Signed-off-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Alexander Graf <agraf@suse.de>
		
			
				
	
	
		
			1237 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1237 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU float support
 | 
						|
 *
 | 
						|
 * The code in this source file is derived from release 2a of the SoftFloat
 | 
						|
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 | 
						|
 * some later contributions) are provided under that license, as detailed below.
 | 
						|
 * It has subsequently been modified by contributors to the QEMU Project,
 | 
						|
 * so some portions are provided under:
 | 
						|
 *  the SoftFloat-2a license
 | 
						|
 *  the BSD license
 | 
						|
 *  GPL-v2-or-later
 | 
						|
 *
 | 
						|
 * Any future contributions to this file after December 1st 2014 will be
 | 
						|
 * taken to be licensed under the Softfloat-2a license unless specifically
 | 
						|
 * indicated otherwise.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
===============================================================================
 | 
						|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
 | 
						|
Arithmetic Package, Release 2a.
 | 
						|
 | 
						|
Written by John R. Hauser.  This work was made possible in part by the
 | 
						|
International Computer Science Institute, located at Suite 600, 1947 Center
 | 
						|
Street, Berkeley, California 94704.  Funding was partially provided by the
 | 
						|
National Science Foundation under grant MIP-9311980.  The original version
 | 
						|
of this code was written as part of a project to build a fixed-point vector
 | 
						|
processor in collaboration with the University of California at Berkeley,
 | 
						|
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | 
						|
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | 
						|
arithmetic/SoftFloat.html'.
 | 
						|
 | 
						|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | 
						|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | 
						|
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | 
						|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | 
						|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | 
						|
 | 
						|
Derivative works are acceptable, even for commercial purposes, so long as
 | 
						|
(1) they include prominent notice that the work is derivative, and (2) they
 | 
						|
include prominent notice akin to these four paragraphs for those parts of
 | 
						|
this code that are retained.
 | 
						|
 | 
						|
===============================================================================
 | 
						|
*/
 | 
						|
 | 
						|
/* BSD licensing:
 | 
						|
 * Copyright (c) 2006, Fabrice Bellard
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright notice,
 | 
						|
 * this list of conditions and the following disclaimer.
 | 
						|
 *
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
 * this list of conditions and the following disclaimer in the documentation
 | 
						|
 * and/or other materials provided with the distribution.
 | 
						|
 *
 | 
						|
 * 3. Neither the name of the copyright holder nor the names of its contributors
 | 
						|
 * may be used to endorse or promote products derived from this software without
 | 
						|
 * specific prior written permission.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | 
						|
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
						|
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
						|
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
						|
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
						|
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
						|
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 | 
						|
 * THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
/* Portions of this work are licensed under the terms of the GNU GPL,
 | 
						|
 * version 2 or later. See the COPYING file in the top-level directory.
 | 
						|
 */
 | 
						|
 | 
						|
/* Does the target distinguish signaling NaNs from non-signaling NaNs
 | 
						|
 * by setting the most significant bit of the mantissa for a signaling NaN?
 | 
						|
 * (The more common choice is to have it be zero for SNaN and one for QNaN.)
 | 
						|
 */
 | 
						|
#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | 
						|
#define SNAN_BIT_IS_ONE 1
 | 
						|
#else
 | 
						|
#define SNAN_BIT_IS_ONE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(TARGET_XTENSA)
 | 
						|
/* Define for architectures which deviate from IEEE in not supporting
 | 
						|
 * signaling NaNs (so all NaNs are treated as quiet).
