This is essentially redundant with tlb_c.dirty. Tested-by: Emilio G. Cota <cota@braap.org> Reviewed-by: Emilio G. Cota <cota@braap.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			1083 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1083 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Common CPU TLB handling
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/memory.h"
 | 
						|
#include "exec/address-spaces.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "exec/cputlb.h"
 | 
						|
#include "exec/memory-internal.h"
 | 
						|
#include "exec/ram_addr.h"
 | 
						|
#include "tcg/tcg.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "exec/log.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
#include "qemu/atomic128.h"
 | 
						|
 | 
						|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
 | 
						|
/* #define DEBUG_TLB */
 | 
						|
/* #define DEBUG_TLB_LOG */
 | 
						|
 | 
						|
#ifdef DEBUG_TLB
 | 
						|
# define DEBUG_TLB_GATE 1
 | 
						|
# ifdef DEBUG_TLB_LOG
 | 
						|
#  define DEBUG_TLB_LOG_GATE 1
 | 
						|
# else
 | 
						|
#  define DEBUG_TLB_LOG_GATE 0
 | 
						|
# endif
 | 
						|
#else
 | 
						|
# define DEBUG_TLB_GATE 0
 | 
						|
# define DEBUG_TLB_LOG_GATE 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define tlb_debug(fmt, ...) do { \
 | 
						|
    if (DEBUG_TLB_LOG_GATE) { \
 | 
						|
        qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
 | 
						|
                      ## __VA_ARGS__); \
 | 
						|
    } else if (DEBUG_TLB_GATE) { \
 | 
						|
        fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
 | 
						|
    } \
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define assert_cpu_is_self(cpu) do {                              \
 | 
						|
        if (DEBUG_TLB_GATE) {                                     \
 | 
						|
            g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
 | 
						|
        }                                                         \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
/* run_on_cpu_data.target_ptr should always be big enough for a
 | 
						|
 * target_ulong even on 32 bit builds */
 | 
						|
QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
 | 
						|
 | 
						|
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
 | 
						|
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
 | 
						|
 | 
						|
void tlb_init(CPUState *cpu)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
 | 
						|
    qemu_spin_init(&env->tlb_c.lock);
 | 
						|
 | 
						|
    /* Ensure that cpu_reset performs a full flush.  */
 | 
						|
    env->tlb_c.dirty = ALL_MMUIDX_BITS;
 | 
						|
}
 | 
						|
 | 
						|
/* flush_all_helper: run fn across all cpus
 | 
						|
 *
 | 
						|
 * If the wait flag is set then the src cpu's helper will be queued as
 | 
						|
 * "safe" work and the loop exited creating a synchronisation point
 | 
						|
 * where all queued work will be finished before execution starts
 | 
						|
 * again.
 | 
						|
 */
 | 
						|
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 | 
						|
                             run_on_cpu_data d)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        if (cpu != src) {
 | 
						|
            async_run_on_cpu(cpu, fn, d);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
    size_t full = 0, part = 0, elide = 0;
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        CPUArchState *env = cpu->env_ptr;
 | 
						|
 | 
						|
        full += atomic_read(&env->tlb_c.full_flush_count);
 | 
						|
        part += atomic_read(&env->tlb_c.part_flush_count);
 | 
						|
        elide += atomic_read(&env->tlb_c.elide_flush_count);
 | 
						|
    }
 | 
						|
    *pfull = full;
 | 
						|
    *ppart = part;
 | 
						|
    *pelide = elide;
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
 | 
						|
{
 | 
						|
    memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
 | 
						|
    memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
 | 
						|
    env->tlb_d[mmu_idx].large_page_addr = -1;
 | 
						|
    env->tlb_d[mmu_idx].large_page_mask = -1;
 | 
						|
    env->tlb_d[mmu_idx].vindex = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    uint16_t asked = data.host_int;
 | 
						|
    uint16_t all_dirty, work, to_clean;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 | 
						|
 | 
						|
    qemu_spin_lock(&env->tlb_c.lock);
 | 
						|
 | 
						|
    all_dirty = env->tlb_c.dirty;
 | 
						|
    to_clean = asked & all_dirty;
 | 
						|
    all_dirty &= ~to_clean;
 | 
						|
    env->tlb_c.dirty = all_dirty;
 | 
						|
 | 
						|
    for (work = to_clean; work != 0; work &= work - 1) {
 | 
						|
        int mmu_idx = ctz32(work);
 | 
						|
        tlb_flush_one_mmuidx_locked(env, mmu_idx);
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_spin_unlock(&env->tlb_c.lock);
 | 
						|
 | 
						|
    cpu_tb_jmp_cache_clear(cpu);
 | 
						|
 | 
						|
    if (to_clean == ALL_MMUIDX_BITS) {
 | 
						|
        atomic_set(&env->tlb_c.full_flush_count,
 | 
						|
                   env->tlb_c.full_flush_count + 1);
 | 
						|
    } else {
 | 
						|
        atomic_set(&env->tlb_c.part_flush_count,
 | 
						|
                   env->tlb_c.part_flush_count + ctpop16(to_clean));
 | 
						|
        if (to_clean != asked) {
 | 
						|
            atomic_set(&env->tlb_c.elide_flush_count,
 | 
						|
                       env->tlb_c.elide_flush_count +
 | 
						|
