 d1a1eb7472
			
		
	
	
		d1a1eb7472
		
	
	
	
	
		
			
			This function is only used within exec.c, so no need to make it public. Signed-off-by: Tristan Gingold <gingold@adacore.com> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
		
			
				
	
	
		
			4317 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4317 lines
		
	
	
		
			126 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  virtual page mapping and translated block handling
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "config.h"
 | |
| #ifdef _WIN32
 | |
| #include <windows.h>
 | |
| #else
 | |
| #include <sys/types.h>
 | |
| #include <sys/mman.h>
 | |
| #endif
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "cpu.h"
 | |
| #include "exec-all.h"
 | |
| #include "tcg.h"
 | |
| #include "hw/hw.h"
 | |
| #include "hw/qdev.h"
 | |
| #include "osdep.h"
 | |
| #include "kvm.h"
 | |
| #include "qemu-timer.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include <qemu.h>
 | |
| #include <signal.h>
 | |
| #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
 | |
| #include <sys/param.h>
 | |
| #if __FreeBSD_version >= 700104
 | |
| #define HAVE_KINFO_GETVMMAP
 | |
| #define sigqueue sigqueue_freebsd  /* avoid redefinition */
 | |
| #include <sys/time.h>
 | |
| #include <sys/proc.h>
 | |
| #include <machine/profile.h>
 | |
| #define _KERNEL
 | |
| #include <sys/user.h>
 | |
| #undef _KERNEL
 | |
| #undef sigqueue
 | |
| #include <libutil.h>
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| //#define DEBUG_TB_INVALIDATE
 | |
| //#define DEBUG_FLUSH
 | |
| //#define DEBUG_TLB
 | |
| //#define DEBUG_UNASSIGNED
 | |
| 
 | |
| /* make various TB consistency checks */
 | |
| //#define DEBUG_TB_CHECK
 | |
| //#define DEBUG_TLB_CHECK
 | |
| 
 | |
| //#define DEBUG_IOPORT
 | |
| //#define DEBUG_SUBPAGE
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* TB consistency checks only implemented for usermode emulation.  */
 | |
| #undef DEBUG_TB_CHECK
 | |
| #endif
 | |
| 
 | |
| #define SMC_BITMAP_USE_THRESHOLD 10
 | |
| 
 | |
| static TranslationBlock *tbs;
 | |
| static int code_gen_max_blocks;
 | |
| TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
 | |
| static int nb_tbs;
 | |
| /* any access to the tbs or the page table must use this lock */
 | |
| spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
| #if defined(__arm__) || defined(__sparc_v9__)
 | |
| /* The prologue must be reachable with a direct jump. ARM and Sparc64
 | |
|  have limited branch ranges (possibly also PPC) so place it in a
 | |
|  section close to code segment. */
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((__section__(".gen_code")))           \
 | |
|     __attribute__((aligned (32)))
 | |
| #elif defined(_WIN32)
 | |
| /* Maximum alignment for Win32 is 16. */
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((aligned (16)))
 | |
| #else
 | |
| #define code_gen_section                                \
 | |
|     __attribute__((aligned (32)))
 | |
| #endif
 | |
| 
 | |
| uint8_t code_gen_prologue[1024] code_gen_section;
 | |
| static uint8_t *code_gen_buffer;
 | |
| static unsigned long code_gen_buffer_size;
 | |
| /* threshold to flush the translated code buffer */
 | |
| static unsigned long code_gen_buffer_max_size;
 | |
| static uint8_t *code_gen_ptr;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| int phys_ram_fd;
 | |
| static int in_migration;
 | |
| 
 | |
| RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
 | |
| #endif
 | |
| 
 | |
| CPUState *first_cpu;
 | |
| /* current CPU in the current thread. It is only valid inside
 | |
|    cpu_exec() */
 | |
| CPUState *cpu_single_env;
 | |
| /* 0 = Do not count executed instructions.
 | |
|    1 = Precise instruction counting.
 | |
|    2 = Adaptive rate instruction counting.  */
 | |
| int use_icount = 0;
 | |
| /* Current instruction counter.  While executing translated code this may
 | |
|    include some instructions that have not yet been executed.  */
 | |
| int64_t qemu_icount;
 | |
| 
 | |
| typedef struct PageDesc {
 | |
|     /* list of TBs intersecting this ram page */
 | |
|     TranslationBlock *first_tb;
 | |
|     /* in order to optimize self modifying code, we count the number
 | |
|        of lookups we do to a given page to use a bitmap */
 | |
|     unsigned int code_write_count;
 | |
|     uint8_t *code_bitmap;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     unsigned long flags;
 | |
| #endif
 | |
| } PageDesc;
 | |
| 
 | |
| /* In system mode we want L1_MAP to be based on ram offsets,
 | |
|    while in user mode we want it to be based on virtual addresses.  */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
 | |
| # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
 | |
| #else
 | |
| # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
 | |
| #endif
 | |
| #else
 | |
| # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
 | |
| #endif
 | |
| 
 | |
| /* Size of the L2 (and L3, etc) page tables.  */
 | |
| #define L2_BITS 10
 | |
| #define L2_SIZE (1 << L2_BITS)
 | |
| 
 | |
| /* The bits remaining after N lower levels of page tables.  */
 | |
| #define P_L1_BITS_REM \
 | |
|     ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
 | |
| #define V_L1_BITS_REM \
 | |
|     ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
 | |
| 
 | |
| /* Size of the L1 page table.  Avoid silly small sizes.  */
 | |
| #if P_L1_BITS_REM < 4
 | |
| #define P_L1_BITS  (P_L1_BITS_REM + L2_BITS)
 | |
| #else
 | |
| #define P_L1_BITS  P_L1_BITS_REM
 | |
| #endif
 | |
| 
 | |
| #if V_L1_BITS_REM < 4
 | |
| #define V_L1_BITS  (V_L1_BITS_REM + L2_BITS)
 | |
| #else
 | |
| #define V_L1_BITS  V_L1_BITS_REM
 | |
| #endif
 | |
| 
 | |
| #define P_L1_SIZE  ((target_phys_addr_t)1 << P_L1_BITS)
 | |
| #define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS)
 | |
| 
 | |
| #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
 | |
| #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
 | |
| 
 | |
| unsigned long qemu_real_host_page_size;
 | |
| unsigned long qemu_host_page_bits;
 | |
| unsigned long qemu_host_page_size;
 | |
| unsigned long qemu_host_page_mask;
 | |
| 
 | |
| /* This is a multi-level map on the virtual address space.
 | |
|    The bottom level has pointers to PageDesc.  */
 | |
| static void *l1_map[V_L1_SIZE];
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| typedef struct PhysPageDesc {
 | |
|     /* offset in host memory of the page + io_index in the low bits */
 | |
|     ram_addr_t phys_offset;
 | |
|     ram_addr_t region_offset;
 | |
| } PhysPageDesc;
 | |
| 
 | |
| /* This is a multi-level map on the physical address space.
 | |
|    The bottom level has pointers to PhysPageDesc.  */
 | |
| static void *l1_phys_map[P_L1_SIZE];
 | |
| 
 | |
| static void io_mem_init(void);
 | |
| 
 | |
| /* io memory support */
 | |
| CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
 | |
| CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
 | |
| void *io_mem_opaque[IO_MEM_NB_ENTRIES];
 | |
| static char io_mem_used[IO_MEM_NB_ENTRIES];
 | |
| static int io_mem_watch;
 | |
| #endif
 | |
| 
 | |
| /* log support */
 | |
| #ifdef WIN32
 | |
| static const char *logfilename = "qemu.log";
 | |
| #else
 | |
| static const char *logfilename = "/tmp/qemu.log";
 | |
| #endif
 | |
| FILE *logfile;
 | |
| int loglevel;
 | |
| static int log_append = 0;
 | |
| 
 | |
| /* statistics */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static int tlb_flush_count;
 | |
| #endif
 | |
| static int tb_flush_count;
 | |
| static int tb_phys_invalidate_count;
 | |
| 
 | |
| #ifdef _WIN32
 | |
| static void map_exec(void *addr, long size)
 | |
| {
 | |
|     DWORD old_protect;
 | |
|     VirtualProtect(addr, size,
 | |
|                    PAGE_EXECUTE_READWRITE, &old_protect);
 | |
|     
 | |
| }
 | |
| #else
 | |
| static void map_exec(void *addr, long size)
 | |
| {
 | |
|     unsigned long start, end, page_size;
 | |
|     
 | |
|     page_size = getpagesize();
 | |
|     start = (unsigned long)addr;
 | |
|     start &= ~(page_size - 1);
 | |
|     
 | |
|     end = (unsigned long)addr + size;
 | |
|     end += page_size - 1;
 | |
|     end &= ~(page_size - 1);
 | |
|     
 | |
|     mprotect((void *)start, end - start,
 | |
|              PROT_READ | PROT_WRITE | PROT_EXEC);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void page_init(void)
 | |
| {
 | |
|     /* NOTE: we can always suppose that qemu_host_page_size >=
 | |
|        TARGET_PAGE_SIZE */
 | |
| #ifdef _WIN32
 | |
|     {
 | |
|         SYSTEM_INFO system_info;
 | |
| 
 | |
|         GetSystemInfo(&system_info);
 | |
|         qemu_real_host_page_size = system_info.dwPageSize;
 | |
|     }
 | |
| #else
 | |
|     qemu_real_host_page_size = getpagesize();
 | |
| #endif
 | |
|     if (qemu_host_page_size == 0)
 | |
|         qemu_host_page_size = qemu_real_host_page_size;
 | |
|     if (qemu_host_page_size < TARGET_PAGE_SIZE)
 | |
|         qemu_host_page_size = TARGET_PAGE_SIZE;
 | |
|     qemu_host_page_bits = 0;
 | |
|     while ((1 << qemu_host_page_bits) < qemu_host_page_size)
 | |
|         qemu_host_page_bits++;
 | |
|     qemu_host_page_mask = ~(qemu_host_page_size - 1);
 | |
| 
 | |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
| #ifdef HAVE_KINFO_GETVMMAP
 | |
|         struct kinfo_vmentry *freep;
 | |
|         int i, cnt;
 | |
| 
 | |
|         freep = kinfo_getvmmap(getpid(), &cnt);
 | |
|         if (freep) {
 | |
|             mmap_lock();
 | |
|             for (i = 0; i < cnt; i++) {
 | |
|                 unsigned long startaddr, endaddr;
 | |
| 
 | |
|                 startaddr = freep[i].kve_start;
 | |
|                 endaddr = freep[i].kve_end;
 | |
|                 if (h2g_valid(startaddr)) {
 | |
|                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|                     if (h2g_valid(endaddr)) {
 | |
|                         endaddr = h2g(endaddr);
 | |
|                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
|                     } else {
 | |
| #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
 | |
|                         endaddr = ~0ul;
 | |
|                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
| #endif
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             free(freep);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| #else
 | |
|         FILE *f;
 | |
| 
 | |
|         last_brk = (unsigned long)sbrk(0);
 | |
| 
 | |
|         f = fopen("/compat/linux/proc/self/maps", "r");
 | |
|         if (f) {
 | |
|             mmap_lock();
 | |
| 
 | |
|             do {
 | |
|                 unsigned long startaddr, endaddr;
 | |
|                 int n;
 | |
| 
 | |
|                 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
 | |
| 
 | |
|                 if (n == 2 && h2g_valid(startaddr)) {
 | |
|                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|                     if (h2g_valid(endaddr)) {
 | |
|                         endaddr = h2g(endaddr);
 | |
|                     } else {
 | |
|                         endaddr = ~0ul;
 | |
|                     }
 | |
|                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
|                 }
 | |
|             } while (!feof(f));
 | |
| 
 | |
|             fclose(f);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
 | |
| {
 | |
|     PageDesc *pd;
 | |
|     void **lp;
 | |
|     int i;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     /* We can't use qemu_malloc because it may recurse into a locked mutex. */
 | |
| # define ALLOC(P, SIZE)                                 \
 | |
|     do {                                                \
 | |
|         P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \
 | |
|                  MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \
 | |
|     } while (0)
 | |
| #else
 | |
| # define ALLOC(P, SIZE) \
 | |
|     do { P = qemu_mallocz(SIZE); } while (0)
 | |
| #endif
 | |
| 
 | |
|     /* Level 1.  Always allocated.  */
 | |
|     lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
 | |
| 
 | |
|     /* Level 2..N-1.  */
 | |
