPRegister& fn,
 | 
						|
              const FPRegister& fm,
 | 
						|
              const FPRegister& fa);
 | 
						|
 | 
						|
  // FP fused multiply, subtract and negate.
 | 
						|
  void fnmsub(const FPRegister& fd,
 | 
						|
              const FPRegister& fn,
 | 
						|
              const FPRegister& fm,
 | 
						|
              const FPRegister& fa);
 | 
						|
 | 
						|
  // FP divide.
 | 
						|
  void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP maximum.
 | 
						|
  void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP minimum.
 | 
						|
  void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP maximum number.
 | 
						|
  void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP minimum number.
 | 
						|
  void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP absolute.
 | 
						|
  void fabs(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP negate.
 | 
						|
  void fneg(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP square root.
 | 
						|
  void fsqrt(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP round to integer (nearest with ties to away).
 | 
						|
  void frinta(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP round to integer (toward minus infinity).
 | 
						|
  void frintm(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP round to integer (nearest with ties to even).
 | 
						|
  void frintn(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP round to integer (towards zero).
 | 
						|
  void frintz(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // FP compare registers.
 | 
						|
  void fcmp(const FPRegister& fn, const FPRegister& fm);
 | 
						|
 | 
						|
  // FP compare immediate.
 | 
						|
  void fcmp(const FPRegister& fn, double value);
 | 
						|
 | 
						|
  // FP conditional compare.
 | 
						|
  void fccmp(const FPRegister& fn,
 | 
						|
             const FPRegister& fm,
 | 
						|
             StatusFlags nzcv,
 | 
						|
             Condition cond);
 | 
						|
 | 
						|
  // FP conditional select.
 | 
						|
  void fcsel(const FPRegister& fd,
 | 
						|
             const FPRegister& fn,
 | 
						|
             const FPRegister& fm,
 | 
						|
             Condition cond);
 | 
						|
 | 
						|
  // Common FP Convert function.
 | 
						|
  void FPConvertToInt(const Register& rd,
 | 
						|
                      const FPRegister& fn,
 | 
						|
                      FPIntegerConvertOp op);
 | 
						|
 | 
						|
  // FP convert between single and double precision.
 | 
						|
  void fcvt(const FPRegister& fd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to signed integer (nearest with ties to away).
 | 
						|
  void fcvtas(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to unsigned integer (nearest with ties to away).
 | 
						|
  void fcvtau(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to signed integer (round towards -infinity).
 | 
						|
  void fcvtms(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to unsigned integer (round towards -infinity).
 | 
						|
  void fcvtmu(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to signed integer (nearest with ties to even).
 | 
						|
  void fcvtns(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to unsigned integer (nearest with ties to even).
 | 
						|
  void fcvtnu(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to signed integer (round towards zero).
 | 
						|
  void fcvtzs(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert FP to unsigned integer (round towards zero).
 | 
						|
  void fcvtzu(const Register& rd, const FPRegister& fn);
 | 
						|
 | 
						|
  // Convert signed integer or fixed point to FP.
 | 
						|
  void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
 | 
						|
 | 
						|
  // Convert unsigned integer or fixed point to FP.
 | 
						|
  void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
 | 
						|
 | 
						|
  // Emit generic instructions.
 | 
						|
  // Emit raw instructions into the instruction stream.
 | 
						|
  inline void dci(Instr raw_inst) { Emit(raw_inst); }
 | 
						|
 | 
						|
  // Emit 32 bits of data into the instruction stream.
 | 
						|
  inline void dc32(uint32_t data) {
 | 
						|
    VIXL_ASSERT(buffer_monitor_ > 0);
 | 
						|
    buffer_->Emit32(data);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit 64 bits of data into the instruction stream.
 | 
						|
  inline void dc64(uint64_t data) {
 | 
						|
    VIXL_ASSERT(buffer_monitor_ > 0);
 | 
						|
    buffer_->Emit64(data);
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy a string into the instruction stream, including the terminating NULL
 | 
						|
  // character. The instruction pointer is then aligned correctly for
 | 
						|
  // subsequent instructions.
 | 
						|
  void EmitString(const char * string) {
 | 
						|
    VIXL_ASSERT(string != NULL);
 | 
						|
    VIXL_ASSERT(buffer_monitor_ > 0);
 | 
						|
 | 
						|
    buffer_->EmitString(string);
 | 
						|
    buffer_->Align();
 | 
						|
  }
 | 
						|
 | 
						|
  // Code generation helpers.