                       ctpop16(asked & ~to_clean));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 | 
						|
 | 
						|
    if (cpu->created && !qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 | 
						|
                         RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    } else {
 | 
						|
        tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush(CPUState *cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | 
						|
 | 
						|
    tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 | 
						|
{
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
 | 
						|
                                        target_ulong page)
 | 
						|
{
 | 
						|
    return tlb_hit_page(tlb_entry->addr_read, page) ||
 | 
						|
           tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
 | 
						|
           tlb_hit_page(tlb_entry->addr_code, page);
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline void tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                          target_ulong page)
 | 
						|
{
 | 
						|
    if (tlb_hit_page_anyprot(tlb_entry, page)) {
 | 
						|
        memset(tlb_entry, -1, sizeof(*tlb_entry));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
 | 
						|
                                              target_ulong page)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
 | 
						|
    assert_cpu_is_self(ENV_GET_CPU(env));
 | 
						|
    for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
        tlb_flush_entry_locked(&env->tlb_v_table[mmu_idx][k], page);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlb_flush_page_locked(CPUArchState *env, int midx,
 | 
						|
                                  target_ulong page)
 | 
						|
{
 | 
						|
    target_ulong lp_addr = env->tlb_d[midx].large_page_addr;
 | 
						|
    target_ulong lp_mask = env->tlb_d[midx].large_page_mask;
 | 
						|
 | 
						|
    /* Check if we need to flush due to large pages.  */
 | 
						|
    if ((page & lp_mask) == lp_addr) {
 | 
						|
        tlb_debug("forcing full flush midx %d ("
 | 
						|
                  TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | 
						|
                  midx, lp_addr, lp_mask);
 | 
						|
        tlb_flush_one_mmuidx_locked(env, midx);
 | 
						|
    } else {
 | 
						|
        tlb_flush_entry_locked(tlb_entry(env, midx, page), page);
 | 
						|
        tlb_flush_vtlb_page_locked(env, midx, page);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* As we are going to hijack the bottom bits of the page address for a
 | 
						|
 * mmuidx bit mask we need to fail to build if we can't do that
 | 
						|
 */
 | 
						|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
 | 
						|
 | 
						|
static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
 | 
						|
                                                run_on_cpu_data data)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
 | 
						|
    target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
 | 
						|
    unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
 | 
						|
              addr, mmu_idx_bitmap);
 | 
						|
 | 
						|
    qemu_spin_lock(&env->tlb_c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
 | 
						|
            tlb_flush_page_locked(env, mmu_idx, addr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&env->tlb_c.lock);
 | 
						|
 | 
						|
    tb_flush_jmp_cache(cpu, addr);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
 | 
						|
{
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    if (!qemu_cpu_is_self(cpu)) {
 | 
						|
        async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
 | 
						|
                         RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    } else {
 | 
						|
        tlb_flush_page_by_mmuidx_async_work(
 | 
						|
            cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
 | 
						|
                                       uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | 
						|
                                              target_ulong addr,
 | 
						|
                                              uint16_t idxmap)
 | 
						|
{
 | 
						|
    const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
 | 
						|
    target_ulong addr_and_mmu_idx;
 | 
						|
 | 
						|
    tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | 
						|
 | 
						|
    /* This should already be page aligned */
 | 
						|
    addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
 | 
						|
    addr_and_mmu_idx |= idxmap;
 | 
						|
 | 
						|
    flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
    async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
 | 
						|
{
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLBs so that writes to code in the virtual page 'addr'
 | 
						|
   can be detected */
 | 
						|
void tlb_protect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
 | 
						|
                                             DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
 | 
						|
   tested for self modifying code */
 | 
						|
void tlb_unprotect_code(ram_addr_t ram_addr)
 | 
						|
{
 | 
						|
    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Dirty write flag handling
 | 
						|
 *
 | 
						|
 * When the TCG code writes to a location it looks up the address in
 | 
						|
 * the TLB and uses that data to compute the final address. If any of
 | 
						|
 * the lower bits of the address are set then the slow path is forced.