|     for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
 | |
|         void **p = *lp;
 | |
| 
 | |
|         if (p == NULL) {
 | |
|             if (!alloc) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             ALLOC(p, sizeof(void *) * L2_SIZE);
 | |
|             *lp = p;
 | |
|         }
 | |
| 
 | |
|         lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
 | |
|     }
 | |
| 
 | |
|     pd = *lp;
 | |
|     if (pd == NULL) {
 | |
|         if (!alloc) {
 | |
|             return NULL;
 | |
|         }
 | |
|         ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
 | |
|         *lp = pd;
 | |
|     }
 | |
| 
 | |
| #undef ALLOC
 | |
| 
 | |
|     return pd + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find(tb_page_addr_t index)
 | |
| {
 | |
|     return page_find_alloc(index, 0);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
 | |
| {
 | |
|     PhysPageDesc *pd;
 | |
|     void **lp;
 | |
|     int i;
 | |
| 
 | |
|     /* Level 1.  Always allocated.  */
 | |
|     lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
 | |
| 
 | |
|     /* Level 2..N-1.  */
 | |
|     for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
 | |
|         void **p = *lp;
 | |
|         if (p == NULL) {
 | |
|             if (!alloc) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
 | |
|         }
 | |
|         lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
 | |
|     }
 | |
| 
 | |
|     pd = *lp;
 | |
|     if (pd == NULL) {
 | |
|         int i;
 | |
| 
 | |
|         if (!alloc) {
 | |
|             return NULL;
 | |
|         }
 | |
| 
 | |
|         *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
 | |
| 
 | |
|         for (i = 0; i < L2_SIZE; i++) {
 | |
|             pd[i].phys_offset = IO_MEM_UNASSIGNED;
 | |
|             pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return pd + (index & (L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
 | |
| {
 | |
|     return phys_page_find_alloc(index, 0);
 | |
| }
 | |
| 
 | |
| static void tlb_protect_code(ram_addr_t ram_addr);
 | |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
 | |
|                                     target_ulong vaddr);
 | |
| #define mmap_lock() do { } while(0)
 | |
| #define mmap_unlock() do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| /* Currently it is not recommended to allocate big chunks of data in
 | |
|    user mode. It will change when a dedicated libc will be used */
 | |
| #define USE_STATIC_CODE_GEN_BUFFER
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
 | |
|                __attribute__((aligned (CODE_GEN_ALIGN)));
 | |
| #endif
 | |
| 
 | |
| static void code_gen_alloc(unsigned long tb_size)
 | |
| {
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
|     code_gen_buffer = static_code_gen_buffer;
 | |
|     code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
|     map_exec(code_gen_buffer, code_gen_buffer_size);
 | |
| #else
 | |
|     code_gen_buffer_size = tb_size;
 | |
|     if (code_gen_buffer_size == 0) {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         /* in user mode, phys_ram_size is not meaningful */
 | |
|         code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
| #else
 | |
|         /* XXX: needs adjustments */
 | |
|         code_gen_buffer_size = (unsigned long)(ram_size / 4);
 | |
| #endif
 | |
|     }
 | |
|     if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
 | |
|         code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
 | |
|     /* The code gen buffer location may have constraints depending on
 | |
|        the host cpu and OS */
 | |
| #if defined(__linux__) 
 | |
|     {
 | |
|         int flags;
 | |
|         void *start = NULL;
 | |
| 
 | |
|         flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
| #if defined(__x86_64__)
 | |
|         flags |= MAP_32BIT;
 | |
|         /* Cannot map more than that */
 | |
|         if (code_gen_buffer_size > (800 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (800 * 1024 * 1024);
 | |
| #elif defined(__sparc_v9__)
 | |
|         // Map the buffer below 2G, so we can use direct calls and branches
 | |
|         flags |= MAP_FIXED;
 | |
|         start = (void *) 0x60000000UL;
 | |
|         if (code_gen_buffer_size > (512 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (512 * 1024 * 1024);
 | |
| #elif defined(__arm__)
 | |
|         /* Map the buffer below 32M, so we can use direct calls and branches */
 | |
|         flags |= MAP_FIXED;
 | |
|         start = (void *) 0x01000000UL;
 | |
|         if (code_gen_buffer_size > 16 * 1024 * 1024)
 | |
|             code_gen_buffer_size = 16 * 1024 * 1024;
 | |
| #elif defined(__s390x__)
 | |
|         /* Map the buffer so that we can use direct calls and branches.  */
 | |
|         /* We have a +- 4GB range on the branches; leave some slop.  */
 | |
|         if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
 | |
|             code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
 | |
|         }
 | |
|         start = (void *)0x90000000UL;
 | |
| #endif
 | |
|         code_gen_buffer = mmap(start, code_gen_buffer_size,
 | |
|                                PROT_WRITE | PROT_READ | PROT_EXEC,
 | |
|                                flags, -1, 0);
 | |
|         if (code_gen_buffer == MAP_FAILED) {
 | |
|             fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
 | |
|     || defined(__DragonFly__) || defined(__OpenBSD__)
 | |
|     {
 | |
|         int flags;
 | |
|         void *addr = NULL;
 | |
|         flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
| #if defined(__x86_64__)
 | |
|         /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
 | |
|          * 0x40000000 is free */
 | |
|         flags |= MAP_FIXED;
 | |
|         addr = (void *)0x40000000;
 | |
|         /* Cannot map more than that */
 | |
|         if (code_gen_buffer_size > (800 * 1024 * 1024))
 | |
|             code_gen_buffer_size = (800 * 1024 * 1024);
 | |
| #elif defined(__sparc_v9__)
 | |
|         // Map the buffer below 2G, so we can use direct calls and branches
 | |
|         flags |= MAP_FIXED;
 | |
|         addr = (void *) 0x60000000UL;
 | |
|         if (code_gen_buffer_size > (512 * 1024 * 1024)) {
 | |
|             code_gen_buffer_size = (512 * 1024 * 1024);
 | |
|         }
 | |
| #endif
 | |
|         code_gen_buffer = mmap(addr, code_gen_buffer_size,
 | |
|                                PROT_WRITE | PROT_READ | PROT_EXEC, 
 | |
|                                flags, -1, 0);
 | |
|         if (code_gen_buffer == MAP_FAILED) {
 | |
|             fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     code_gen_buffer = qemu_malloc(code_gen_buffer_size);
 | |
|     map_exec(code_gen_buffer, code_gen_buffer_size);
 | |
| #endif
 | |
| #endif /* !USE_STATIC_CODE_GEN_BUFFER */
 | |
|     map_exec(code_gen_prologue, sizeof(code_gen_prologue));
 | |
|     code_gen_buffer_max_size = code_gen_buffer_size - 
 | |
|         (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
 | |
|     code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
 | |
|     tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
 | |
| }
 | |
| 
 | |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size
 | |
|    (in bytes) allocated to the translation buffer. Zero means default
 | |
|    size. */
 | |
| void cpu_exec_init_all(unsigned long tb_size)
 | |
| {
 | |
|     cpu_gen_init();
 | |
|     code_gen_alloc(tb_size);
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     page_init();
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     io_mem_init();
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
 | |
|     /* There's no guest base to take into account, so go ahead and
 | |
|        initialize the prologue now.  */
 | |
|     tcg_prologue_init(&tcg_ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static int cpu_common_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     CPUState *env = opaque;
 | |
| 
 | |
|     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 | |
|        version_id is increased. */
 | |
|     env->interrupt_request &= ~0x01;
 | |
|     tlb_flush(env, 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_cpu_common = {
 | |
|     .name = "cpu_common",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .minimum_version_id_old = 1,
 | |
|     .post_load = cpu_common_post_load,
 | |
|     .fields      = (VMStateField []) {
 | |
|         VMSTATE_UINT32(halted, CPUState),
 | |
|         VMSTATE_UINT32(interrupt_request, CPUState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| #endif
 | |
| 
 | |
| CPUState *qemu_get_cpu(int cpu)
 | |
| {
 | |
|     CPUState *env = first_cpu;
 | |
| 
 | |
|     while (env) {
 | |
|         if (env->cpu_index == cpu)
 | |
|             break;
 | |
|         env = env->next_cpu;
 | |
|     }
 | |
| 
 | |
|     return env;
 | |
| }
 | |
| 
 | |
| void cpu_exec_init(CPUState *env)
 | |
| {
 | |
|     CPUState **penv;
 | |
|     int cpu_index;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     cpu_list_lock();
 | |
| #endif
 | |
|     env->next_cpu = NULL;
 | |
|     penv = &first_cpu;
 | |
|     cpu_index = 0;
 | |
|     while (*penv != NULL) {
 | |
|         penv = &(*penv)->next_cpu;
 | |
|         cpu_index++;
 | |
|     }
 | |
|     env->cpu_index = cpu_index;
 | |
|     env->numa_node = 0;
 | |
|     QTAILQ_INIT(&env->breakpoints);
 | |
|     QTAILQ_INIT(&env->watchpoints);
 | |
|     *penv = env;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     cpu_list_unlock();
 | |
| #endif
 | |
| #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
 | |
|     vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
 | |
|     register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
 | |
|                     cpu_save, cpu_load, env);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Allocate a new translation block. Flush the translation buffer if
 | |
|    too many translation blocks or too much generated code. */
 | |
| static TranslationBlock *tb_alloc(target_ulong pc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs >= code_gen_max_blocks ||
 | |
|         (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
 | |
|         return NULL;
 | |
|     tb = &tbs[nb_tbs++];
 | |
|     tb->pc = pc;
 | |
|     tb->cflags = 0;
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| void tb_free(TranslationBlock *tb)
 | |
| {
 | |
|     /* In practice this is mostly used for single use temporary TB
 | |
|        Ignore the hard cases and just back up if this TB happens to
 | |
|        be the last one generated.  */
 | |
|     if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
 | |
|         code_gen_ptr = tb->tc_ptr;
 | |
|         nb_tbs--;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void invalidate_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     if (p->code_bitmap) {
 | |
|         qemu_free(p->code_bitmap);
 | |
|         p->code_bitmap = NULL;
 | |
|     }
 | |
|     p->code_write_count = 0;
 | |
| }
 | |
| 
 | |
| /* Set to NULL all the 'first_tb' fields in all PageDescs. */
 | |
| 
 | |
| static void page_flush_tb_1 (int level, void **lp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     if (level == 0) {
 | |
|         PageDesc *pd = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             pd[i].first_tb = NULL;
 | |
|             invalidate_page_bitmap(pd + i);
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             page_flush_tb_1 (level - 1, pp + i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void page_flush_tb(void)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < V_L1_SIZE; i++) {
 | |
|         page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* flush all the translation blocks */
 | |
| /* XXX: tb_flush is currently not thread safe */
 | |
| void tb_flush(CPUState *env1)
 | |
| {
 | |
|     CPUState *env;
 | |
| #if defined(DEBUG_FLUSH)
 | |
|     printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
 | |
|            (unsigned long)(code_gen_ptr - code_gen_buffer),
 | |
|            nb_tbs, nb_tbs > 0 ?