 | 
						|
 */
 | 
						|
#define NO_SIGNALING_NANS 1
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated half-precision NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if defined(TARGET_ARM)
 | 
						|
const float16 float16_default_nan = const_float16(0x7E00);
 | 
						|
#elif SNAN_BIT_IS_ONE
 | 
						|
const float16 float16_default_nan = const_float16(0x7DFF);
 | 
						|
#else
 | 
						|
const float16 float16_default_nan = const_float16(0xFE00);
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated single-precision NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if defined(TARGET_SPARC)
 | 
						|
const float32 float32_default_nan = const_float32(0x7FFFFFFF);
 | 
						|
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
 | 
						|
      defined(TARGET_XTENSA) || defined(TARGET_S390X)
 | 
						|
const float32 float32_default_nan = const_float32(0x7FC00000);
 | 
						|
#elif SNAN_BIT_IS_ONE
 | 
						|
const float32 float32_default_nan = const_float32(0x7FBFFFFF);
 | 
						|
#else
 | 
						|
const float32 float32_default_nan = const_float32(0xFFC00000);
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated double-precision NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if defined(TARGET_SPARC)
 | 
						|
const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
 | 
						|
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
 | 
						|
      defined(TARGET_S390X)
 | 
						|
const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
 | 
						|
#elif SNAN_BIT_IS_ONE
 | 
						|
const float64 float64_default_nan = const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
 | 
						|
#else
 | 
						|
const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated extended double-precision NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#define floatx80_default_nan_high 0x7FFF
 | 
						|
#define floatx80_default_nan_low  LIT64(0xBFFFFFFFFFFFFFFF)
 | 
						|
#else
 | 
						|
#define floatx80_default_nan_high 0xFFFF
 | 
						|
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
 | 
						|
#endif
 | 
						|
 | 
						|
const floatx80 floatx80_default_nan
 | 
						|
    = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated quadruple-precision NaN.  The `high' and
 | 
						|
| `low' values hold the most- and least-significant bits, respectively.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#define float128_default_nan_high LIT64(0x7FFF7FFFFFFFFFFF)
 | 
						|
#define float128_default_nan_low  LIT64(0xFFFFFFFFFFFFFFFF)
 | 
						|
#elif defined(TARGET_S390X)
 | 
						|
#define float128_default_nan_high LIT64( 0x7FFF800000000000 )
 | 
						|
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
 | 
						|
#else
 | 
						|
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
 | 
						|
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
 | 
						|
#endif
 | 
						|
 | 
						|
const float128 float128_default_nan
 | 
						|
    = make_float128_init(float128_default_nan_high, float128_default_nan_low);
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Raises the exceptions specified by `flags'.  Floating-point traps can be
 | 
						|
| defined here if desired.  It is currently not possible for such a trap
 | 
						|
| to substitute a result value.  If traps are not implemented, this routine
 | 
						|
| should be simply `float_exception_flags |= flags;'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
void float_raise(int8 flags, float_status *status)
 | 
						|
{
 | 
						|
    status->float_exception_flags |= flags;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Internal canonical NaN format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
typedef struct {
 | 
						|
    flag sign;
 | 
						|
    uint64_t high, low;
 | 
						|
} commonNaNT;
 | 
						|
 | 
						|
#ifdef NO_SIGNALING_NANS
 | 
						|
int float16_is_quiet_nan(float16 a_)
 | 
						|
{
 | 
						|
    return float16_is_any_nan(a_);
 | 
						|
}
 | 
						|
 | 
						|
int float16_is_signaling_nan(float16 a_)
 | 
						|
{
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the half-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float16_is_quiet_nan(float16 a_)
 | 
						|
{
 | 
						|
    uint16_t a = float16_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 | 
						|
#else
 | 
						|
    return ((a & ~0x8000) >= 0x7c80);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the half-precision floating-point value `a' is a signaling
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float16_is_signaling_nan(float16 a_)
 | 
						|
{
 | 
						|
    uint16_t a = float16_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ((a & ~0x8000) >= 0x7c80);
 | 
						|
#else
 | 
						|
    return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns a quiet NaN if the half-precision floating point value `a' is a
 | 
						|
| signaling NaN; otherwise returns `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
float16 float16_maybe_silence_nan(float16 a_)
 | 
						|
{
 | 
						|
    if (float16_is_signaling_nan(a_)) {
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | 
						|
        return float16_default_nan;
 | 
						|
#  else
 | 
						|
#    error Rules for silencing a signaling NaN are target-specific
 | 
						|
#  endif
 | 
						|
#else
 | 
						|
        uint16_t a = float16_val(a_);
 | 
						|
        a |= (1 << 9);
 | 
						|
        return make_float16(a);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return a_;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the half-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float16ToCommonNaN(float16 a, float_status *status)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if (float16_is_signaling_nan(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