 | 
						|
 * There are a number of reasons to do this but for normal RAM the
 | 
						|
 * most usual is detecting writes to code regions which may invalidate
 | 
						|
 * generated code.
 | 
						|
 *
 | 
						|
 * Other vCPUs might be reading their TLBs during guest execution, so we update
 | 
						|
 * te->addr_write with atomic_set. We don't need to worry about this for
 | 
						|
 * oversized guests as MTTCG is disabled for them.
 | 
						|
 *
 | 
						|
 * Called with tlb_c.lock held.
 | 
						|
 */
 | 
						|
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                         uintptr_t start, uintptr_t length)
 | 
						|
{
 | 
						|
    uintptr_t addr = tlb_entry->addr_write;
 | 
						|
 | 
						|
    if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
        addr += tlb_entry->addend;
 | 
						|
        if ((addr - start) < length) {
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
            tlb_entry->addr_write |= TLB_NOTDIRTY;
 | 
						|
#else
 | 
						|
            atomic_set(&tlb_entry->addr_write,
 | 
						|
                       tlb_entry->addr_write | TLB_NOTDIRTY);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called with tlb_c.lock held.
 | 
						|
 * Called only from the vCPU context, i.e. the TLB's owner thread.
 | 
						|
 */
 | 
						|
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
 | 
						|
{
 | 
						|
    *d = *s;
 | 
						|
}
 | 
						|
 | 
						|
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
 | 
						|
 * the target vCPU).
 | 
						|
 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
 | 
						|
 * thing actually updated is the target TLB entry ->addr_write flags.
 | 
						|
 */
 | 
						|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
 | 
						|
{
 | 
						|
    CPUArchState *env;
 | 
						|
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    env = cpu->env_ptr;
 | 
						|
    qemu_spin_lock(&env->tlb_c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        unsigned int i;
 | 
						|
 | 
						|
        for (i = 0; i < CPU_TLB_SIZE; i++) {
 | 
						|
            tlb_reset_dirty_range_locked(&env->tlb_table[mmu_idx][i], start1,
 | 
						|
                                         length);
 | 
						|
        }
 | 
						|
 | 
						|
        for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | 
						|
            tlb_reset_dirty_range_locked(&env->tlb_v_table[mmu_idx][i], start1,
 | 
						|
                                         length);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&env->tlb_c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Called with tlb_c.lock held */
 | 
						|
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
 | 
						|
                                         target_ulong vaddr)
 | 
						|
{
 | 
						|
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 | 
						|
        tlb_entry->addr_write = vaddr;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* update the TLB corresponding to virtual page vaddr
 | 
						|
   so that it is no longer dirty */
 | 
						|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    int mmu_idx;
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    vaddr &= TARGET_PAGE_MASK;
 | 
						|
    qemu_spin_lock(&env->tlb_c.lock);
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | 
						|
        int k;
 | 
						|
        for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | 
						|
            tlb_set_dirty1_locked(&env->tlb_v_table[mmu_idx][k], vaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_spin_unlock(&env->tlb_c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Our TLB does not support large pages, so remember the area covered by
 | 
						|
   large pages and trigger a full TLB flush if these are invalidated.  */
 | 
						|
static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
 | 
						|
                               target_ulong vaddr, target_ulong size)
 | 
						|
{
 | 
						|
    target_ulong lp_addr = env->tlb_d[mmu_idx].large_page_addr;
 | 
						|
    target_ulong lp_mask = ~(size - 1);
 | 
						|
 | 
						|
    if (lp_addr == (target_ulong)-1) {
 | 
						|
        /* No previous large page.  */
 | 
						|
        lp_addr = vaddr;
 | 
						|
    } else {
 | 
						|
        /* Extend the existing region to include the new page.