 | |
|            ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
 | |
| #endif
 | |
|     if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
 | |
|         cpu_abort(env1, "Internal error: code buffer overflow\n");
 | |
| 
 | |
|     nb_tbs = 0;
 | |
| 
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
|     }
 | |
| 
 | |
|     memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
 | |
|     page_flush_tb();
 | |
| 
 | |
|     code_gen_ptr = code_gen_buffer;
 | |
|     /* XXX: flush processor icache at this point if cache flush is
 | |
|        expensive */
 | |
|     tb_flush_count++;
 | |
| }
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
| 
 | |
| static void tb_invalidate_check(target_ulong address)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i;
 | |
|     address &= TARGET_PAGE_MASK;
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
 | |
|                   address >= tb->pc + tb->size)) {
 | |
|                 printf("ERROR invalidate: address=" TARGET_FMT_lx
 | |
|                        " PC=%08lx size=%04x\n",
 | |
|                        address, (long)tb->pc, tb->size);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* verify that all the pages have correct rights for code */
 | |
| static void tb_page_check(void)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int i, flags1, flags2;
 | |
| 
 | |
|     for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
 | |
|         for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
 | |
|             flags1 = page_get_flags(tb->pc);
 | |
|             flags2 = page_get_flags(tb->pc + tb->size - 1);
 | |
|             if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
 | |
|                 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
 | |
|                        (long)tb->pc, tb->size, flags1, flags2);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* invalidate one TB */
 | |
| static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
 | |
|                              int next_offset)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
 | |
|             break;
 | |
|         }
 | |
|         ptb = (TranslationBlock **)((char *)tb1 + next_offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     for(;;) {
 | |
|         tb1 = *ptb;
 | |
|         n1 = (long)tb1 & 3;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         if (tb1 == tb) {
 | |
|             *ptb = tb1->page_next[n1];
 | |
|             break;
 | |
|         }
 | |
|         ptb = &tb1->page_next[n1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_jmp_remove(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     ptb = &tb->jmp_next[n];
 | |
|     tb1 = *ptb;
 | |
|     if (tb1) {
 | |
|         /* find tb(n) in circular list */
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             if (n1 == 2) {
 | |
|                 ptb = &tb1->jmp_first;
 | |
|             } else {
 | |
|                 ptb = &tb1->jmp_next[n1];
 | |
|             }
 | |
|         }
 | |
|         /* now we can suppress tb(n) from the list */
 | |
|         *ptb = tb->jmp_next[n];
 | |
| 
 | |
|         tb->jmp_next[n] = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* reset the jump entry 'n' of a TB so that it is not chained to
 | |
|    another TB */
 | |
| static inline void tb_reset_jump(TranslationBlock *tb, int n)
 | |
| {
 | |
|     tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
 | |
| }
 | |
| 
 | |
| void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
 | |
| {
 | |
|     CPUState *env;
 | |
|     PageDesc *p;
 | |
|     unsigned int h, n1;
 | |
|     tb_page_addr_t phys_pc;
 | |
|     TranslationBlock *tb1, *tb2;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     tb_remove(&tb_phys_hash[h], tb,
 | |
|               offsetof(TranslationBlock, phys_hash_next));
 | |
| 
 | |
|     /* remove the TB from the page list */
 | |
|     if (tb->page_addr[0] != page_addr) {
 | |
|         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
|     if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
 | |
|         p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(&p->first_tb, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     tb_invalidated_flag = 1;
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     h = tb_jmp_cache_hash_func(tb->pc);
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         if (env->tb_jmp_cache[h] == tb)
 | |
|             env->tb_jmp_cache[h] = NULL;
 | |
|     }
 | |
| 
 | |
|     /* suppress this TB from the two jump lists */
 | |
|     tb_jmp_remove(tb, 0);
 | |
|     tb_jmp_remove(tb, 1);
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb1 = tb->jmp_first;
 | |
|     for(;;) {
 | |
|         n1 = (long)tb1 & 3;
 | |
|         if (n1 == 2)
 | |
|             break;
 | |
|         tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|         tb2 = tb1->jmp_next[n1];
 | |
|         tb_reset_jump(tb1, n1);
 | |
|         tb1->jmp_next[n1] = NULL;
 | |
|         tb1 = tb2;
 | |
|     }
 | |
|     tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
 | |
| 
 | |
|     tb_phys_invalidate_count++;
 | |
| }
 | |
| 
 | |
| static inline void set_bits(uint8_t *tab, int start, int len)
 | |
| {
 | |
|     int end, mask, end1;
 | |
| 
 | |
|     end = start + len;
 | |
|     tab += start >> 3;
 | |
|     mask = 0xff << (start & 7);
 | |
|     if ((start & ~7) == (end & ~7)) {
 | |
|         if (start < end) {
 | |
|             mask &= ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     } else {
 | |
|         *tab++ |= mask;
 | |
|         start = (start + 8) & ~7;
 | |
|         end1 = end & ~7;
 | |
|         while (start < end1) {
 | |
|             *tab++ = 0xff;
 | |
|             start += 8;
 | |
|         }
 | |
|         if (start < end) {
 | |
|             mask = ~(0xff << (end & 7));
 | |
|             *tab |= mask;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void build_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     int n, tb_start, tb_end;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
 | |
| 
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->pc & ~TARGET_PAGE_MASK;
 | |
|             tb_end = tb_start + tb->size;
 | |
|             if (tb_end > TARGET_PAGE_SIZE)
 | |
|                 tb_end = TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             tb_start = 0;
 | |
|             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
| }
 | |
| 
 | |
| TranslationBlock *tb_gen_code(CPUState *env,
 | |
|                               target_ulong pc, target_ulong cs_base,
 | |
|                               int flags, int cflags)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint8_t *tc_ptr;
 | |
|     tb_page_addr_t phys_pc, phys_page2;
 | |
|     target_ulong virt_page2;
 | |
|     int code_gen_size;
 | |
| 
 | |
|     phys_pc = get_page_addr_code(env, pc);
 | |
|     tb = tb_alloc(pc);
 | |
|     if (!tb) {
 | |
|         /* flush must be done */
 | |
|         tb_flush(env);
 | |
|         /* cannot fail at this point */
 | |
|         tb = tb_alloc(pc);
 | |
|         /* Don't forget to invalidate previous TB info.  */
 | |
|         tb_invalidated_flag = 1;
 | |
|     }
 | |
|     tc_ptr = code_gen_ptr;
 | |
|     tb->tc_ptr = tc_ptr;
 | |
|     tb->cs_base = cs_base;
 | |
|     tb->flags = flags;
 | |
|     tb->cflags = cflags;
 | |
|     cpu_gen_code(env, tb, &code_gen_size);
 | |
|     code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
 | |
| 
 | |
|     /* check next page if needed */
 | |
|     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | |
|         phys_page2 = get_page_addr_code(env, virt_page2);
 | |
|     }
 | |
|     tb_link_page(tb, phys_pc, phys_page2);
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /* invalidate all TBs which intersect with the target physical page
 | |
|    starting in range [start;end[. NOTE: start and end must refer to
 | |
|    the same physical page. 'is_cpu_write_access' should be true if called
 | |
|    from a real cpu write access: the virtual CPU will exit the current
 | |
|    TB if code is modified inside this TB. */
 | |
| void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
 | |
|                                    int is_cpu_write_access)
 | |
| {
 | |
|     TranslationBlock *tb, *tb_next, *saved_tb;
 | |
|     CPUState *env = cpu_single_env;
 | |
|     tb_page_addr_t tb_start, tb_end;
 | |
|     PageDesc *p;
 | |
|     int n;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     int current_tb_not_found = is_cpu_write_access;
 | |
|     TranslationBlock *current_tb = NULL;
 | |
|     int current_tb_modified = 0;
 | |
|     target_ulong current_pc = 0;
 | |
|     target_ulong current_cs_base = 0;
 | |
|     int current_flags = 0;
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
| 
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     if (!p->code_bitmap &&
 | |
|         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
 | |
|         is_cpu_write_access) {
 | |
|         /* build code bitmap */
 | |
|         build_page_bitmap(p);
 | |
|     }
 | |
| 
 | |
|     /* we remove all the TBs in the range [start, end[ */
 | |
|     /* XXX: see if in some cases it could be faster to invalidate all the code */
 | |
|     tb = p->first_tb;
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
|         tb_next = tb->page_next[n];
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|             tb_end = tb_start + tb->size;
 | |
|         } else {
 | |
|             tb_start = tb->page_addr[1];
 | |
|             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         if (!(tb_end <= start || tb_start >= end)) {
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|             if (current_tb_not_found) {
 | |
|                 current_tb_not_found = 0;
 | |
|                 current_tb = NULL;
 | |
|                 if (env->mem_io_pc) {
 | |
|                     /* now we have a real cpu fault */
 | |
|                     current_tb = tb_find_pc(env->mem_io_pc);
 | |
|                 }
 | |
|             }
 | |
|             if (current_tb == tb &&
 | |
|                 (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                 its execution. We could be more precise by checking
 | |
|                 that the modification is after the current PC, but it
 | |
|                 would require a specialized function to partially
 | |
|                 restore the CPU state */
 | |
| 
 | |
|                 current_tb_modified = 1;
 | |
|                 cpu_restore_state(current_tb, env,
 | |
|                                   env->mem_io_pc, NULL);
 | |
|                 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | |
|                                      ¤t_flags);
 | |
|             }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|             /* we need to do that to handle the case where a signal
 | |
|                occurs while doing tb_phys_invalidate() */
 | |
|             saved_tb = NULL;
 | |
|             if (env) {
 | |
|                 saved_tb = env->current_tb;
 | |
|                 env->current_tb = NULL;
 | |
|             }
 | |
|             tb_phys_invalidate(tb, -1);
 | |
|             if (env) {
 | |
|                 env->current_tb = saved_tb;
 | |
|                 if (env->interrupt_request && env->current_tb)
 | |
|                     cpu_interrupt(env, env->interrupt_request);
 | |
|             }
 | |
|         }
 | |
|         tb = tb_next;
 | |
|     }
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     /* if no code remaining, no need to continue to use slow writes */
 | |
|     if (!p->first_tb) {
 | |
|         invalidate_page_bitmap(p);
 | |
|         if (is_cpu_write_access) {
 | |
|             tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | |
|         cpu_resume_from_signal(env, NULL);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* len must be <= 8 and start must be a multiple of len */
 | |
| static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     int offset, b;
 | |
| #if 0
 | |
|     if (1) {
 | |
|         qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
 | |
|                   cpu_single_env->mem_io_vaddr, len,
 | |
|                   cpu_single_env->eip,
 | |
|                   cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
 | |
|     }
 | |
| #endif
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     if (p->code_bitmap) {
 | |
|         offset = start & ~TARGET_PAGE_MASK;
 | |
|         b = p->code_bitmap[offset >> 3] >> (offset & 7);
 | |
|         if (b & ((1 << len) - 1))
 | |
|             goto do_invalidate;
 | |
|     } else {
 | |
|     do_invalidate:
 | |
|         tb_invalidate_phys_page_range(start, start + len, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
| static void tb_invalidate_phys_page(tb_page_addr_t addr,
 | |
|                                     unsigned long pc, void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     PageDesc *p;
 | |
|     int n;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     TranslationBlock *current_tb = NULL;
 | |
|     CPUState *env = cpu_single_env;
 | |
|     int current_tb_modified = 0;
 | |
|     target_ulong current_pc = 0;
 | |
|     target_ulong current_cs_base = 0;
 | |
|     int current_flags = 0;
 | |
| #endif
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return;
 | |
|     tb = p->first_tb;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (tb && pc != 0) {
 | |
|         current_tb = tb_find_pc(pc);
 | |
|     }
 | |
| #endif
 | |
|     while (tb != NULL) {
 | |
|         n = (long)tb & 3;
 | |
|         tb = (TranslationBlock *)((long)tb & ~3);
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|         if (current_tb == tb &&
 | |
|             (current_tb->cflags & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                    its execution. We could be more precise by checking
 | |
|                    that the modification is after the current PC, but it
 | |
|                    would require a specialized function to partially
 | |
|                    restore the CPU state */
 | |
| 
 | |
|             current_tb_modified = 1;
 | |
|             cpu_restore_state(current_tb, env, pc, puc);
 | |
|             cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | |
|                                  ¤t_flags);
 | |
|         }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|         tb_phys_invalidate(tb, addr);
 | |
|         tb = tb->page_next[n];
 | |
|     }
 | |
|     p->first_tb = NULL;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* we generate a block containing just the instruction
 | |
|            modifying the memory. It will ensure that it cannot modify
 | |
|            itself */
 | |
|         env->current_tb = NULL;
 | |
|         tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* add the tb in the target page and protect it if necessary */
 | |
| static inline void tb_alloc_page(TranslationBlock *tb,
 | |
|                                  unsigned int n, tb_page_addr_t page_addr)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     TranslationBlock *last_first_tb;
 | |
| 
 | |
|     tb->page_addr[n] = page_addr;
 | |
|     p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
 | |
|     tb->page_next[n] = p->first_tb;
 | |
|     last_first_tb = p->first_tb;
 | |
|     p->first_tb = (TranslationBlock *)((long)tb | n);
 | |
|     invalidate_page_bitmap(p);
 | |
| 
 | |
| #if defined(TARGET_HAS_SMC) || 1
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     if (p->flags & PAGE_WRITE) {
 | |
|         target_ulong addr;
 | |
|         PageDesc *p2;
 | |
|         int prot;
 | |
| 
 | |
|         /* force the host page as non writable (writes will have a
 | |
|            page fault + mprotect overhead) */
 | |
|         page_addr &= qemu_host_page_mask;
 | |
|         prot = 0;
 | |
|         for(addr = page_addr; addr < page_addr + qemu_host_page_size;
 | |
|             addr += TARGET_PAGE_SIZE) {
 | |
| 
 | |
|             p2 = page_find (addr >> TARGET_PAGE_BITS);
 | |
|             if (!p2)
 | |
|                 continue;
 | |
|             prot |= p2->flags;
 | |
|             p2->flags &= ~PAGE_WRITE;
 | |
|           }
 | |
|         mprotect(g2h(page_addr), qemu_host_page_size,
 | |
|                  (prot & PAGE_BITS) & ~PAGE_WRITE);
 | |
| #ifdef DEBUG_TB_INVALIDATE
 | |
|         printf("protecting code page: 0x" TARGET_FMT_lx "\n",
 | |
|                page_addr);
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     /* if some code is already present, then the pages are already
 | |
|        protected. So we handle the case where only the first TB is
 | |
|        allocated in a physical page */
 | |
|     if (!last_first_tb) {
 | |
|         tlb_protect_code(page_addr);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #endif /* TARGET_HAS_SMC */
 | |
| }
 | |
| 
 | |
| /* add a new TB and link it to the physical page tables. phys_page2 is
 | |
|    (-1) to indicate that only one page contains the TB. */
 | |
| void tb_link_page(TranslationBlock *tb,
 | |
|                   tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
 | |
| {
 | |
|     unsigned int h;
 | |
|     TranslationBlock **ptb;
 | |
| 
 | |
|     /* Grab the mmap lock to stop another thread invalidating this TB
 | |
|        before we are done.  */
 | |
|     mmap_lock();
 | |
|     /* add in the physical hash table */
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     ptb = &tb_phys_hash[h];
 | |
|     tb->phys_hash_next = *ptb;
 | |
|     *ptb = tb;
 | |
| 
 | |
|     /* add in the page list */
 | |
|     tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
 | |
|     if (phys_page2 != -1)
 | |
|         tb_alloc_page(tb, 1, phys_page2);
 | |
|     else
 | |
|         tb->page_addr[1] = -1;
 | |
| 
 | |
|     tb->jmp_first = (TranslationBlock *)((long)tb | 2);
 | |
|     tb->jmp_next[0] = NULL;
 | |
|     tb->jmp_next[1] = NULL;
 | |
| 
 | |
|     /* init original jump addresses */
 | |
|     if (tb->tb_next_offset[0] != 0xffff)
 | |
|         tb_reset_jump(tb, 0);
 | |
|     if (tb->tb_next_offset[1] != 0xffff)
 | |
|         tb_reset_jump(tb, 1);
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|     tb_page_check();
 | |
| #endif
 | |
|     mmap_unlock();
 | |
| }
 | |
| 
 | |
| /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
 | |
|    tb[1].tc_ptr. Return NULL if not found */
 | |
| TranslationBlock *tb_find_pc(unsigned long tc_ptr)
 | |
| {
 | |
|     int m_min, m_max, m;
 | |
|     unsigned long v;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     if (nb_tbs <= 0)
 | |
|         return NULL;
 | |
|     if (tc_ptr < (unsigned long)code_gen_buffer ||
 | |
|         tc_ptr >= (unsigned long)code_gen_ptr)
 | |
|         return NULL;
 | |
|     /* binary search (cf Knuth) */
 | |
|     m_min = 0;
 | |
|     m_max = nb_tbs - 1;
 | |
|     while (m_min <= m_max) {
 | |
|         m = (m_min + m_max) >> 1;
 | |
|         tb = &tbs[m];
 | |
|         v = (unsigned long)tb->tc_ptr;
 | |
|         if (v == tc_ptr)
 | |
|             return tb;
 | |
|         else if (tc_ptr < v) {
 | |
|             m_max = m - 1;
 | |
|         } else {
 | |
|             m_min = m + 1;
 | |
|         }
 | |
|     }
 | |
|     return &tbs[m_max];
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb);
 | |
| 
 | |
| static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
 | |
| {
 | |
|     TranslationBlock *tb1, *tb_next, **ptb;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     tb1 = tb->jmp_next[n];
 | |
|     if (tb1 != NULL) {
 | |
|         /* find head of list */
 | |
|         for(;;) {
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == 2)
 | |
|                 break;
 | |
|             tb1 = tb1->jmp_next[n1];
 | |
|         }
 | |
|         /* we are now sure now that tb jumps to tb1 */
 | |
|         tb_next = tb1;
 | |
| 
 | |
|         /* remove tb from the jmp_first list */
 | |
|         ptb = &tb_next->jmp_first;
 | |
|         for(;;) {
 | |
|             tb1 = *ptb;
 | |
|             n1 = (long)tb1 & 3;
 | |
|             tb1 = (TranslationBlock *)((long)tb1 & ~3);
 | |
|             if (n1 == n && tb1 == tb)
 | |
|                 break;
 | |
|             ptb = &tb1->jmp_next[n1];
 | |
|         }
 | |
|         *ptb = tb->jmp_next[n];
 | |
|         tb->jmp_next[n] = NULL;
 | |
| 
 | |
|         /* suppress the jump to next tb in generated code */
 | |
|         tb_reset_jump(tb, n);
 | |
| 
 | |
|         /* suppress jumps in the tb on which we could have jumped */
 | |
|         tb_reset_jump_recursive(tb_next);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tb_reset_jump_recursive(TranslationBlock *tb)
 | |
| {
 | |
|     tb_reset_jump_recursive2(tb, 0);
 | |
|     tb_reset_jump_recursive2(tb, 1);
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_HAS_ICE)
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| static void breakpoint_invalidate(CPUState *env, target_ulong pc)
 | |
| {
 | |
|     tb_invalidate_phys_page_range(pc, pc + 1, 0);
 | |
| }
 | |
| #else
 | |
| static void breakpoint_invalidate(CPUState *env, target_ulong pc)
 | |
| {
 | |
|     target_phys_addr_t addr;
 | |
|     target_ulong pd;
 | |
|     ram_addr_t ram_addr;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     addr = cpu_get_phys_page_debug(env, pc);
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
|     ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
 | |
|     tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
 | |
| }
 | |
| #endif
 | |
| #endif /* TARGET_HAS_ICE */
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void cpu_watchpoint_remove_all(CPUState *env, int mask)
 | |
| 
 | |
| {
 | |
| }
 | |
| 
 | |
| int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| #else
 | |
| /* Add a watchpoint.  */
 | |
| int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     target_ulong len_mask = ~(len - 1);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
 | |
|     if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
 | |
|         fprintf(stderr, "qemu: tried to set invalid watchpoint at "
 | |
|                 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     wp = qemu_malloc(sizeof(*wp));
 | |
| 
 | |
|     wp->vaddr = addr;
 | |
|     wp->len_mask = len_mask;
 | |
|     wp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected watchpoints in front */
 | |
|     if (flags & BP_GDB)
 | |
|         QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
 | |
|     else
 | |
|         QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
 | |
| 
 | |
|     tlb_flush_page(env, addr);
 | |
| 
 | |
|     if (watchpoint)
 | |
|         *watchpoint = wp;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint.  */
 | |
| int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags)
 | |
| {
 | |
|     target_ulong len_mask = ~(len - 1);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if (addr == wp->vaddr && len_mask == wp->len_mask
 | |
|                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 | |
|             cpu_watchpoint_remove_by_ref(env, wp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint by reference.  */
 | |
| void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
 | |
| {
 | |
|     QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
 | |
| 
 | |
|     tlb_flush_page(env, watchpoint->vaddr);
 | |
| 
 | |
|     qemu_free(watchpoint);
 | |
| }
 | |
| 
 | |
| /* Remove all matching watchpoints.  */
 | |
| void cpu_watchpoint_remove_all(CPUState *env, int mask)
 | |
| {
 | |
|     CPUWatchpoint *wp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
 | |
|         if (wp->flags & mask)
 | |