    z.sign = float16_val(a) >> 15;
 | 
						|
    z.low = 0;
 | 
						|
    z.high = ((uint64_t) float16_val(a))<<54;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the half-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float16 commonNaNToFloat16(commonNaNT a, float_status *status)
 | 
						|
{
 | 
						|
    uint16_t mantissa = a.high>>54;
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        return float16_default_nan;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mantissa) {
 | 
						|
        return make_float16(((((uint16_t) a.sign) << 15)
 | 
						|
                             | (0x1F << 10) | mantissa));
 | 
						|
    } else {
 | 
						|
        return float16_default_nan;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef NO_SIGNALING_NANS
 | 
						|
int float32_is_quiet_nan(float32 a_)
 | 
						|
{
 | 
						|
    return float32_is_any_nan(a_);
 | 
						|
}
 | 
						|
 | 
						|
int float32_is_signaling_nan(float32 a_)
 | 
						|
{
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the single-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float32_is_quiet_nan( float32 a_ )
 | 
						|
{
 | 
						|
    uint32_t a = float32_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return (((a >> 22) & 0x1ff) == 0x1fe) && (a & 0x003fffff);
 | 
						|
#else
 | 
						|
    return ((uint32_t)(a << 1) >= 0xff800000);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the single-precision floating-point value `a' is a signaling
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float32_is_signaling_nan( float32 a_ )
 | 
						|
{
 | 
						|
    uint32_t a = float32_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ((uint32_t)(a << 1) >= 0xff800000);
 | 
						|
#else
 | 
						|
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns a quiet NaN if the single-precision floating point value `a' is a
 | 
						|
| signaling NaN; otherwise returns `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float32 float32_maybe_silence_nan( float32 a_ )
 | 
						|
{
 | 
						|
    if (float32_is_signaling_nan(a_)) {
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | 
						|
        return float32_default_nan;
 | 
						|
#  else
 | 
						|
#    error Rules for silencing a signaling NaN are target-specific
 | 
						|
#  endif
 | 
						|
#else
 | 
						|
        uint32_t a = float32_val(a_);
 | 
						|
        a |= (1 << 22);
 | 
						|
        return make_float32(a);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return a_;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the single-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if (float32_is_signaling_nan(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
    z.sign = float32_val(a)>>31;
 | 
						|
    z.low = 0;
 | 
						|
    z.high = ( (uint64_t) float32_val(a) )<<41;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the single-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
 | 
						|
{
 | 
						|
    uint32_t mantissa = a.high>>41;
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
 | 
						|
    if ( mantissa )
 | 
						|
        return make_float32(
 | 
						|
            ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
 | 
						|
    else
 | 
						|
        return float32_default_nan;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Select which NaN to propagate for a two-input operation.
 | 
						|
| IEEE754 doesn't specify all the details of this, so the
 | 
						|
| algorithm is target-specific.
 | 
						|
| The routine is passed various bits of information about the
 | 
						|
| two NaNs and should return 0 to select NaN a and 1 for NaN b.
 | 
						|
| Note that signalling NaNs are always squashed to quiet NaNs
 | 
						|
| by the caller, by calling floatXX_maybe_silence_nan() before
 | 
						|
| returning them.
 | 
						|
|
 | 
						|
| aIsLargerSignificand is only valid if both a and b are NaNs
 | 
						|
| of some kind, and is true if a has the larger significand,
 | 
						|
| or if both a and b have the same significand but a is
 | 
						|
| positive but b is negative. It is only needed for the x87
 | 
						|
| tie-break rule.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
#if defined(TARGET_ARM)
 | 
						|
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                    flag aIsLargerSignificand)
 | 
						|
{
 | 
						|
    /* ARM mandated NaN propagation rules: take the first of:
 | 
						|
     *  1. A if it is signaling
 | 
						|
     *  2. B if it is signaling
 | 
						|
     *  3. A (quiet)
 | 
						|
     *  4. B (quiet)
 | 
						|
     * A signaling NaN is always quietened before returning it.
 | 
						|
     */
 | 
						|
    if (aIsSNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (bIsSNaN) {
 | 
						|
        return 1;
 | 
						|
    } else if (aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#elif defined(TARGET_MIPS)
 | 
						|
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                    flag aIsLargerSignificand)
 | 
						|
{
 | 
						|
    /* According to MIPS specifications, if one of the two operands is
 | 
						|
     * a sNaN, a new qNaN has to be generated. This is done in
 | 
						|
     * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
 | 
						|
     * says: "When possible, this QNaN result is one of the operand QNaN
 | 
						|
     * values." In practice it seems that most implementations choose
 | 
						|
     * the first operand if both operands are qNaN. In short this gives
 | 
						|
     * the following rules:
 | 
						|
     *  1. A if it is signaling
 | 
						|
     *  2. B if it is signaling
 | 
						|
     *  3. A (quiet)
 | 
						|
     *  4. B (quiet)
 | 
						|
     * A signaling NaN is always silenced before returning it.