 | 
						|
 | 
						|
  // Register encoding.
 | 
						|
  static Instr Rd(CPURegister rd) {
 | 
						|
    VIXL_ASSERT(rd.code() != kSPRegInternalCode);
 | 
						|
    return rd.code() << Rd_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Rn(CPURegister rn) {
 | 
						|
    VIXL_ASSERT(rn.code() != kSPRegInternalCode);
 | 
						|
    return rn.code() << Rn_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Rm(CPURegister rm) {
 | 
						|
    VIXL_ASSERT(rm.code() != kSPRegInternalCode);
 | 
						|
    return rm.code() << Rm_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Ra(CPURegister ra) {
 | 
						|
    VIXL_ASSERT(ra.code() != kSPRegInternalCode);
 | 
						|
    return ra.code() << Ra_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Rt(CPURegister rt) {
 | 
						|
    VIXL_ASSERT(rt.code() != kSPRegInternalCode);
 | 
						|
    return rt.code() << Rt_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Rt2(CPURegister rt2) {
 | 
						|
    VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
 | 
						|
    return rt2.code() << Rt2_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Rs(CPURegister rs) {
 | 
						|
    VIXL_ASSERT(rs.code() != kSPRegInternalCode);
 | 
						|
    return rs.code() << Rs_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // These encoding functions allow the stack pointer to be encoded, and
 | 
						|
  // disallow the zero register.
 | 
						|
  static Instr RdSP(Register rd) {
 | 
						|
    VIXL_ASSERT(!rd.IsZero());
 | 
						|
    return (rd.code() & kRegCodeMask) << Rd_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr RnSP(Register rn) {
 | 
						|
    VIXL_ASSERT(!rn.IsZero());
 | 
						|
    return (rn.code() & kRegCodeMask) << Rn_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Flags encoding.
 | 
						|
  static Instr Flags(FlagsUpdate S) {
 | 
						|
    if (S == SetFlags) {
 | 
						|
      return 1 << FlagsUpdate_offset;
 | 
						|
    } else if (S == LeaveFlags) {
 | 
						|
      return 0 << FlagsUpdate_offset;
 | 
						|
    }
 | 
						|
    VIXL_UNREACHABLE();
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Cond(Condition cond) {
 | 
						|
    return cond << Condition_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // PC-relative address encoding.
 | 
						|
  static Instr ImmPCRelAddress(int imm21) {
 | 
						|
    VIXL_ASSERT(is_int21(imm21));
 | 
						|
    Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
 | 
						|
    Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
 | 
						|
    Instr immlo = imm << ImmPCRelLo_offset;
 | 
						|
    return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
 | 
						|
  }
 | 
						|
 | 
						|
  // Branch encoding.
 | 
						|
  static Instr ImmUncondBranch(int imm26) {
 | 
						|
    VIXL_ASSERT(is_int26(imm26));
 | 
						|
    return truncate_to_int26(imm26) << ImmUncondBranch_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmCondBranch(int imm19) {
 | 
						|
    VIXL_ASSERT(is_int19(imm19));
 | 
						|
    return truncate_to_int19(imm19) << ImmCondBranch_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmCmpBranch(int imm19) {
 | 
						|
    VIXL_ASSERT(is_int19(imm19));
 | 
						|
    return truncate_to_int19(imm19) << ImmCmpBranch_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmTestBranch(int imm14) {
 | 
						|
    VIXL_ASSERT(is_int14(imm14));
 | 
						|
    return truncate_to_int14(imm14) << ImmTestBranch_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmTestBranchBit(unsigned bit_pos) {
 | 
						|
    VIXL_ASSERT(is_uint6(bit_pos));
 | 
						|
    // Subtract five from the shift offset, as we need bit 5 from bit_pos.
 | 
						|
    unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
 | 
						|
    unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
 | 
						|
    b5 &= ImmTestBranchBit5_mask;
 | 
						|
    b40 &= ImmTestBranchBit40_mask;
 | 
						|
    return b5 | b40;
 | 
						|
  }
 | 
						|
 | 
						|
  // Data Processing encoding.
 | 
						|
  static Instr SF(Register rd) {
 | 
						|
      return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmAddSub(int64_t imm) {
 | 
						|
    VIXL_ASSERT(IsImmAddSub(imm));
 | 
						|
    if (is_uint12(imm)) {  // No shift required.