|             cpu_watchpoint_remove_by_ref(env, wp);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Add a breakpoint.  */
 | |
| int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
 | |
|                           CPUBreakpoint **breakpoint)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     bp = qemu_malloc(sizeof(*bp));
 | |
| 
 | |
|     bp->pc = pc;
 | |
|     bp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected breakpoints in front */
 | |
|     if (flags & BP_GDB)
 | |
|         QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
 | |
|     else
 | |
|         QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
 | |
| 
 | |
|     breakpoint_invalidate(env, pc);
 | |
| 
 | |
|     if (breakpoint)
 | |
|         *breakpoint = bp;
 | |
|     return 0;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint.  */
 | |
| int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | |
|         if (bp->pc == pc && bp->flags == flags) {
 | |
|             cpu_breakpoint_remove_by_ref(env, bp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint by reference.  */
 | |
| void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
 | |
| 
 | |
|     breakpoint_invalidate(env, breakpoint->pc);
 | |
| 
 | |
|     qemu_free(breakpoint);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Remove all matching breakpoints. */
 | |
| void cpu_breakpoint_remove_all(CPUState *env, int mask)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
 | |
|         if (bp->flags & mask)
 | |
|             cpu_breakpoint_remove_by_ref(env, bp);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the
 | |
|    CPU loop after each instruction */
 | |
| void cpu_single_step(CPUState *env, int enabled)
 | |
| {
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     if (env->singlestep_enabled != enabled) {
 | |
|         env->singlestep_enabled = enabled;
 | |
|         if (kvm_enabled())
 | |
|             kvm_update_guest_debug(env, 0);
 | |
|         else {
 | |
|             /* must flush all the translated code to avoid inconsistencies */
 | |
|             /* XXX: only flush what is necessary */
 | |
|             tb_flush(env);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* enable or disable low levels log */
 | |
| void cpu_set_log(int log_flags)
 | |
| {
 | |
|     loglevel = log_flags;
 | |
|     if (loglevel && !logfile) {
 | |
|         logfile = fopen(logfilename, log_append ? "a" : "w");
 | |
|         if (!logfile) {
 | |
|             perror(logfilename);
 | |
|             _exit(1);
 | |
|         }
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|         /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
 | |
|         {
 | |
|             static char logfile_buf[4096];
 | |
|             setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
 | |
|         }
 | |
| #elif !defined(_WIN32)
 | |
|         /* Win32 doesn't support line-buffering and requires size >= 2 */
 | |
|         setvbuf(logfile, NULL, _IOLBF, 0);
 | |
| #endif
 | |
|         log_append = 1;
 | |
|     }
 | |
|     if (!loglevel && logfile) {
 | |
|         fclose(logfile);
 | |
|         logfile = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_set_log_filename(const char *filename)
 | |
| {
 | |
|     logfilename = strdup(filename);
 | |
|     if (logfile) {
 | |
|         fclose(logfile);
 | |
|         logfile = NULL;
 | |
|     }
 | |
|     cpu_set_log(loglevel);
 | |
| }
 | |
| 
 | |
| static void cpu_unlink_tb(CPUState *env)
 | |
| {
 | |
|     /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
 | |
|        problem and hope the cpu will stop of its own accord.  For userspace
 | |
|        emulation this often isn't actually as bad as it sounds.  Often
 | |
|        signals are used primarily to interrupt blocking syscalls.  */
 | |
|     TranslationBlock *tb;
 | |
|     static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
 | |
| 
 | |
|     spin_lock(&interrupt_lock);
 | |
|     tb = env->current_tb;
 | |
|     /* if the cpu is currently executing code, we must unlink it and
 | |
|        all the potentially executing TB */
 | |
|     if (tb) {
 | |
|         env->current_tb = NULL;
 | |
|         tb_reset_jump_recursive(tb);
 | |
|     }
 | |
|     spin_unlock(&interrupt_lock);
 | |
| }
 | |
| 
 | |
| /* mask must never be zero, except for A20 change call */
 | |
| void cpu_interrupt(CPUState *env, int mask)
 | |
| {
 | |
|     int old_mask;
 | |
| 
 | |
|     old_mask = env->interrupt_request;
 | |
|     env->interrupt_request |= mask;
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /*
 | |
|      * If called from iothread context, wake the target cpu in
 | |
|      * case its halted.
 | |
|      */
 | |
|     if (!qemu_cpu_self(env)) {
 | |
|         qemu_cpu_kick(env);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (use_icount) {
 | |
|         env->icount_decr.u16.high = 0xffff;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         if (!can_do_io(env)
 | |
|             && (mask & ~old_mask) != 0) {
 | |
|             cpu_abort(env, "Raised interrupt while not in I/O function");
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         cpu_unlink_tb(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_reset_interrupt(CPUState *env, int mask)
 | |
| {
 | |
|     env->interrupt_request &= ~mask;
 | |
| }
 | |
| 
 | |
| void cpu_exit(CPUState *env)
 | |
| {
 | |
|     env->exit_request = 1;
 | |
|     cpu_unlink_tb(env);
 | |
| }
 | |
| 
 | |
| const CPULogItem cpu_log_items[] = {
 | |
|     { CPU_LOG_TB_OUT_ASM, "out_asm",
 | |
|       "show generated host assembly code for each compiled TB" },
 | |
|     { CPU_LOG_TB_IN_ASM, "in_asm",
 | |
|       "show target assembly code for each compiled TB" },
 | |
|     { CPU_LOG_TB_OP, "op",
 | |
|       "show micro ops for each compiled TB" },
 | |
|     { CPU_LOG_TB_OP_OPT, "op_opt",
 | |
|       "show micro ops "
 | |
| #ifdef TARGET_I386
 | |
|       "before eflags optimization and "
 | |
| #endif
 | |
|       "after liveness analysis" },
 | |
|     { CPU_LOG_INT, "int",
 | |
|       "show interrupts/exceptions in short format" },
 | |
|     { CPU_LOG_EXEC, "exec",
 | |
|       "show trace before each executed TB (lots of logs)" },
 | |
|     { CPU_LOG_TB_CPU, "cpu",
 | |
|       "show CPU state before block translation" },
 | |
| #ifdef TARGET_I386
 | |
|     { CPU_LOG_PCALL, "pcall",
 | |
|       "show protected mode far calls/returns/exceptions" },
 | |
|     { CPU_LOG_RESET, "cpu_reset",
 | |
|       "show CPU state before CPU resets" },
 | |
| #endif
 | |
| #ifdef DEBUG_IOPORT
 | |
|     { CPU_LOG_IOPORT, "ioport",
 | |
|       "show all i/o ports accesses" },
 | |
| #endif
 | |
|     { 0, NULL, NULL },
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
 | |
|     = QLIST_HEAD_INITIALIZER(memory_client_list);
 | |
| 
 | |
| static void cpu_notify_set_memory(target_phys_addr_t start_addr,
 | |
|                                   ram_addr_t size,
 | |
|                                   ram_addr_t phys_offset)
 | |
| {
 | |
|     CPUPhysMemoryClient *client;
 | |
|     QLIST_FOREACH(client, &memory_client_list, list) {
 | |
|         client->set_memory(client, start_addr, size, phys_offset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
 | |
|                                         target_phys_addr_t end)
 | |
| {
 | |
|     CPUPhysMemoryClient *client;
 | |
|     QLIST_FOREACH(client, &memory_client_list, list) {
 | |
|         int r = client->sync_dirty_bitmap(client, start, end);
 | |
|         if (r < 0)
 | |
|             return r;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_notify_migration_log(int enable)
 | |
| {
 | |
|     CPUPhysMemoryClient *client;
 | |
|     QLIST_FOREACH(client, &memory_client_list, list) {
 | |
|         int r = client->migration_log(client, enable);
 | |
|         if (r < 0)
 | |
|             return r;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void phys_page_for_each_1(CPUPhysMemoryClient *client,
 | |
|                                  int level, void **lp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     if (level == 0) {
 | |
|         PhysPageDesc *pd = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
 | |
|                 client->set_memory(client, pd[i].region_offset,
 | |
|                                    TARGET_PAGE_SIZE, pd[i].phys_offset);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             phys_page_for_each_1(client, level - 1, pp + i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_page_for_each(CPUPhysMemoryClient *client)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < P_L1_SIZE; ++i) {
 | |
|         phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
 | |
|                              l1_phys_map + 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
 | |
| {
 | |
|     QLIST_INSERT_HEAD(&memory_client_list, client, list);
 | |
|     phys_page_for_each(client);
 | |
| }
 | |
| 
 | |
| void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
 | |
| {
 | |
|     QLIST_REMOVE(client, list);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int cmp1(const char *s1, int n, const char *s2)
 | |
| {
 | |
|     if (strlen(s2) != n)
 | |
|         return 0;
 | |
|     return memcmp(s1, s2, n) == 0;
 | |
| }
 | |
| 
 | |
| /* takes a comma separated list of log masks. Return 0 if error. */
 | |
| int cpu_str_to_log_mask(const char *str)
 | |
| {
 | |
|     const CPULogItem *item;
 | |
|     int mask;
 | |
|     const char *p, *p1;
 | |
| 
 | |
|     p = str;
 | |
|     mask = 0;
 | |
|     for(;;) {
 | |
|         p1 = strchr(p, ',');
 | |
|         if (!p1)
 | |
|             p1 = p + strlen(p);
 | |
|         if(cmp1(p,p1-p,"all")) {
 | |
|             for(item = cpu_log_items; item->mask != 0; item++) {
 | |
|                 mask |= item->mask;
 | |
|             }
 | |
|         } else {
 | |
|             for(item = cpu_log_items; item->mask != 0; item++) {
 | |
|                 if (cmp1(p, p1 - p, item->name))
 | |
|                     goto found;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|     found:
 | |
|         mask |= item->mask;
 | |
|         if (*p1 != ',')
 | |
|             break;
 | |
|         p = p1 + 1;
 | |
|     }
 | |
|     return mask;
 | |
| }
 | |
| 
 | |
| void cpu_abort(CPUState *env, const char *fmt, ...)
 | |
| {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     fprintf(stderr, "qemu: fatal: ");
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     fprintf(stderr, "\n");
 | |
| #ifdef TARGET_I386
 | |
|     cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|     cpu_dump_state(env, stderr, fprintf, 0);
 | |
| #endif
 | |
|     if (qemu_log_enabled()) {
 | |
|         qemu_log("qemu: fatal: ");
 | |
|         qemu_log_vprintf(fmt, ap2);
 | |
|         qemu_log("\n");
 | |
| #ifdef TARGET_I386
 | |
|         log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
 | |
| #else
 | |
|         log_cpu_state(env, 0);
 | |
| #endif
 | |
|         qemu_log_flush();
 | |
|         qemu_log_close();
 | |
|     }
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
|         struct sigaction act;
 | |
|         sigfillset(&act.sa_mask);
 | |
|         act.sa_handler = SIG_DFL;
 | |
|         sigaction(SIGABRT, &act, NULL);
 | |
|     }
 | |
| #endif
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| CPUState *cpu_copy(CPUState *env)
 | |
| {
 | |
|     CPUState *new_env = cpu_init(env->cpu_model_str);
 | |
|     CPUState *next_cpu = new_env->next_cpu;
 | |
|     int cpu_index = new_env->cpu_index;
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     CPUBreakpoint *bp;
 | |
|     CPUWatchpoint *wp;
 | |
| #endif
 | |
| 
 | |
|     memcpy(new_env, env, sizeof(CPUState));
 | |
| 
 | |
|     /* Preserve chaining and index. */
 | |
|     new_env->next_cpu = next_cpu;
 | |
|     new_env->cpu_index = cpu_index;
 | |
| 
 | |
|     /* Clone all break/watchpoints.