 | 
						|
     */
 | 
						|
    if (aIsSNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (bIsSNaN) {
 | 
						|
        return 1;
 | 
						|
    } else if (aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
 | 
						|
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                   flag aIsLargerSignificand)
 | 
						|
{
 | 
						|
    /* PowerPC propagation rules:
 | 
						|
     *  1. A if it sNaN or qNaN
 | 
						|
     *  2. B if it sNaN or qNaN
 | 
						|
     * A signaling NaN is always silenced before returning it.
 | 
						|
     */
 | 
						|
    if (aIsSNaN || aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#else
 | 
						|
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                    flag aIsLargerSignificand)
 | 
						|
{
 | 
						|
    /* This implements x87 NaN propagation rules:
 | 
						|
     * SNaN + QNaN => return the QNaN
 | 
						|
     * two SNaNs => return the one with the larger significand, silenced
 | 
						|
     * two QNaNs => return the one with the larger significand
 | 
						|
     * SNaN and a non-NaN => return the SNaN, silenced
 | 
						|
     * QNaN and a non-NaN => return the QNaN
 | 
						|
     *
 | 
						|
     * If we get down to comparing significands and they are the same,
 | 
						|
     * return the NaN with the positive sign bit (if any).
 | 
						|
     */
 | 
						|
    if (aIsSNaN) {
 | 
						|
        if (bIsSNaN) {
 | 
						|
            return aIsLargerSignificand ? 0 : 1;
 | 
						|
        }
 | 
						|
        return bIsQNaN ? 1 : 0;
 | 
						|
    }
 | 
						|
    else if (aIsQNaN) {
 | 
						|
        if (bIsSNaN || !bIsQNaN)
 | 
						|
            return 0;
 | 
						|
        else {
 | 
						|
            return aIsLargerSignificand ? 0 : 1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Select which NaN to propagate for a three-input operation.
 | 
						|
| For the moment we assume that no CPU needs the 'larger significand'
 | 
						|
| information.
 | 
						|
| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#if defined(TARGET_ARM)
 | 
						|
static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 | 
						|
                         float_status *status)
 | 
						|
{
 | 
						|
    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
 | 
						|
     * the default NaN
 | 
						|
     */
 | 
						|
    if (infzero && cIsQNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
 | 
						|
     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
 | 
						|
     */
 | 
						|
    if (cIsSNaN) {
 | 
						|
        return 2;
 | 
						|
    } else if (aIsSNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (bIsSNaN) {
 | 
						|
        return 1;
 | 
						|
    } else if (cIsQNaN) {
 | 
						|
        return 2;
 | 
						|
    } else if (aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#elif defined(TARGET_MIPS)
 | 
						|
static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 | 
						|
                         float_status *status)
 | 
						|
{
 | 
						|
    /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
 | 
						|
     * the default NaN
 | 
						|
     */
 | 
						|
    if (infzero) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 3;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Prefer sNaN over qNaN, in the a, b, c order. */
 | 
						|
    if (aIsSNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (bIsSNaN) {
 | 
						|
        return 1;
 | 
						|
    } else if (cIsSNaN) {
 | 
						|
        return 2;
 | 
						|
    } else if (aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (bIsQNaN) {
 | 
						|
        return 1;
 | 
						|
    } else {
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
}
 | 
						|
#elif defined(TARGET_PPC)
 | 
						|
static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 | 
						|
                         float_status *status)
 | 
						|
{
 | 
						|
    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
 | 
						|
     * to return an input NaN if we have one (ie c) rather than generating
 | 
						|
     * a default NaN
 | 
						|
     */
 | 
						|
    if (infzero) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
 | 
						|
     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
 | 
						|
     */
 | 
						|
    if (aIsSNaN || aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (cIsSNaN || cIsQNaN) {
 | 
						|
        return 2;
 | 
						|
    } else {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#else
 | 
						|
/* A default implementation: prefer a to b to c.
 | 
						|
 * This is unlikely to actually match any real implementation.