 | 
						|
           This is a compromise between unnecessary flushes and
 | 
						|
           the cost of maintaining a full variable size TLB.  */
 | 
						|
        lp_mask &= env->tlb_d[mmu_idx].large_page_mask;
 | 
						|
        while (((lp_addr ^ vaddr) & lp_mask) != 0) {
 | 
						|
            lp_mask <<= 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env->tlb_d[mmu_idx].large_page_addr = lp_addr & lp_mask;
 | 
						|
    env->tlb_d[mmu_idx].large_page_mask = lp_mask;
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry. At most one entry for a given virtual address
 | 
						|
 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | 
						|
 * supplied size is only used by tlb_flush_page.
 | 
						|
 *
 | 
						|
 * Called from TCG-generated code, which is under an RCU read-side
 | 
						|
 * critical section.
 | 
						|
 */
 | 
						|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 | 
						|
                             hwaddr paddr, MemTxAttrs attrs, int prot,
 | 
						|
                             int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    CPUArchState *env = cpu->env_ptr;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    unsigned int index;
 | 
						|
    target_ulong address;
 | 
						|
    target_ulong code_address;
 | 
						|
    uintptr_t addend;
 | 
						|
    CPUTLBEntry *te, tn;
 | 
						|
    hwaddr iotlb, xlat, sz, paddr_page;
 | 
						|
    target_ulong vaddr_page;
 | 
						|
    int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | 
						|
 | 
						|
    assert_cpu_is_self(cpu);
 | 
						|
 | 
						|
    if (size <= TARGET_PAGE_SIZE) {
 | 
						|
        sz = TARGET_PAGE_SIZE;
 | 
						|
    } else {
 | 
						|
        tlb_add_large_page(env, mmu_idx, vaddr, size);
 | 
						|
        sz = size;
 | 
						|
    }
 | 
						|
    vaddr_page = vaddr & TARGET_PAGE_MASK;
 | 
						|
    paddr_page = paddr & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
 | 
						|
                                                &xlat, &sz, attrs, &prot);
 | 
						|
    assert(sz >= TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | 
						|
              " prot=%x idx=%d\n",
 | 
						|
              vaddr, paddr, prot, mmu_idx);
 | 
						|
 | 
						|
    address = vaddr_page;
 | 
						|
    if (size < TARGET_PAGE_SIZE) {
 | 
						|
        /*
 | 
						|
         * Slow-path the TLB entries; we will repeat the MMU check and TLB
 | 
						|
         * fill on every access.
 | 
						|
         */
 | 
						|
        address |= TLB_RECHECK;
 | 
						|
    }
 | 
						|
    if (!memory_region_is_ram(section->mr) &&
 | 
						|
        !memory_region_is_romd(section->mr)) {
 | 
						|
        /* IO memory case */
 | 
						|
        address |= TLB_MMIO;
 | 
						|
        addend = 0;
 | 
						|
    } else {
 | 
						|
        /* TLB_MMIO for rom/romd handled below */
 | 
						|
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | 
						|
    }
 | 
						|
 | 
						|
    code_address = address;
 | 
						|
    iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
 | 
						|
                                            paddr_page, xlat, prot, &address);
 | 
						|
 | 
						|
    index = tlb_index(env, mmu_idx, vaddr_page);
 | 
						|
    te = tlb_entry(env, mmu_idx, vaddr_page);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Hold the TLB lock for the rest of the function. We could acquire/release
 | 
						|
     * the lock several times in the function, but it is faster to amortize the
 | 
						|
     * acquisition cost by acquiring it just once. Note that this leads to
 | 
						|
     * a longer critical section, but this is not a concern since the TLB lock
 | 
						|
     * is unlikely to be contended.
 | 
						|
     */
 | 
						|
    qemu_spin_lock(&env->tlb_c.lock);
 | 
						|
 | 
						|
    /* Note that the tlb is no longer clean.  */
 | 
						|
    env->tlb_c.dirty |= 1 << mmu_idx;
 | 
						|
 | 
						|
    /* Make sure there's no cached translation for the new page.  */
 | 
						|
    tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Only evict the old entry to the victim tlb if it's for a
 | 
						|
     * different page; otherwise just overwrite the stale data.