 | 
						|
      return imm << ImmAddSub_offset;
 | 
						|
    } else {
 | 
						|
      return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Instr ImmS(unsigned imms, unsigned reg_size) {
 | 
						|
    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
 | 
						|
           ((reg_size == kWRegSize) && is_uint5(imms)));
 | 
						|
    USE(reg_size);
 | 
						|
    return imms << ImmS_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Instr ImmR(unsigned immr, unsigned reg_size) {
 | 
						|
    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
 | 
						|
           ((reg_size == kWRegSize) && is_uint5(immr)));
 | 
						|
    USE(reg_size);
 | 
						|
    VIXL_ASSERT(is_uint6(immr));
 | 
						|
    return immr << ImmR_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
 | 
						|
    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
 | 
						|
    VIXL_ASSERT(is_uint6(imms));
 | 
						|
    VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
 | 
						|
    USE(reg_size);
 | 
						|
    return imms << ImmSetBits_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
 | 
						|
    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
 | 
						|
    VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
 | 
						|
           ((reg_size == kWRegSize) && is_uint5(immr)));
 | 
						|
    USE(reg_size);
 | 
						|
    return immr << ImmRotate_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Instr ImmLLiteral(int imm19) {
 | 
						|
    VIXL_ASSERT(is_int19(imm19));
 | 
						|
    return truncate_to_int19(imm19) << ImmLLiteral_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static inline Instr BitN(unsigned bitn, unsigned reg_size) {
 | 
						|
    VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
 | 
						|
    VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
 | 
						|
    USE(reg_size);
 | 
						|
    return bitn << BitN_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ShiftDP(Shift shift) {
 | 
						|
    VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
 | 
						|
    return shift << ShiftDP_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmDPShift(unsigned amount) {
 | 
						|
    VIXL_ASSERT(is_uint6(amount));
 | 
						|
    return amount << ImmDPShift_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ExtendMode(Extend extend) {
 | 
						|
    return extend << ExtendMode_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmExtendShift(unsigned left_shift) {
 | 
						|
    VIXL_ASSERT(left_shift <= 4);
 | 
						|
    return left_shift << ImmExtendShift_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmCondCmp(unsigned imm) {
 | 
						|
    VIXL_ASSERT(is_uint5(imm));
 | 
						|
    return imm << ImmCondCmp_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr Nzcv(StatusFlags nzcv) {
 | 
						|
    return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // MemOperand offset encoding.
 | 
						|
  static Instr ImmLSUnsigned(int imm12) {
 | 
						|
    VIXL_ASSERT(is_uint12(imm12));
 | 
						|
    return imm12 << ImmLSUnsigned_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmLS(int imm9) {
 | 
						|
    VIXL_ASSERT(is_int9(imm9));
 | 
						|
    return truncate_to_int9(imm9) << ImmLS_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmLSPair(int imm7, LSDataSize size) {
 | 
						|
    VIXL_ASSERT(((imm7 >> size) << size) == imm7);
 | 
						|
    int scaled_imm7 = imm7 >> size;
 | 
						|
    VIXL_ASSERT(is_int7(scaled_imm7));
 | 
						|
    return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmShiftLS(unsigned shift_amount) {
 | 
						|
    VIXL_ASSERT(is_uint1(shift_amount));
 | 
						|
    return shift_amount << ImmShiftLS_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmException(int imm16) {
 | 
						|
    VIXL_ASSERT(is_uint16(imm16));
 | 
						|
    return imm16 << ImmException_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmSystemRegister(int imm15) {
 | 
						|
    VIXL_ASSERT(is_uint15(imm15));
 | 
						|
    return imm15 << ImmSystemRegister_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmHint(int imm7) {
 | 
						|
    VIXL_ASSERT(is_uint7(imm7));
 | 
						|
    return imm7 << ImmHint_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr CRm(int imm4) {
 | 
						|
    VIXL_ASSERT(is_uint4(imm4));
 | 
						|
    return imm4 << CRm_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmBarrierDomain(int imm2) {
 | 
						|
    VIXL_ASSERT(is_uint2(imm2));
 | 
						|
    return imm2 << ImmBarrierDomain_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ImmBarrierType(int imm2) {
 | 
						|
    VIXL_ASSERT(is_uint2(imm2));
 | 
						|
    return imm2 << ImmBarrierType_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static LSDataSize CalcLSDataSize(LoadStoreOp op) {
 | 
						|
    VIXL_ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
 | 
						|
    return static_cast<LSDataSize>(op >> SizeLS_offset);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move immediates encoding.