 | 
						|
 */
 | 
						|
static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
 | 
						|
                         flag cIsQNaN, flag cIsSNaN, flag infzero,
 | 
						|
                         float_status *status)
 | 
						|
{
 | 
						|
    if (aIsSNaN || aIsQNaN) {
 | 
						|
        return 0;
 | 
						|
    } else if (bIsSNaN || bIsQNaN) {
 | 
						|
        return 1;
 | 
						|
    } else {
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two single-precision floating-point values `a' and `b', one of which
 | 
						|
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | 
						|
| signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
 | 
						|
{
 | 
						|
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
 | 
						|
    flag aIsLargerSignificand;
 | 
						|
    uint32_t av, bv;
 | 
						|
 | 
						|
    aIsQuietNaN = float32_is_quiet_nan( a );
 | 
						|
    aIsSignalingNaN = float32_is_signaling_nan( a );
 | 
						|
    bIsQuietNaN = float32_is_quiet_nan( b );
 | 
						|
    bIsSignalingNaN = float32_is_signaling_nan( b );
 | 
						|
    av = float32_val(a);
 | 
						|
    bv = float32_val(b);
 | 
						|
 | 
						|
    if (aIsSignalingNaN | bIsSignalingNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
 | 
						|
    if (status->default_nan_mode)
 | 
						|
        return float32_default_nan;
 | 
						|
 | 
						|
    if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
 | 
						|
        aIsLargerSignificand = 0;
 | 
						|
    } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
 | 
						|
        aIsLargerSignificand = 1;
 | 
						|
    } else {
 | 
						|
        aIsLargerSignificand = (av < bv) ? 1 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 | 
						|
                aIsLargerSignificand)) {
 | 
						|
        return float32_maybe_silence_nan(b);
 | 
						|
    } else {
 | 
						|
        return float32_maybe_silence_nan(a);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes three single-precision floating-point values `a', `b' and `c', one of
 | 
						|
| which is a NaN, and returns the appropriate NaN result.  If any of  `a',
 | 
						|
| `b' or `c' is a signaling NaN, the invalid exception is raised.
 | 
						|
| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
 | 
						|
| obviously c is a NaN, and whether to propagate c or some other NaN is
 | 
						|
| implementation defined).
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
 | 
						|
                                         float32 c, flag infzero,
 | 
						|
                                         float_status *status)
 | 
						|
{
 | 
						|
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 | 
						|
        cIsQuietNaN, cIsSignalingNaN;
 | 
						|
    int which;
 | 
						|
 | 
						|
    aIsQuietNaN = float32_is_quiet_nan(a);
 | 
						|
    aIsSignalingNaN = float32_is_signaling_nan(a);
 | 
						|
    bIsQuietNaN = float32_is_quiet_nan(b);
 | 
						|
    bIsSignalingNaN = float32_is_signaling_nan(b);
 | 
						|
    cIsQuietNaN = float32_is_quiet_nan(c);
 | 
						|
    cIsSignalingNaN = float32_is_signaling_nan(c);
 | 
						|
 | 
						|
    if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
 | 
						|
    which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
 | 
						|
                          bIsQuietNaN, bIsSignalingNaN,
 | 
						|
                          cIsQuietNaN, cIsSignalingNaN, infzero, status);
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        /* Note that this check is after pickNaNMulAdd so that function
 | 
						|
         * has an opportunity to set the Invalid flag.
 | 
						|
         */
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (which) {
 | 
						|
    case 0:
 | 
						|
        return float32_maybe_silence_nan(a);
 | 
						|
    case 1:
 | 
						|
        return float32_maybe_silence_nan(b);
 | 
						|
    case 2:
 | 
						|
        return float32_maybe_silence_nan(c);
 | 
						|
    case 3:
 | 
						|
    default:
 | 
						|
        return float32_default_nan;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef NO_SIGNALING_NANS
 | 
						|
int float64_is_quiet_nan(float64 a_)
 | 
						|
{
 | 
						|
    return float64_is_any_nan(a_);
 | 
						|
}
 | 
						|
 | 
						|
int float64_is_signaling_nan(float64 a_)
 | 
						|
{
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the double-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float64_is_quiet_nan( float64 a_ )
 | 
						|
{
 | 
						|
    uint64_t a = float64_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return (((a >> 51) & 0xfff) == 0xffe)
 | 
						|
           && (a & 0x0007ffffffffffffULL);
 | 
						|
#else
 | 
						|
    return ((a << 1) >= 0xfff0000000000000ULL);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the double-precision floating-point value `a' is a signaling
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float64_is_signaling_nan( float64 a_ )
 | 
						|
{
 | 
						|
    uint64_t a = float64_val(a_);