 | 
						|
     */
 | 
						|
    if (!tlb_hit_page_anyprot(te, vaddr_page)) {
 | 
						|
        unsigned vidx = env->tlb_d[mmu_idx].vindex++ % CPU_VTLB_SIZE;
 | 
						|
        CPUTLBEntry *tv = &env->tlb_v_table[mmu_idx][vidx];
 | 
						|
 | 
						|
        /* Evict the old entry into the victim tlb.  */
 | 
						|
        copy_tlb_helper_locked(tv, te);
 | 
						|
        env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
 | 
						|
    }
 | 
						|
 | 
						|
    /* refill the tlb */
 | 
						|
    /*
 | 
						|
     * At this point iotlb contains a physical section number in the lower
 | 
						|
     * TARGET_PAGE_BITS, and either
 | 
						|
     *  + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
 | 
						|
     *  + the offset within section->mr of the page base (otherwise)
 | 
						|
     * We subtract the vaddr_page (which is page aligned and thus won't
 | 
						|
     * disturb the low bits) to give an offset which can be added to the
 | 
						|
     * (non-page-aligned) vaddr of the eventual memory access to get
 | 
						|
     * the MemoryRegion offset for the access. Note that the vaddr we
 | 
						|
     * subtract here is that of the page base, and not the same as the
 | 
						|
     * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
 | 
						|
     */
 | 
						|
    env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page;
 | 
						|
    env->iotlb[mmu_idx][index].attrs = attrs;
 | 
						|
 | 
						|
    /* Now calculate the new entry */
 | 
						|
    tn.addend = addend - vaddr_page;
 | 
						|
    if (prot & PAGE_READ) {
 | 
						|
        tn.addr_read = address;
 | 
						|
    } else {
 | 
						|
        tn.addr_read = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (prot & PAGE_EXEC) {
 | 
						|
        tn.addr_code = code_address;
 | 
						|
    } else {
 | 
						|
        tn.addr_code = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    tn.addr_write = -1;
 | 
						|
    if (prot & PAGE_WRITE) {
 | 
						|
        if ((memory_region_is_ram(section->mr) && section->readonly)
 | 
						|
            || memory_region_is_romd(section->mr)) {
 | 
						|
            /* Write access calls the I/O callback.  */
 | 
						|
            tn.addr_write = address | TLB_MMIO;
 | 
						|
        } else if (memory_region_is_ram(section->mr)
 | 
						|
                   && cpu_physical_memory_is_clean(
 | 
						|
                       memory_region_get_ram_addr(section->mr) + xlat)) {
 | 
						|
            tn.addr_write = address | TLB_NOTDIRTY;
 | 
						|
        } else {
 | 
						|
            tn.addr_write = address;
 | 
						|
        }
 | 
						|
        if (prot & PAGE_WRITE_INV) {
 | 
						|
            tn.addr_write |= TLB_INVALID_MASK;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    copy_tlb_helper_locked(te, &tn);
 | 
						|
    qemu_spin_unlock(&env->tlb_c.lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Add a new TLB entry, but without specifying the memory
 | 
						|
 * transaction attributes to be used.
 | 
						|
 */
 | 
						|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 | 
						|
                  hwaddr paddr, int prot,
 | 
						|
                  int mmu_idx, target_ulong size)
 | 
						|
{
 | 
						|
    tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
 | 
						|
                            prot, mmu_idx, size);
 | 
						|
}
 | 
						|
 | 
						|
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
 | 
						|
    ram_addr = qemu_ram_addr_from_host(ptr);
 | 
						|
    if (ram_addr == RAM_ADDR_INVALID) {
 | 
						|
        error_report("Bad ram pointer %p", ptr);
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    return ram_addr;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | 
						|
                         int mmu_idx,
 | 
						|
                         target_ulong addr, uintptr_t retaddr,
 | 
						|
                         bool recheck, MMUAccessType access_type, int size)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    uint64_t val;
 | 
						|
    bool locked = false;
 | 
						|
    MemTxResult r;
 | 
						|
 | 
						|
    if (recheck) {
 | 
						|
        /*
 | 
						|
         * This is a TLB_RECHECK access, where the MMU protection
 | 
						|
         * covers a smaller range than a target page, and we must
 | 
						|
         * repeat the MMU check here. This tlb_fill() call might
 | 
						|
         * longjump out if this access should cause a guest exception.