 | 
						|
  static Instr ImmMoveWide(uint64_t imm) {
 | 
						|
    VIXL_ASSERT(is_uint16(imm));
 | 
						|
    return imm << ImmMoveWide_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr ShiftMoveWide(int64_t shift) {
 | 
						|
    VIXL_ASSERT(is_uint2(shift));
 | 
						|
    return shift << ShiftMoveWide_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // FP Immediates.
 | 
						|
  static Instr ImmFP32(float imm);
 | 
						|
  static Instr ImmFP64(double imm);
 | 
						|
 | 
						|
  // FP register type.
 | 
						|
  static Instr FPType(FPRegister fd) {
 | 
						|
    return fd.Is64Bits() ? FP64 : FP32;
 | 
						|
  }
 | 
						|
 | 
						|
  static Instr FPScale(unsigned scale) {
 | 
						|
    VIXL_ASSERT(is_uint6(scale));
 | 
						|
    return scale << FPScale_offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Size of the code generated since label to the current position.
 | 
						|
  size_t SizeOfCodeGeneratedSince(Label* label) const {
 | 
						|
    VIXL_ASSERT(label->IsBound());
 | 
						|
    return buffer_->OffsetFrom(label->location());
 | 
						|
  }
 | 
						|
 | 
						|
  size_t BufferCapacity() const { return buffer_->capacity(); }
 | 
						|
 | 
						|
  size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
 | 
						|
 | 
						|
  void EnsureSpaceFor(size_t amount) {
 | 
						|
    if (buffer_->RemainingBytes() < amount) {
 | 
						|
      size_t capacity = buffer_->capacity();
 | 
						|
      size_t size = buffer_->CursorOffset();
 | 
						|
      do {
 | 
						|
        // TODO(all): refine.
 | 
						|
        capacity *= 2;
 | 
						|
      } while ((capacity - size) <  amount);
 | 
						|
      buffer_->Grow(capacity);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
  void AcquireBuffer() {
 | 
						|
    VIXL_ASSERT(buffer_monitor_ >= 0);
 | 
						|
    buffer_monitor_++;
 | 
						|
  }
 | 
						|
 | 
						|
  void ReleaseBuffer() {
 | 
						|
    buffer_monitor_--;
 | 
						|
    VIXL_ASSERT(buffer_monitor_ >= 0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  inline PositionIndependentCodeOption pic() {
 | 
						|
    return pic_;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool AllowPageOffsetDependentCode() {
 | 
						|
    return (pic() == PageOffsetDependentCode) ||
 | 
						|
           (pic() == PositionDependentCode);
 | 
						|
  }
 | 
						|
 | 
						|
  static inline const Register& AppropriateZeroRegFor(const CPURegister& reg) {
 | 
						|
    return reg.Is64Bits() ? xzr : wzr;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
 protected:
 | 
						|
  void LoadStore(const CPURegister& rt,
 | 
						|
                 const MemOperand& addr,
 | 
						|
                 LoadStoreOp op,
 | 
						|
                 LoadStoreScalingOption option = PreferScaledOffset);
 | 
						|
  static bool IsImmLSUnscaled(int64_t offset);
 | 
						|
  static bool IsImmLSScaled(int64_t offset, LSDataSize size);
 | 
						|
 | 
						|
  void LoadStorePair(const CPURegister& rt,
 | 
						|
                     const CPURegister& rt2,
 | 
						|
                     const MemOperand& addr,
 | 
						|
                     LoadStorePairOp op);
 | 
						|
  static bool IsImmLSPair(int64_t offset, LSDataSize size);
 | 
						|
 | 
						|
  // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
 | 
						|
  // reports a bogus uninitialised warning then.
 | 
						|
  void Logical(const Register& rd,
 | 
						|
               const Register& rn,
 | 
						|
               const Operand operand,
 | 
						|
               LogicalOp op);
 | 
						|
  void LogicalImmediate(const Register& rd,
 | 
						|
                        const Register& rn,
 | 
						|
                        unsigned n,
 | 
						|
                        unsigned imm_s,
 | 
						|
                        unsigned imm_r,
 | 
						|
                        LogicalOp op);
 | 
						|
  static bool IsImmLogical(uint64_t value,
 | 
						|
                           unsigned width,
 | 
						|
                           unsigned* n = NULL,
 | 
						|
                           unsigned* imm_s = NULL,
 | 
						|
                           unsigned* imm_r = NULL);
 | 
						|
 | 
						|
  void ConditionalCompare(const Register& rn,
 | 
						|
                          const Operand& operand,
 | 
						|
                          StatusFlags nzcv,
 | 
						|
                          Condition cond,
 | 
						|
                          ConditionalCompareOp op);
 | 
						|
  static bool IsImmConditionalCompare(int64_t immediate);
 | 
						|
 | 
						|
  void AddSubWithCarry(const Register& rd,
 | 
						|
                       const Register& rn,
 | 
						|
                       const Operand& operand,
 | 
						|
                       FlagsUpdate S,
 | 
						|
                       AddSubWithCarryOp op);
 | 
						|
 | 
						|
  static bool IsImmFP32(float imm);
 | 
						|
  static bool IsImmFP64(double imm);
 | 
						|
 | 
						|
  // Functions for emulating operands not directly supported by the instruction
 | 
						|
  // set.