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ((a << 1) >= 0xfff0000000000000ULL);
 | 
						|
#else
 | 
						|
    return
 | 
						|
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 | 
						|
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns a quiet NaN if the double-precision floating point value `a' is a
 | 
						|
| signaling NaN; otherwise returns `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float64 float64_maybe_silence_nan( float64 a_ )
 | 
						|
{
 | 
						|
    if (float64_is_signaling_nan(a_)) {
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | 
						|
        return float64_default_nan;
 | 
						|
#  else
 | 
						|
#    error Rules for silencing a signaling NaN are target-specific
 | 
						|
#  endif
 | 
						|
#else
 | 
						|
        uint64_t a = float64_val(a_);
 | 
						|
        a |= LIT64( 0x0008000000000000 );
 | 
						|
        return make_float64(a);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return a_;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the double-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if (float64_is_signaling_nan(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
    z.sign = float64_val(a)>>63;
 | 
						|
    z.low = 0;
 | 
						|
    z.high = float64_val(a)<<12;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the double-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
 | 
						|
{
 | 
						|
    uint64_t mantissa = a.high>>12;
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
 | 
						|
    if ( mantissa )
 | 
						|
        return make_float64(
 | 
						|
              ( ( (uint64_t) a.sign )<<63 )
 | 
						|
            | LIT64( 0x7FF0000000000000 )
 | 
						|
            | ( a.high>>12 ));
 | 
						|
    else
 | 
						|
        return float64_default_nan;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two double-precision floating-point values `a' and `b', one of which
 | 
						|
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | 
						|
| signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
 | 
						|
{
 | 
						|
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
 | 
						|
    flag aIsLargerSignificand;
 | 
						|
    uint64_t av, bv;
 | 
						|
 | 
						|
    aIsQuietNaN = float64_is_quiet_nan( a );
 | 
						|
    aIsSignalingNaN = float64_is_signaling_nan( a );
 | 
						|
    bIsQuietNaN = float64_is_quiet_nan( b );
 | 
						|
    bIsSignalingNaN = float64_is_signaling_nan( b );
 | 
						|
    av = float64_val(a);
 | 
						|
    bv = float64_val(b);
 | 
						|
 | 
						|
    if (aIsSignalingNaN | bIsSignalingNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
 | 
						|
    if (status->default_nan_mode)
 | 
						|
        return float64_default_nan;
 | 
						|
 | 
						|
    if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
 | 
						|
        aIsLargerSignificand = 0;
 | 
						|
    } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
 | 
						|
        aIsLargerSignificand = 1;
 | 
						|
    } else {
 | 
						|
        aIsLargerSignificand = (av < bv) ? 1 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 | 
						|
                aIsLargerSignificand)) {
 | 
						|
        return float64_maybe_silence_nan(b);
 | 
						|
    } else {
 | 
						|
        return float64_maybe_silence_nan(a);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes three double-precision floating-point values `a', `b' and `c', one of
 | 
						|
| which is a NaN, and returns the appropriate NaN result.  If any of  `a',
 | 
						|
| `b' or `c' is a signaling NaN, the invalid exception is raised.
 | 
						|
| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
 | 
						|
| obviously c is a NaN, and whether to propagate c or some other NaN is
 | 
						|
| implementation defined).
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
 | 
						|
                                         float64 c, flag infzero,
 | 
						|
                                         float_status *status)
 | 
						|
{
 | 
						|
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 | 
						|
        cIsQuietNaN, cIsSignalingNaN;
 | 
						|
    int which;
 | 
						|
 | 
						|
    aIsQuietNaN = float64_is_quiet_nan(a);
 | 
						|
    aIsSignalingNaN = float64_is_signaling_nan(a);
 | 
						|
    bIsQuietNaN = float64_is_quiet_nan(b);
 | 
						|
    bIsSignalingNaN = float64_is_signaling_nan(b);
 | 
						|
    cIsQuietNaN = float64_is_quiet_nan(c);
 | 
						|
    cIsSignalingNaN = float64_is_signaling_nan(c);
 | 
						|
 | 
						|
    if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
 | 
						|
    which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
 | 
						|
                          bIsQuietNaN, bIsSignalingNaN,
 | 
						|
                          cIsQuietNaN, cIsSignalingNaN, infzero, status);
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        /* Note that this check is after pickNaNMulAdd so that function
 | 
						|
         * has an opportunity to set the Invalid flag.