 | |
|        Note: Once we support ptrace with hw-debug register access, make sure
 | |
|        BP_CPU break/watchpoints are handled correctly on clone. */
 | |
|     QTAILQ_INIT(&env->breakpoints);
 | |
|     QTAILQ_INIT(&env->watchpoints);
 | |
| #if defined(TARGET_HAS_ICE)
 | |
|     QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
 | |
|         cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
 | |
|     }
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
 | |
|                               wp->flags, NULL);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return new_env;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     unsigned int i;
 | |
| 
 | |
|     /* Discard jump cache entries for any tb which might potentially
 | |
|        overlap the flushed page.  */
 | |
|     i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
 | |
|     memset (&env->tb_jmp_cache[i], 0, 
 | |
|             TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | |
| 
 | |
|     i = tb_jmp_cache_hash_page(addr);
 | |
|     memset (&env->tb_jmp_cache[i], 0, 
 | |
|             TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
 | |
| }
 | |
| 
 | |
| static CPUTLBEntry s_cputlb_empty_entry = {
 | |
|     .addr_read  = -1,
 | |
|     .addr_write = -1,
 | |
|     .addr_code  = -1,
 | |
|     .addend     = -1,
 | |
| };
 | |
| 
 | |
| /* NOTE: if flush_global is true, also flush global entries (not
 | |
|    implemented yet) */
 | |
| void tlb_flush(CPUState *env, int flush_global)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush:\n");
 | |
| #endif
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     env->current_tb = NULL;
 | |
| 
 | |
|     for(i = 0; i < CPU_TLB_SIZE; i++) {
 | |
|         int mmu_idx;
 | |
|         for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|             env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
 | |
| 
 | |
|     env->tlb_flush_addr = -1;
 | |
|     env->tlb_flush_mask = 0;
 | |
|     tlb_flush_count++;
 | |
| }
 | |
| 
 | |
| static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
 | |
| {
 | |
|     if (addr == (tlb_entry->addr_read &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_write &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_code &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         *tlb_entry = s_cputlb_empty_entry;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     int i;
 | |
|     int mmu_idx;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 | |
| #endif
 | |
|     /* Check if we need to flush due to large pages.  */
 | |
|     if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 | |
| #if defined(DEBUG_TLB)
 | |
|         printf("tlb_flush_page: forced full flush ("
 | |
|                TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | |
|                env->tlb_flush_addr, env->tlb_flush_mask);
 | |
| #endif
 | |
|         tlb_flush(env, 1);
 | |
|         return;
 | |
|     }
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     env->current_tb = NULL;
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
 | |
|         tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 | |
| 
 | |
|     tlb_flush_jmp_cache(env, addr);
 | |
| }
 | |
| 
 | |
| /* update the TLBs so that writes to code in the virtual page 'addr'
 | |
|    can be detected */
 | |
| static void tlb_protect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_reset_dirty(ram_addr,
 | |
|                                     ram_addr + TARGET_PAGE_SIZE,
 | |
|                                     CODE_DIRTY_FLAG);
 | |
| }
 | |
| 
 | |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer
 | |
|    tested for self modifying code */
 | |
| static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
 | |
|                                     target_ulong vaddr)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
 | |
| }
 | |
| 
 | |
| static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
 | |
|                                          unsigned long start, unsigned long length)
 | |
| {
 | |
|     unsigned long addr;
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
 | |
|         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 | |
|         if ((addr - start) < length) {
 | |
|             tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Note: start and end must be within the same ram block.  */
 | |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | |
|                                      int dirty_flags)
 | |
| {
 | |
|     CPUState *env;
 | |
|     unsigned long length, start1;
 | |
|     int i;
 | |
| 
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     length = end - start;
 | |
|     if (length == 0)
 | |
|         return;
 | |
|     cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
 | |
| 
 | |
|     /* we modify the TLB cache so that the dirty bit will be set again
 | |
|        when accessing the range */
 | |
|     start1 = (unsigned long)qemu_safe_ram_ptr(start);
 | |
|     /* Chek that we don't span multiple blocks - this breaks the
 | |
|        address comparisons below.  */
 | |
|     if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
 | |
|             != (end - 1) - start) {
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         int mmu_idx;
 | |
|         for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|             for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|                 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 | |
|                                       start1, length);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int cpu_physical_memory_set_dirty_tracking(int enable)
 | |
| {
 | |
|     int ret = 0;
 | |
|     in_migration = enable;
 | |
|     ret = cpu_notify_migration_log(!!enable);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int cpu_physical_memory_get_dirty_tracking(void)
 | |
| {
 | |
|     return in_migration;
 | |
| }
 | |
| 
 | |
| int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
 | |
|                                    target_phys_addr_t end_addr)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
|     void *p;
 | |
| 
 | |
|     if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
 | |
|         p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
 | |
|             + tlb_entry->addend);
 | |
|         ram_addr = qemu_ram_addr_from_host_nofail(p);
 | |
|         if (!cpu_physical_memory_is_dirty(ram_addr)) {
 | |
|             tlb_entry->addr_write |= TLB_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB according to the current state of the dirty bits */
 | |
| void cpu_tlb_update_dirty(CPUState *env)
 | |
| {
 | |
|     int i;
 | |
|     int mmu_idx;
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         for(i = 0; i < CPU_TLB_SIZE; i++)
 | |
|             tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 | |
| {
 | |
|     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
 | |
|         tlb_entry->addr_write = vaddr;
 | |
| }
 | |
| 
 | |
| /* update the TLB corresponding to virtual page vaddr
 | |
|    so that it is no longer dirty */
 | |
| static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
 | |
| {
 | |
|     int i;
 | |
|     int mmu_idx;
 | |
| 
 | |
|     vaddr &= TARGET_PAGE_MASK;
 | |
|     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
 | |
|         tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 | |
| }
 | |
| 
 | |
| /* Our TLB does not support large pages, so remember the area covered by
 | |
|    large pages and trigger a full TLB flush if these are invalidated.  */
 | |
| static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
 | |
|                                target_ulong size)
 | |
| {
 | |
|     target_ulong mask = ~(size - 1);
 | |
| 
 | |
|     if (env->tlb_flush_addr == (target_ulong)-1) {
 | |
|         env->tlb_flush_addr = vaddr & mask;
 | |
|         env->tlb_flush_mask = mask;
 | |
|         return;
 | |
|     }
 | |
|     /* Extend the existing region to include the new page.
 | |
|        This is a compromise between unnecessary flushes and the cost
 | |
|        of maintaining a full variable size TLB.  */
 | |
|     mask &= env->tlb_flush_mask;
 | |
|     while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 | |
|         mask <<= 1;
 | |
|     }
 | |
|     env->tlb_flush_addr &= mask;
 | |
|     env->tlb_flush_mask = mask;
 | |
| }
 | |
| 
 | |
| /* Add a new TLB entry. At most one entry for a given virtual address
 | |
|    is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | |
|    supplied size is only used by tlb_flush_page.  */
 | |
| void tlb_set_page(CPUState *env, target_ulong vaddr,
 | |
|                   target_phys_addr_t paddr, int prot,
 | |
|                   int mmu_idx, target_ulong size)
 | |
| {
 | |
|     PhysPageDesc *p;
 | |
|     unsigned long pd;
 | |
|     unsigned int index;
 | |
|     target_ulong address;
 | |
|     target_ulong code_address;
 | |
|     unsigned long addend;
 | |
|     CPUTLBEntry *te;
 | |
|     CPUWatchpoint *wp;
 | |
|     target_phys_addr_t iotlb;
 | |
| 
 | |
|     assert(size >= TARGET_PAGE_SIZE);
 | |
|     if (size != TARGET_PAGE_SIZE) {
 | |
|         tlb_add_large_page(env, vaddr, size);
 | |
|     }
 | |
|     p = phys_page_find(paddr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | |
|            " prot=%x idx=%d pd=0x%08lx\n",
 | |
|            vaddr, paddr, prot, mmu_idx, pd);
 | |
| #endif
 | |
| 
 | |
|     address = vaddr;
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
 | |
|         /* IO memory case (romd handled later) */
 | |
|         address |= TLB_MMIO;
 | |
|     }
 | |
|     addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
 | |
|     if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
 | |
|         /* Normal RAM.  */
 | |
|         iotlb = pd & TARGET_PAGE_MASK;
 | |
|         if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
 | |
|             iotlb |= IO_MEM_NOTDIRTY;
 | |
|         else
 | |
|             iotlb |= IO_MEM_ROM;
 | |
|     } else {
 | |
|         /* IO handlers are currently passed a physical address.
 | |
|            It would be nice to pass an offset from the base address
 | |
|            of that region.  This would avoid having to special case RAM,
 | |
|            and avoid full address decoding in every device.
 | |
|            We can't use the high bits of pd for this because
 | |
|            IO_MEM_ROMD uses these as a ram address.  */
 | |
|         iotlb = (pd & ~TARGET_PAGE_MASK);
 | |
|         if (p) {
 | |
|             iotlb += p->region_offset;
 | |
|         } else {
 | |
|             iotlb += paddr;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     code_address = address;
 | |
|     /* Make accesses to pages with watchpoints go via the
 | |
|        watchpoint trap routines.  */
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
 | |
|             /* Avoid trapping reads of pages with a write breakpoint. */
 | |
|             if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
 | |
|                 iotlb = io_mem_watch + paddr;
 | |
|                 address |= TLB_MMIO;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     env->iotlb[mmu_idx][index] = iotlb - vaddr;
 | |
|     te = &env->tlb_table[mmu_idx][index];
 | |
|     te->addend = addend - vaddr;
 | |
|     if (prot & PAGE_READ) {
 | |
|         te->addr_read = address;
 | |
|     } else {
 | |
|         te->addr_read = -1;
 | |
|     }
 | |
| 
 | |
|     if (prot & PAGE_EXEC) {
 | |
|         te->addr_code = code_address;
 | |
|     } else {
 | |
|         te->addr_code = -1;
 | |
|     }
 | |
|     if (prot & PAGE_WRITE) {
 | |
|         if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
 | |
|             (pd & IO_MEM_ROMD)) {
 | |
|             /* Write access calls the I/O callback.  */
 | |
|             te->addr_write = address | TLB_MMIO;
 | |
|         } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
 | |
|                    !cpu_physical_memory_is_dirty(pd)) {
 | |
|             te->addr_write = address | TLB_NOTDIRTY;
 | |
|         } else {
 | |
|             te->addr_write = address;
 | |
|         }
 | |
|     } else {
 | |
|         te->addr_write = -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void tlb_flush(CPUState *env, int flush_global)
 | |
| {
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *env, target_ulong addr)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walks guest process memory "regions" one by one
 | |
|  * and calls callback function 'fn' for each region.