 | 
						|
  void EmitShift(const Register& rd,
 | 
						|
                 const Register& rn,
 | 
						|
                 Shift shift,
 | 
						|
                 unsigned amount);
 | 
						|
  void EmitExtendShift(const Register& rd,
 | 
						|
                       const Register& rn,
 | 
						|
                       Extend extend,
 | 
						|
                       unsigned left_shift);
 | 
						|
 | 
						|
  void AddSub(const Register& rd,
 | 
						|
              const Register& rn,
 | 
						|
              const Operand& operand,
 | 
						|
              FlagsUpdate S,
 | 
						|
              AddSubOp op);
 | 
						|
  static bool IsImmAddSub(int64_t immediate);
 | 
						|
 | 
						|
  // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
 | 
						|
  // registers. Only simple loads are supported; sign- and zero-extension (such
 | 
						|
  // as in LDPSW_x or LDRB_w) are not supported.
 | 
						|
  static LoadStoreOp LoadOpFor(const CPURegister& rt);
 | 
						|
  static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
 | 
						|
                                       const CPURegister& rt2);
 | 
						|
  static LoadStoreOp StoreOpFor(const CPURegister& rt);
 | 
						|
  static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
 | 
						|
                                        const CPURegister& rt2);
 | 
						|
  static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
 | 
						|
    const CPURegister& rt, const CPURegister& rt2);
 | 
						|
  static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
 | 
						|
    const CPURegister& rt, const CPURegister& rt2);
 | 
						|
  static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
 | 
						|
 | 
						|
 | 
						|
 private:
 | 
						|
  // Instruction helpers.
 | 
						|
  void MoveWide(const Register& rd,
 | 
						|
                uint64_t imm,
 | 
						|
                int shift,
 | 
						|
                MoveWideImmediateOp mov_op);
 | 
						|
  void DataProcShiftedRegister(const Register& rd,
 | 
						|
                               const Register& rn,
 | 
						|
                               const Operand& operand,
 | 
						|
                               FlagsUpdate S,
 | 
						|
                               Instr op);
 | 
						|
  void DataProcExtendedRegister(const Register& rd,
 | 
						|
                                const Register& rn,
 | 
						|
                                const Operand& operand,
 | 
						|
                                FlagsUpdate S,
 | 
						|
                                Instr op);
 | 
						|
  void LoadStorePairNonTemporal(const CPURegister& rt,
 | 
						|
                                const CPURegister& rt2,
 | 
						|
                                const MemOperand& addr,
 | 
						|
                                LoadStorePairNonTemporalOp op);
 | 
						|
  void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
 | 
						|
  void ConditionalSelect(const Register& rd,
 | 
						|
                         const Register& rn,
 | 
						|
                         const Register& rm,
 | 
						|
                         Condition cond,
 | 
						|
                         ConditionalSelectOp op);
 | 
						|
  void DataProcessing1Source(const Register& rd,
 | 
						|
                             const Register& rn,
 | 
						|
                             DataProcessing1SourceOp op);
 | 
						|
  void DataProcessing3Source(const Register& rd,
 | 
						|
                             const Register& rn,
 | 
						|
                             const Register& rm,
 | 
						|
                             const Register& ra,
 | 
						|
                             DataProcessing3SourceOp op);
 | 
						|
  void FPDataProcessing1Source(const FPRegister& fd,
 | 
						|
                               const FPRegister& fn,
 | 
						|
                               FPDataProcessing1SourceOp op);
 | 
						|
  void FPDataProcessing2Source(const FPRegister& fd,
 | 
						|
                               const FPRegister& fn,
 | 
						|
                               const FPRegister& fm,
 | 
						|
                               FPDataProcessing2SourceOp op);
 | 
						|
  void FPDataProcessing3Source(const FPRegister& fd,
 | 
						|
                               const FPRegister& fn,
 | 
						|
                               const FPRegister& fm,
 | 
						|
                               const FPRegister& fa,
 | 
						|
                               FPDataProcessing3SourceOp op);
 | 
						|
 | 
						|
  // Link the current (not-yet-emitted) instruction to the specified label, then
 | 
						|
  // return an offset to be encoded in the instruction. If the label is not yet
 | 
						|
  // bound, an offset of 0 is returned.