 | 
						|
         */
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (which) {
 | 
						|
    case 0:
 | 
						|
        return float64_maybe_silence_nan(a);
 | 
						|
    case 1:
 | 
						|
        return float64_maybe_silence_nan(b);
 | 
						|
    case 2:
 | 
						|
        return float64_maybe_silence_nan(c);
 | 
						|
    case 3:
 | 
						|
    default:
 | 
						|
        return float64_default_nan;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef NO_SIGNALING_NANS
 | 
						|
int floatx80_is_quiet_nan(floatx80 a_)
 | 
						|
{
 | 
						|
    return floatx80_is_any_nan(a_);
 | 
						|
}
 | 
						|
 | 
						|
int floatx80_is_signaling_nan(floatx80 a_)
 | 
						|
{
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the extended double-precision floating-point value `a' is a
 | 
						|
| quiet NaN; otherwise returns 0. This slightly differs from the same
 | 
						|
| function for other types as floatx80 has an explicit bit.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int floatx80_is_quiet_nan( floatx80 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    uint64_t aLow;
 | 
						|
 | 
						|
    aLow = a.low & ~0x4000000000000000ULL;
 | 
						|
    return ((a.high & 0x7fff) == 0x7fff)
 | 
						|
        && (aLow << 1)
 | 
						|
        && (a.low == aLow);
 | 
						|
#else
 | 
						|
    return ( ( a.high & 0x7FFF ) == 0x7FFF )
 | 
						|
        && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the extended double-precision floating-point value `a' is a
 | 
						|
| signaling NaN; otherwise returns 0. This slightly differs from the same
 | 
						|
| function for other types as floatx80 has an explicit bit.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int floatx80_is_signaling_nan( floatx80 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return ((a.high & 0x7fff) == 0x7fff)
 | 
						|
        && ((a.low << 1) >= 0x8000000000000000ULL);
 | 
						|
#else
 | 
						|
    uint64_t aLow;
 | 
						|
 | 
						|
    aLow = a.low & ~ LIT64( 0x4000000000000000 );
 | 
						|
    return
 | 
						|
           ( ( a.high & 0x7FFF ) == 0x7FFF )
 | 
						|
        && (uint64_t) ( aLow<<1 )
 | 
						|
        && ( a.low == aLow );
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns a quiet NaN if the extended double-precision floating point value
 | 
						|
| `a' is a signaling NaN; otherwise returns `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_maybe_silence_nan( floatx80 a )
 | 
						|
{
 | 
						|
    if (floatx80_is_signaling_nan(a)) {
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | 
						|
        a.low = floatx80_default_nan_low;
 | 
						|
        a.high = floatx80_default_nan_high;
 | 
						|
#  else
 | 
						|
#    error Rules for silencing a signaling NaN are target-specific
 | 
						|
#  endif
 | 
						|
#else
 | 
						|
        a.low |= LIT64( 0xC000000000000000 );
 | 
						|
        return a;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
 | 
						|
| invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if (floatx80_is_signaling_nan(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
    if ( a.low >> 63 ) {
 | 
						|
        z.sign = a.high >> 15;
 | 
						|
        z.low = 0;
 | 
						|
        z.high = a.low << 1;
 | 
						|
    } else {
 | 
						|
        z.sign = floatx80_default_nan_high >> 15;
 | 
						|
        z.low = 0;
 | 
						|
        z.high = floatx80_default_nan_low << 1;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the extended
 | 
						|
| double-precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
 | 
						|
{
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        z.low = floatx80_default_nan_low;
 | 
						|
        z.high = floatx80_default_nan_high;
 | 
						|
        return z;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a.high >> 1) {
 | 
						|
        z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
 | 
						|
        z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
 | 
						|
    } else {
 | 
						|
        z.low = floatx80_default_nan_low;
 | 
						|
        z.high = floatx80_default_nan_high;
 | 
						|
    }
 | 
						|
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two extended double-precision floating-point values `a' and `b', one
 | 
						|
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | 
						|
| `b' is a signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b,
 | 
						|
                                     float_status *status)
 | 
						|
{
 | 
						|
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
 | 
						|
    flag aIsLargerSignificand;
 | 
						|
 | 
						|
    aIsQuietNaN = floatx80_is_quiet_nan( a );
 | 
						|
    aIsSignalingNaN = floatx80_is_signaling_nan( a );
 | 
						|
    bIsQuietNaN = floatx80_is_quiet_nan( b );
 | 
						|
    bIsSignalingNaN = floatx80_is_signaling_nan( b );
 | 
						|
 | 
						|
    if (aIsSignalingNaN | bIsSignalingNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        a.low = floatx80_default_nan_low;
 | 
						|
        a.high = floatx80_default_nan_high;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a.low < b.low) {