 | 
						|
         */
 | 
						|
        CPUTLBEntry *entry;
 | 
						|
        target_ulong tlb_addr;
 | 
						|
 | 
						|
        tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
 | 
						|
 | 
						|
        entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
        tlb_addr = entry->addr_read;
 | 
						|
        if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
 | 
						|
            /* RAM access */
 | 
						|
            uintptr_t haddr = addr + entry->addend;
 | 
						|
 | 
						|
            return ldn_p((void *)haddr, size);
 | 
						|
        }
 | 
						|
        /* Fall through for handling IO accesses */
 | 
						|
    }
 | 
						|
 | 
						|
    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | 
						|
    mr = section->mr;
 | 
						|
    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    cpu->mem_io_vaddr = addr;
 | 
						|
    cpu->mem_io_access_type = access_type;
 | 
						|
 | 
						|
    if (mr->global_locking && !qemu_mutex_iothread_locked()) {
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        locked = true;
 | 
						|
    }
 | 
						|
    r = memory_region_dispatch_read(mr, mr_offset,
 | 
						|
                                    &val, size, iotlbentry->attrs);
 | 
						|
    if (r != MEMTX_OK) {
 | 
						|
        hwaddr physaddr = mr_offset +
 | 
						|
            section->offset_within_address_space -
 | 
						|
            section->offset_within_region;
 | 
						|
 | 
						|
        cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
 | 
						|
                               mmu_idx, iotlbentry->attrs, r, retaddr);
 | 
						|
    }
 | 
						|
    if (locked) {
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | 
						|
                      int mmu_idx,
 | 
						|
                      uint64_t val, target_ulong addr,
 | 
						|
                      uintptr_t retaddr, bool recheck, int size)
 | 
						|
{
 | 
						|
    CPUState *cpu = ENV_GET_CPU(env);
 | 
						|
    hwaddr mr_offset;
 | 
						|
    MemoryRegionSection *section;
 | 
						|
    MemoryRegion *mr;
 | 
						|
    bool locked = false;
 | 
						|
    MemTxResult r;
 | 
						|
 | 
						|
    if (recheck) {
 | 
						|
        /*
 | 
						|
         * This is a TLB_RECHECK access, where the MMU protection
 | 
						|
         * covers a smaller range than a target page, and we must
 | 
						|
         * repeat the MMU check here. This tlb_fill() call might
 | 
						|
         * longjump out if this access should cause a guest exception.
 | 
						|
         */
 | 
						|
        CPUTLBEntry *entry;
 | 
						|
        target_ulong tlb_addr;
 | 
						|
 | 
						|
        tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
 | 
						|
 | 
						|
        entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
        tlb_addr = tlb_addr_write(entry);
 | 
						|
        if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
 | 
						|
            /* RAM access */
 | 
						|
            uintptr_t haddr = addr + entry->addend;
 | 
						|
 | 
						|
            stn_p((void *)haddr, size, val);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        /* Fall through for handling IO accesses */
 | 
						|
    }
 | 
						|
 | 
						|
    section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | 
						|
    mr = section->mr;
 | 
						|
    mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | 
						|
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
 | 
						|
        cpu_io_recompile(cpu, retaddr);
 | 
						|
    }
 | 
						|
    cpu->mem_io_vaddr = addr;
 | 
						|
    cpu->mem_io_pc = retaddr;
 | 
						|
 | 
						|
    if (mr->global_locking && !qemu_mutex_iothread_locked()) {
 | 
						|
        qemu_mutex_lock_iothread();
 | 
						|
        locked = true;
 | 
						|
    }
 | 
						|
    r = memory_region_dispatch_write(mr, mr_offset,
 | 
						|
                                     val, size, iotlbentry->attrs);
 | 
						|
    if (r != MEMTX_OK) {
 | 
						|
        hwaddr physaddr = mr_offset +
 | 
						|
            section->offset_within_address_space -
 | 
						|
            section->offset_within_region;
 | 
						|
 | 
						|
        cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
 | 
						|
                               mmu_idx, iotlbentry->attrs, r, retaddr);
 | 
						|
    }
 | 
						|
    if (locked) {
 | 
						|
        qemu_mutex_unlock_iothread();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if ADDR is present in the victim tlb, and has been copied
 | 
						|
   back to the main tlb.  */
 | 
						|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
 | 
						|
                           size_t elt_ofs, target_ulong page)
 | 
						|
{
 | 
						|
    size_t vidx;
 | 
						|
 | 
						|
    assert_cpu_is_self(ENV_GET_CPU(env));
 | 
						|
    for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
 | 
						|
        CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
 | 
						|
        target_ulong cmp;
 | 
						|
 | 
						|
        /* elt_ofs might correspond to .addr_write, so use atomic_read */
 | 
						|
#if TCG_OVERSIZED_GUEST
 | 
						|
        cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