 | |
|  */
 | |
| 
 | |
| struct walk_memory_regions_data
 | |
| {
 | |
|     walk_memory_regions_fn fn;
 | |
|     void *priv;
 | |
|     unsigned long start;
 | |
|     int prot;
 | |
| };
 | |
| 
 | |
| static int walk_memory_regions_end(struct walk_memory_regions_data *data,
 | |
|                                    abi_ulong end, int new_prot)
 | |
| {
 | |
|     if (data->start != -1ul) {
 | |
|         int rc = data->fn(data->priv, data->start, end, data->prot);
 | |
|         if (rc != 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     data->start = (new_prot ? end : -1ul);
 | |
|     data->prot = new_prot;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int walk_memory_regions_1(struct walk_memory_regions_data *data,
 | |
|                                  abi_ulong base, int level, void **lp)
 | |
| {
 | |
|     abi_ulong pa;
 | |
|     int i, rc;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return walk_memory_regions_end(data, base, 0);
 | |
|     }
 | |
| 
 | |
|     if (level == 0) {
 | |
|         PageDesc *pd = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             int prot = pd[i].flags;
 | |
| 
 | |
|             pa = base | (i << TARGET_PAGE_BITS);
 | |
|             if (prot != data->prot) {
 | |
|                 rc = walk_memory_regions_end(data, pa, prot);
 | |
|                 if (rc != 0) {
 | |
|                     return rc;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
|         for (i = 0; i < L2_SIZE; ++i) {
 | |
|             pa = base | ((abi_ulong)i <<
 | |
|                 (TARGET_PAGE_BITS + L2_BITS * level));
 | |
|             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
 | |
|             if (rc != 0) {
 | |
|                 return rc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
 | |
| {
 | |
|     struct walk_memory_regions_data data;
 | |
|     unsigned long i;
 | |
| 
 | |
|     data.fn = fn;
 | |
|     data.priv = priv;
 | |
|     data.start = -1ul;
 | |
|     data.prot = 0;
 | |
| 
 | |
|     for (i = 0; i < V_L1_SIZE; i++) {
 | |
|         int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
 | |
|                                        V_L1_SHIFT / L2_BITS - 1, l1_map + i);
 | |
|         if (rc != 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return walk_memory_regions_end(&data, 0, 0);
 | |
| }
 | |
| 
 | |
| static int dump_region(void *priv, abi_ulong start,
 | |
|     abi_ulong end, unsigned long prot)
 | |
| {
 | |
|     FILE *f = (FILE *)priv;
 | |
| 
 | |
|     (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
 | |
|         " "TARGET_ABI_FMT_lx" %c%c%c\n",
 | |
|         start, end, end - start,
 | |
|         ((prot & PAGE_READ) ? 'r' : '-'),
 | |
|         ((prot & PAGE_WRITE) ? 'w' : '-'),
 | |
|         ((prot & PAGE_EXEC) ? 'x' : '-'));
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /* dump memory mappings */
 | |
| void page_dump(FILE *f)
 | |
| {
 | |
|     (void) fprintf(f, "%-8s %-8s %-8s %s\n",
 | |
|             "start", "end", "size", "prot");
 | |
|     walk_memory_regions(f, dump_region);
 | |
| }
 | |
| 
 | |
| int page_get_flags(target_ulong address)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return 0;
 | |
|     return p->flags;
 | |
| }
 | |
| 
 | |
| /* Modify the flags of a page and invalidate the code if necessary.
 | |
|    The flag PAGE_WRITE_ORG is positioned automatically depending
 | |
|    on PAGE_WRITE.  The mmap_lock should already be held.  */
 | |
| void page_set_flags(target_ulong start, target_ulong end, int flags)
 | |
| {
 | |
|     target_ulong addr, len;
 | |
| 
 | |
|     /* This function should never be called with addresses outside the
 | |
|        guest address space.  If this assert fires, it probably indicates
 | |
|        a missing call to h2g_valid.  */
 | |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | |
|     assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | |
| #endif
 | |
|     assert(start < end);
 | |
| 
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     if (flags & PAGE_WRITE) {
 | |
|         flags |= PAGE_WRITE_ORG;
 | |
|     }
 | |
| 
 | |
|     for (addr = start, len = end - start;
 | |
|          len != 0;
 | |
|          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | |
|         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | |
| 
 | |
|         /* If the write protection bit is set, then we invalidate
 | |
|            the code inside.  */
 | |
|         if (!(p->flags & PAGE_WRITE) &&
 | |
|             (flags & PAGE_WRITE) &&
 | |
|             p->first_tb) {
 | |
|             tb_invalidate_phys_page(addr, 0, NULL);
 | |
|         }
 | |
|         p->flags = flags;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int page_check_range(target_ulong start, target_ulong len, int flags)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     target_ulong end;
 | |
|     target_ulong addr;
 | |
| 
 | |
|     /* This function should never be called with addresses outside the
 | |
|        guest address space.  If this assert fires, it probably indicates
 | |
|        a missing call to h2g_valid.  */
 | |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | |
|     assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | |
| #endif
 | |
| 
 | |
|     if (len == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (start + len - 1 < start) {
 | |
|         /* We've wrapped around.  */
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
| 
 | |
|     for (addr = start, len = end - start;
 | |
|          len != 0;
 | |
|          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | |
|         p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|         if( !p )
 | |
|             return -1;
 | |
|         if( !(p->flags & PAGE_VALID) )
 | |
|             return -1;
 | |
| 
 | |
|         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
 | |
|             return -1;
 | |
|         if (flags & PAGE_WRITE) {
 | |
|             if (!(p->flags & PAGE_WRITE_ORG))
 | |
|                 return -1;
 | |
|             /* unprotect the page if it was put read-only because it
 | |
|                contains translated code */
 | |
|             if (!(p->flags & PAGE_WRITE)) {
 | |
|                 if (!page_unprotect(addr, 0, NULL))
 | |
|                     return -1;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* called from signal handler: invalidate the code and unprotect the
 | |
|    page. Return TRUE if the fault was successfully handled. */
 | |
| int page_unprotect(target_ulong address, unsigned long pc, void *puc)
 | |
| {
 | |
|     unsigned int prot;
 | |
|     PageDesc *p;
 | |
|     target_ulong host_start, host_end, addr;
 | |
| 
 | |
|     /* Technically this isn't safe inside a signal handler.  However we
 | |
|        know this only ever happens in a synchronous SEGV handler, so in
 | |
|        practice it seems to be ok.  */
 | |
|     mmap_lock();
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         mmap_unlock();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* if the page was really writable, then we change its
 | |
|        protection back to writable */
 | |
|     if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
 | |
|         host_start = address & qemu_host_page_mask;
 | |
|         host_end = host_start + qemu_host_page_size;
 | |
| 
 | |
|         prot = 0;
 | |
|         for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
 | |
|             p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|             p->flags |= PAGE_WRITE;
 | |
|             prot |= p->flags;
 | |
| 
 | |
|             /* and since the content will be modified, we must invalidate
 | |
|                the corresponding translated code. */
 | |
|             tb_invalidate_phys_page(addr, pc, puc);
 | |
| #ifdef DEBUG_TB_CHECK
 | |
|             tb_invalidate_check(addr);
 | |
| #endif
 | |
|         }
 | |
|         mprotect((void *)g2h(host_start), qemu_host_page_size,
 | |
|                  prot & PAGE_BITS);
 | |
| 
 | |
|         mmap_unlock();
 | |
|         return 1;
 | |
|     }
 | |
|     mmap_unlock();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty(CPUState *env,
 | |
|                                  unsigned long addr, target_ulong vaddr)
 | |
| {
 | |
| }
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | |
| typedef struct subpage_t {
 | |
|     target_phys_addr_t base;
 | |
|     ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
 | |
|     ram_addr_t region_offset[TARGET_PAGE_SIZE];
 | |
| } subpage_t;
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              ram_addr_t memory, ram_addr_t region_offset);
 | |
| static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
 | |
|                                 ram_addr_t orig_memory,
 | |
|                                 ram_addr_t region_offset);
 | |
| #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
 | |
|                       need_subpage)                                     \
 | |
|     do {                                                                \
 | |
|         if (addr > start_addr)                                          \
 | |
|             start_addr2 = 0;                                            \
 | |
|         else {                                                          \
 | |
|             start_addr2 = start_addr & ~TARGET_PAGE_MASK;               \
 | |
|             if (start_addr2 > 0)                                        \
 | |
|                 need_subpage = 1;                                       \
 | |
|         }                                                               \
 | |
|                                                                         \
 | |
|         if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE)        \
 | |
|             end_addr2 = TARGET_PAGE_SIZE - 1;                           \
 | |
|         else {                                                          \
 | |
|             end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
 | |
|             if (end_addr2 < TARGET_PAGE_SIZE - 1)                       \
 | |
|                 need_subpage = 1;                                       \
 | |
|         }                                                               \
 | |
|     } while (0)
 | |
| 
 | |
| /* register physical memory.
 | |
|    For RAM, 'size' must be a multiple of the target page size.