 | 
						|
        aIsLargerSignificand = 0;
 | 
						|
    } else if (b.low < a.low) {
 | 
						|
        aIsLargerSignificand = 1;
 | 
						|
    } else {
 | 
						|
        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 | 
						|
                aIsLargerSignificand)) {
 | 
						|
        return floatx80_maybe_silence_nan(b);
 | 
						|
    } else {
 | 
						|
        return floatx80_maybe_silence_nan(a);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef NO_SIGNALING_NANS
 | 
						|
int float128_is_quiet_nan(float128 a_)
 | 
						|
{
 | 
						|
    return float128_is_any_nan(a_);
 | 
						|
}
 | 
						|
 | 
						|
int float128_is_signaling_nan(float128 a_)
 | 
						|
{
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 | 
						|
| NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float128_is_quiet_nan( float128 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return (((a.high >> 47) & 0xffff) == 0xfffe)
 | 
						|
        && (a.low || (a.high & 0x00007fffffffffffULL));
 | 
						|
#else
 | 
						|
    return
 | 
						|
        ((a.high << 1) >= 0xffff000000000000ULL)
 | 
						|
        && (a.low || (a.high & 0x0000ffffffffffffULL));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns 1 if the quadruple-precision floating-point value `a' is a
 | 
						|
| signaling NaN; otherwise returns 0.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int float128_is_signaling_nan( float128 a )
 | 
						|
{
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
    return
 | 
						|
        ((a.high << 1) >= 0xffff000000000000ULL)
 | 
						|
        && (a.low || (a.high & 0x0000ffffffffffffULL));
 | 
						|
#else
 | 
						|
    return
 | 
						|
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
 | 
						|
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
 | 
						|
#endif
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns a quiet NaN if the quadruple-precision floating point value `a' is
 | 
						|
| a signaling NaN; otherwise returns `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_maybe_silence_nan( float128 a )
 | 
						|
{
 | 
						|
    if (float128_is_signaling_nan(a)) {
 | 
						|
#if SNAN_BIT_IS_ONE
 | 
						|
#  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
 | 
						|
        a.low = float128_default_nan_low;
 | 
						|
        a.high = float128_default_nan_high;
 | 
						|
#  else
 | 
						|
#    error Rules for silencing a signaling NaN are target-specific
 | 
						|
#  endif
 | 
						|
#else
 | 
						|
        a.high |= LIT64( 0x0000800000000000 );
 | 
						|
        return a;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point NaN
 | 
						|
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | 
						|
| exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    commonNaNT z;
 | 
						|
 | 
						|
    if (float128_is_signaling_nan(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
    z.sign = a.high>>63;
 | 
						|
    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the canonical NaN `a' to the quadruple-
 | 
						|
| precision floating-point format.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
 | 
						|
{
 | 
						|
    float128 z;
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        z.low = float128_default_nan_low;
 | 
						|
        z.high = float128_default_nan_high;
 | 
						|
        return z;
 | 
						|
    }
 | 
						|
 | 
						|
    shift128Right( a.high, a.low, 16, &z.high, &z.low );
 | 
						|
    z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes two quadruple-precision floating-point values `a' and `b', one of
 | 
						|
| which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | 
						|
| `b' is a signaling NaN, the invalid exception is raised.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 propagateFloat128NaN(float128 a, float128 b,
 | 
						|
                                     float_status *status)
 | 
						|
{
 | 
						|
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
 | 
						|
    flag aIsLargerSignificand;
 | 
						|
 | 
						|
    aIsQuietNaN = float128_is_quiet_nan( a );
 | 
						|
    aIsSignalingNaN = float128_is_signaling_nan( a );
 | 
						|
    bIsQuietNaN = float128_is_quiet_nan( b );
 | 
						|
    bIsSignalingNaN = float128_is_signaling_nan( b );
 | 
						|
 | 
						|
    if (aIsSignalingNaN | bIsSignalingNaN) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
    }
 | 
						|
 | 
						|
    if (status->default_nan_mode) {
 | 
						|
        a.low = float128_default_nan_low;
 | 
						|
        a.high = float128_default_nan_high;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
 | 
						|
        aIsLargerSignificand = 0;
 | 
						|
    } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
 | 
						|
        aIsLargerSignificand = 1;
 | 
						|
    } else {
 | 
						|
        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
 | 
						|
                aIsLargerSignificand)) {
 | 
						|
        return float128_maybe_silence_nan(b);
 | 
						|
    } else {
 | 
						|
        return float128_maybe_silence_nan(a);
 | 
						|
    }
 | 
						|
}
 | 
						|
 |