 | 
						|
#else
 | 
						|
        cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
 | 
						|
#endif
 | 
						|
 | 
						|
        if (cmp == page) {
 | 
						|
            /* Found entry in victim tlb, swap tlb and iotlb.  */
 | 
						|
            CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
 | 
						|
 | 
						|
            qemu_spin_lock(&env->tlb_c.lock);
 | 
						|
            copy_tlb_helper_locked(&tmptlb, tlb);
 | 
						|
            copy_tlb_helper_locked(tlb, vtlb);
 | 
						|
            copy_tlb_helper_locked(vtlb, &tmptlb);
 | 
						|
            qemu_spin_unlock(&env->tlb_c.lock);
 | 
						|
 | 
						|
            CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
 | 
						|
            CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
 | 
						|
            tmpio = *io; *io = *vio; *vio = tmpio;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Macro to call the above, with local variables from the use context.  */
 | 
						|
#define VICTIM_TLB_HIT(TY, ADDR) \
 | 
						|
  victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
 | 
						|
                 (ADDR) & TARGET_PAGE_MASK)
 | 
						|
 | 
						|
/* NOTE: this function can trigger an exception */
 | 
						|
/* NOTE2: the returned address is not exactly the physical address: it
 | 
						|
 * is actually a ram_addr_t (in system mode; the user mode emulation
 | 
						|
 * version of this function returns a guest virtual address).
 | 
						|
 */
 | 
						|
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
 | 
						|
{
 | 
						|
    uintptr_t mmu_idx = cpu_mmu_index(env, true);
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
    void *p;
 | 
						|
 | 
						|
    if (unlikely(!tlb_hit(entry->addr_code, addr))) {
 | 
						|
        if (!VICTIM_TLB_HIT(addr_code, addr)) {
 | 
						|
            tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
 | 
						|
        }
 | 
						|
        assert(tlb_hit(entry->addr_code, addr));
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) {
 | 
						|
        /*
 | 
						|
         * Return -1 if we can't translate and execute from an entire
 | 
						|
         * page of RAM here, which will cause us to execute by loading
 | 
						|
         * and translating one insn at a time, without caching:
 | 
						|
         *  - TLB_RECHECK: means the MMU protection covers a smaller range
 | 
						|
         *    than a target page, so we must redo the MMU check every insn
 | 
						|
         *  - TLB_MMIO: region is not backed by RAM
 | 
						|
         */
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    p = (void *)((uintptr_t)addr + entry->addend);
 | 
						|
    return qemu_ram_addr_from_host_nofail(p);
 | 
						|
}
 | 
						|
 | 
						|
/* Probe for whether the specified guest write access is permitted.
 | 
						|
 * If it is not permitted then an exception will be taken in the same
 | 
						|
 * way as if this were a real write access (and we will not return).
 | 
						|
 * Otherwise the function will return, and there will be a valid
 | 
						|
 * entry in the TLB for this access.
 | 
						|
 */
 | 
						|
void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
 | 
						|
                 uintptr_t retaddr)
 | 
						|
{
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | 
						|
 | 
						|
    if (!tlb_hit(tlb_addr_write(entry), addr)) {
 | 
						|
        /* TLB entry is for a different page */
 | 
						|
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | 
						|
            tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
 | 
						|
                     mmu_idx, retaddr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Probe for a read-modify-write atomic operation.  Do not allow unaligned
 | 
						|
 * operations, or io operations to proceed.  Return the host address.  */
 | 
						|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
 | 
						|
                               TCGMemOpIdx oi, uintptr_t retaddr,
 | 
						|
                               NotDirtyInfo *ndi)
 | 
						|
{
 | 
						|
    size_t mmu_idx = get_mmuidx(oi);
 | 
						|
    uintptr_t index = tlb_index(env, mmu_idx, addr);
 | 
						|
    CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
 | 
						|
    target_ulong tlb_addr = tlb_addr_write(tlbe);
 | 
						|
    TCGMemOp mop = get_memop(oi);
 | 
						|
    int a_bits = get_alignment_bits(mop);
 | 
						|
    int s_bits = mop & MO_SIZE;
 | 
						|
    void *hostaddr;
 | 
						|
 | 
						|
    /* Adjust the given return address.  */
 | 
						|
    retaddr -= GETPC_ADJ;
 | 
						|
 | 
						|
    /* Enforce guest required alignment.  */
 | 
						|
    if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
 | 
						|
        /* ??? Maybe indicate atomic op to cpu_unaligned_access */
 | 
						|
        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 | 
						|
                             mmu_idx, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Enforce qemu required alignment.  */
 | 
						|
    if (unlikely(addr & ((1 << s_bits) - 1))) {
 | 
						|
        /* We get here if guest alignment was not requested,
 | 
						|
           or was not enforced by cpu_unaligned_access above.