 | 
						|
  ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
 | 
						|
  ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
 | 
						|
  ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
 | 
						|
 | 
						|
  // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
 | 
						|
  template <int element_shift>
 | 
						|
  ptrdiff_t LinkAndGetOffsetTo(Label* label);
 | 
						|
 | 
						|
  // Literal load offset are in words (32-bit).
 | 
						|
  ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
 | 
						|
 | 
						|
  // Emit the instruction in buffer_.
 | 
						|
  void Emit(Instr instruction) {
 | 
						|
    VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
 | 
						|
    VIXL_ASSERT(buffer_monitor_ > 0);
 | 
						|
    buffer_->Emit32(instruction);
 | 
						|
  }
 | 
						|
 | 
						|
  // Buffer where the code is emitted.
 | 
						|
  CodeBuffer* buffer_;
 | 
						|
  PositionIndependentCodeOption pic_;
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
  int64_t buffer_monitor_;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// All Assembler emits MUST acquire/release the underlying code buffer. The
 | 
						|
// helper scope below will do so and optionally ensure the buffer is big enough
 | 
						|
// to receive the emit. It is possible to request the scope not to perform any
 | 
						|
// checks (kNoCheck) if for example it is known in advance the buffer size is
 | 
						|
// adequate or there is some other size checking mechanism in place.
 | 
						|
class CodeBufferCheckScope {
 | 
						|
 public:
 | 
						|
  // Tell whether or not the scope needs to ensure the associated CodeBuffer
 | 
						|
  // has enough space for the requested size.
 | 
						|
  enum CheckPolicy {
 | 
						|
    kNoCheck,
 | 
						|
    kCheck
 | 
						|
  };
 | 
						|
 | 
						|
  // Tell whether or not the scope should assert the amount of code emitted
 | 
						|
  // within the scope is consistent with the requested amount.
 | 
						|
  enum AssertPolicy {
 | 
						|
    kNoAssert,    // No assert required.
 | 
						|
    kExactSize,   // The code emitted must be exactly size bytes.
 | 
						|
    kMaximumSize  // The code emitted must be at most size bytes.
 | 
						|
  };
 | 
						|
 | 
						|
  CodeBufferCheckScope(Assembler* assm,
 | 
						|
                       size_t size,
 | 
						|
                       CheckPolicy check_policy = kCheck,
 | 
						|
                       AssertPolicy assert_policy = kMaximumSize)
 | 
						|
      : assm_(assm) {
 | 
						|
    if (check_policy == kCheck) assm->EnsureSpaceFor(size);
 | 
						|
#ifdef DEBUG
 | 
						|
    assm->bind(&start_);
 | 
						|
    size_ = size;
 | 
						|
    assert_policy_ = assert_policy;
 | 
						|
    assm->AcquireBuffer();
 | 
						|
#else
 | 
						|
    USE(assert_policy);
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
 | 
						|
  explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
 | 
						|
#ifdef DEBUG
 | 
						|
    size_ = 0;
 | 
						|
    assert_policy_ = kNoAssert;
 | 
						|
    assm->AcquireBuffer();
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  ~CodeBufferCheckScope() {
 | 
						|
#ifdef DEBUG
 | 
						|
    assm_->ReleaseBuffer();
 | 
						|
    switch (assert_policy_) {
 | 
						|
      case kNoAssert: break;
 | 
						|
      case kExactSize:
 | 
						|
        VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
 | 
						|
        break;
 | 
						|
      case kMaximumSize:
 | 
						|
        VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        VIXL_UNREACHABLE();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
 protected:
 | 
						|
  Assembler* assm_;
 | 
						|
#ifdef DEBUG
 | 
						|
  Label start_;
 | 
						|
  size_t size_;
 | 
						|
  AssertPolicy assert_policy_;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
}  // namespace vixl
 | 
						|
 | 
						|
#endif  // VIXL_A64_ASSEMBLER_A64_H_
 |