 | 
						|
           We might widen the access and emulate, but for now
 | 
						|
           mark an exception and exit the cpu loop.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check TLB entry and enforce page permissions.  */
 | 
						|
    if (!tlb_hit(tlb_addr, addr)) {
 | 
						|
        if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | 
						|
            tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
 | 
						|
                     mmu_idx, retaddr);
 | 
						|
        }
 | 
						|
        tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Notice an IO access or a needs-MMU-lookup access */
 | 
						|
    if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
 | 
						|
        /* There's really nothing that can be done to
 | 
						|
           support this apart from stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Let the guest notice RMW on a write-only page.  */
 | 
						|
    if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
 | 
						|
        tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
 | 
						|
                 mmu_idx, retaddr);
 | 
						|
        /* Since we don't support reads and writes to different addresses,
 | 
						|
           and we do have the proper page loaded for write, this shouldn't
 | 
						|
           ever return.  But just in case, handle via stop-the-world.  */
 | 
						|
        goto stop_the_world;
 | 
						|
    }
 | 
						|
 | 
						|
    hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
 | 
						|
 | 
						|
    ndi->active = false;
 | 
						|
    if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
 | 
						|
        ndi->active = true;
 | 
						|
        memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr,
 | 
						|
                                      qemu_ram_addr_from_host_nofail(hostaddr),
 | 
						|
                                      1 << s_bits);
 | 
						|
    }
 | 
						|
 | 
						|
    return hostaddr;
 | 
						|
 | 
						|
 stop_the_world:
 | 
						|
    cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TARGET_WORDS_BIGENDIAN
 | 
						|
# define TGT_BE(X)  (X)
 | 
						|
# define TGT_LE(X)  BSWAP(X)
 | 
						|
#else
 | 
						|
# define TGT_BE(X)  BSWAP(X)
 | 
						|
# define TGT_LE(X)  (X)
 | 
						|
#endif
 | 
						|
 | 
						|
#define MMUSUFFIX _mmu
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
/* First set of helpers allows passing in of OI and RETADDR.  This makes
 | 
						|
   them callable from other helpers.  */
 | 
						|
 | 
						|
#define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
 | 
						|
#define ATOMIC_NAME(X) \
 | 
						|
    HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
 | 
						|
#define ATOMIC_MMU_DECLS NotDirtyInfo ndi
 | 
						|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
 | 
						|
#define ATOMIC_MMU_CLEANUP                              \
 | 
						|
    do {                                                \
 | 
						|
        if (unlikely(ndi.active)) {                     \
 | 
						|
            memory_notdirty_write_complete(&ndi);       \
 | 
						|
        }                                               \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
 | 
						|
#define DATA_SIZE 16
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Second set of helpers are directly callable from TCG as helpers.  */
 | 
						|
 | 
						|
#undef EXTRA_ARGS
 | 
						|
#undef ATOMIC_NAME
 | 
						|
#undef ATOMIC_MMU_LOOKUP
 | 
						|
#define EXTRA_ARGS         , TCGMemOpIdx oi
 | 
						|
#define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
 | 
						|
#define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
/* Code access functions.  */
 | 
						|
 | 
						|
#undef MMUSUFFIX
 | 
						|
#define MMUSUFFIX _cmmu
 | 
						|
#undef GETPC
 | 
						|
#define GETPC() ((uintptr_t)0)
 | 
						|
#define SOFTMMU_CODE_ACCESS
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "softmmu_template.h"
 |