 | |
|    If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
 | |
|    io memory page.  The address used when calling the IO function is
 | |
|    the offset from the start of the region, plus region_offset.  Both
 | |
|    start_addr and region_offset are rounded down to a page boundary
 | |
|    before calculating this offset.  This should not be a problem unless
 | |
|    the low bits of start_addr and region_offset differ.  */
 | |
| void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
 | |
|                                          ram_addr_t size,
 | |
|                                          ram_addr_t phys_offset,
 | |
|                                          ram_addr_t region_offset)
 | |
| {
 | |
|     target_phys_addr_t addr, end_addr;
 | |
|     PhysPageDesc *p;
 | |
|     CPUState *env;
 | |
|     ram_addr_t orig_size = size;
 | |
|     subpage_t *subpage;
 | |
| 
 | |
|     cpu_notify_set_memory(start_addr, size, phys_offset);
 | |
| 
 | |
|     if (phys_offset == IO_MEM_UNASSIGNED) {
 | |
|         region_offset = start_addr;
 | |
|     }
 | |
|     region_offset &= TARGET_PAGE_MASK;
 | |
|     size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
 | |
|     end_addr = start_addr + (target_phys_addr_t)size;
 | |
|     for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
 | |
|         p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|         if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
 | |
|             ram_addr_t orig_memory = p->phys_offset;
 | |
|             target_phys_addr_t start_addr2, end_addr2;
 | |
|             int need_subpage = 0;
 | |
| 
 | |
|             CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
 | |
|                           need_subpage);
 | |
|             if (need_subpage) {
 | |
|                 if (!(orig_memory & IO_MEM_SUBPAGE)) {
 | |
|                     subpage = subpage_init((addr & TARGET_PAGE_MASK),
 | |
|                                            &p->phys_offset, orig_memory,
 | |
|                                            p->region_offset);
 | |
|                 } else {
 | |
|                     subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
 | |
|                                             >> IO_MEM_SHIFT];
 | |
|                 }
 | |
|                 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
 | |
|                                  region_offset);
 | |
|                 p->region_offset = 0;
 | |
|             } else {
 | |
|                 p->phys_offset = phys_offset;
 | |
|                 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
 | |
|                     (phys_offset & IO_MEM_ROMD))
 | |
|                     phys_offset += TARGET_PAGE_SIZE;
 | |
|             }
 | |
|         } else {
 | |
|             p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | |
|             p->phys_offset = phys_offset;
 | |
|             p->region_offset = region_offset;
 | |
|             if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
 | |
|                 (phys_offset & IO_MEM_ROMD)) {
 | |
|                 phys_offset += TARGET_PAGE_SIZE;
 | |
|             } else {
 | |
|                 target_phys_addr_t start_addr2, end_addr2;
 | |
|                 int need_subpage = 0;
 | |
| 
 | |
|                 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
 | |
|                               end_addr2, need_subpage);
 | |
| 
 | |
|                 if (need_subpage) {
 | |
|                     subpage = subpage_init((addr & TARGET_PAGE_MASK),
 | |
|                                            &p->phys_offset, IO_MEM_UNASSIGNED,
 | |
|                                            addr & TARGET_PAGE_MASK);
 | |
|                     subpage_register(subpage, start_addr2, end_addr2,
 | |
|                                      phys_offset, region_offset);
 | |
|                     p->region_offset = 0;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         region_offset += TARGET_PAGE_SIZE;
 | |
|     }
 | |
| 
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     /* XXX: slow ! */
 | |
|     for(env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: temporary until new memory mapping API */
 | |
| ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
 | |
| {
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p)
 | |
|         return IO_MEM_UNASSIGNED;
 | |
|     return p->phys_offset;
 | |
| }
 | |
| 
 | |
| void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_coalesce_mmio_region(addr, size);
 | |
| }
 | |
| 
 | |
| void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_uncoalesce_mmio_region(addr, size);
 | |
| }
 | |
| 
 | |
| void qemu_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_flush_coalesced_mmio_buffer();
 | |
| }
 | |
| 
 | |
| #if defined(__linux__) && !defined(TARGET_S390X)
 | |
| 
 | |
| #include <sys/vfs.h>
 | |
| 
 | |
| #define HUGETLBFS_MAGIC       0x958458f6
 | |
| 
 | |
| static long gethugepagesize(const char *path)
 | |
| {
 | |
|     struct statfs fs;
 | |
|     int ret;
 | |
| 
 | |
|     do {
 | |
|         ret = statfs(path, &fs);
 | |
|     } while (ret != 0 && errno == EINTR);
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         perror(path);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (fs.f_type != HUGETLBFS_MAGIC)
 | |
|         fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
 | |
| 
 | |
|     return fs.f_bsize;
 | |
| }
 | |
| 
 | |
| static void *file_ram_alloc(RAMBlock *block,
 | |
|                             ram_addr_t memory,
 | |
|                             const char *path)
 | |
| {
 | |
|     char *filename;
 | |
|     void *area;
 | |
|     int fd;
 | |
| #ifdef MAP_POPULATE
 | |
|     int flags;
 | |
| #endif
 | |
|     unsigned long hpagesize;
 | |
| 
 | |
|     hpagesize = gethugepagesize(path);
 | |
|     if (!hpagesize) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (memory < hpagesize) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | |
|         fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     fd = mkstemp(filename);
 | |
|     if (fd < 0) {
 | |
|         perror("unable to create backing store for hugepages");
 | |
|         free(filename);
 | |
|         return NULL;
 | |
|     }
 | |
|     unlink(filename);
 | |
|     free(filename);
 | |
| 
 | |
|     memory = (memory+hpagesize-1) & ~(hpagesize-1);
 | |
| 
 | |
|     /*
 | |
|      * ftruncate is not supported by hugetlbfs in older
 | |
|      * hosts, so don't bother bailing out on errors.
 | |
|      * If anything goes wrong with it under other filesystems,
 | |
|      * mmap will fail.
 | |
|      */
 | |
|     if (ftruncate(fd, memory))
 | |
|         perror("ftruncate");
 | |
| 
 | |
| #ifdef MAP_POPULATE
 | |
|     /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
 | |
|      * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED
 | |
|      * to sidestep this quirk.
 | |
|      */
 | |
|     flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
 | |
|     area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
 | |
| #else
 | |
|     area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
 | |
| #endif
 | |
|     if (area == MAP_FAILED) {
 | |
|         perror("file_ram_alloc: can't mmap RAM pages");
 | |
|         close(fd);
 | |
|         return (NULL);
 | |
|     }
 | |
|     block->fd = fd;
 | |
|     return area;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static ram_addr_t find_ram_offset(ram_addr_t size)
 | |
| {
 | |
|     RAMBlock *block, *next_block;
 | |
|     ram_addr_t offset = 0, mingap = ULONG_MAX;
 | |
| 
 | |
|     if (QLIST_EMPTY(&ram_list.blocks))
 | |
|         return 0;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         ram_addr_t end, next = ULONG_MAX;
 | |
| 
 | |
|         end = block->offset + block->length;
 | |
| 
 | |
|         QLIST_FOREACH(next_block, &ram_list.blocks, next) {
 | |
|             if (next_block->offset >= end) {
 | |
|                 next = MIN(next, next_block->offset);
 | |
|             }
 | |
|         }
 | |
|         if (next - end >= size && next - end < mingap) {
 | |
|             offset =  end;
 | |
|             mingap = next - end;
 | |
|         }
 | |
|     }
 | |
|     return offset;
 | |
| }
 | |
| 
 | |
| static ram_addr_t last_ram_offset(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t last = 0;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next)
 | |
|         last = MAX(last, block->offset + block->length);
 | |
| 
 | |
|     return last;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
 | |
|                                    ram_addr_t size, void *host)
 | |
| {
 | |
|     RAMBlock *new_block, *block;
 | |
| 
 | |
|     size = TARGET_PAGE_ALIGN(size);
 | |
|     new_block = qemu_mallocz(sizeof(*new_block));
 | |
| 
 | |
|     if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
 | |
|         char *id = dev->parent_bus->info->get_dev_path(dev);
 | |
|         if (id) {
 | |
|             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | |
|             qemu_free(id);
 | |
|         }
 | |
|     }
 | |
|     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (!strcmp(block->idstr, new_block->idstr)) {
 | |
|             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | |
|                     new_block->idstr);
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (host) {
 | |
|         new_block->host = host;
 | |
|     } else {
 | |
|         if (mem_path) {
 | |
| #if defined (__linux__) && !defined(TARGET_S390X)
 | |
|             new_block->host = file_ram_alloc(new_block, size, mem_path);
 | |
|             if (!new_block->host) {
 | |
|                 new_block->host = qemu_vmalloc(size);
 | |
|                 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
 | |
|             }
 | |
| #else
 | |
|             fprintf(stderr, "-mem-path option unsupported\n");
 | |
|             exit(1);
 | |
| #endif
 | |
|         } else {
 | |
| #if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | |
|             /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
 | |
|             new_block->host = mmap((void*)0x1000000, size,
 | |
|                                    PROT_EXEC|PROT_READ|PROT_WRITE,
 | |
|                                    MAP_SHARED | MAP_ANONYMOUS, -1, 0);
 | |
| #else
 | |
|             new_block->host = qemu_vmalloc(size);
 | |
| #endif
 | |
|             qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     new_block->offset = find_ram_offset(size);
 | |
|     new_block->length = size;
 | |
| 
 | |
|     QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
 | |
| 
 | |
|     ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
 | |
|                                        last_ram_offset() >> TARGET_PAGE_BITS);
 | |
|     memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
 | |
|            0xff, size >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     if (kvm_enabled())
 | |
|         kvm_setup_guest_memory(new_block->host, size);
 | |
| 
 | |
|     return new_block->offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
 | |
| {
 | |
|     return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
 | |
| }
 | |
| 
 | |
| void qemu_ram_free(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr == block->offset) {
 | |
|             QLIST_REMOVE(block, next);
 | |
|             if (mem_path) {
 | |
| #if defined (__linux__) && !defined(TARGET_S390X)
 | |
|                 if (block->fd) {
 | |
|                     munmap(block->host, block->length);
 | |
|                     close(block->fd);
 | |
|                 } else {
 | |
|                     qemu_vfree(block->host);
 | |
|                 }
 | |
| #endif
 | |
|             } else {
 | |
| #if defined(TARGET_S390X) && defined(CONFIG_KVM)
 | |
|                 munmap(block->host, block->length);
 | |
| #else
 | |
|                 qemu_vfree(block->host);
 | |
| #endif
 | |
|             }
 | |
|             qemu_free(block);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|    With the exception of the softmmu code in this file, this should
 | |
|    only be used for local memory (e.g. video ram) that the device owns,
 | |
|    and knows it isn't going to access beyond the end of the block.
 | |
| 
 | |
|    It should not be used for general purpose DMA.
 | |
|    Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
 | |
|  */
 | |
| void *qemu_get_ram_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->length) {
 | |
|             QLIST_REMOVE(block, next);
 | |
|             QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
 | |
|             return block->host + (addr - block->offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|  * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
 | |
|  */
 | |
| void *qemu_safe_ram_ptr(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->length) {
 | |
|             return block->host + (addr - block->offset);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint8_t *host = ptr;
 | |
| 
 | |
|     QLIST_FOREACH(block, &ram_list.blocks, next) {
 | |
|         if (host - block->host < block->length) {
 | |
|             *ram_addr = block->offset + (host - block->host);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /* Some of the softmmu routines need to translate from a host pointer
 | |
|    (typically a TLB entry) back to a ram offset.  */
 | |
| ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
 | |
|         fprintf(stderr, "Bad ram pointer %p\n", ptr);
 | |
|         abort();
 | |
|     }
 | |
|     return ram_addr;
 | |
| }
 | |
| 
 | |
| static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | |
| #endif
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     do_unassigned_access(addr, 0, 0, 0, 1);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | |
| #endif
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     do_unassigned_access(addr, 0, 0, 0, 2);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
 | |
| #endif
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     do_unassigned_access(addr, 0, 0, 0, 4);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
 | |
| #endif
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     do_unassigned_access(addr, 1, 0, 0, 1);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
 | |
| #endif
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     do_unassigned_access(addr, 1, 0, 0, 2);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
| #ifdef DEBUG_UNASSIGNED
 | |
|     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
 | |
| #endif
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
 | |
|     do_unassigned_access(addr, 1, 0, 0, 4);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
 | |
|     unassigned_mem_readb,
 | |
|     unassigned_mem_readw,
 | |
|     unassigned_mem_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
 | |
|     unassigned_mem_writeb,
 | |
|     unassigned_mem_writew,
 | |
|     unassigned_mem_writel,
 | |
| };
 | |
| 
 | |
| static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                 uint32_t val)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 1);
 | |
|         dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
| #endif
 | |
|     }
 | |
|     stb_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                 uint32_t val)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 2);
 | |
|         dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
| #endif
 | |
|     }
 | |
|     stw_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
 | |
|                                 uint32_t val)
 | |
| {
 | |
|     int dirty_flags;
 | |
|     dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
|     if (!(dirty_flags & CODE_DIRTY_FLAG)) {
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|         tb_invalidate_phys_page_fast(ram_addr, 4);
 | |
|         dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
 | |
| #endif
 | |
|     }
 | |
|     stl_p(qemu_get_ram_ptr(ram_addr), val);
 | |
|     dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
 | |
|     cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (dirty_flags == 0xff)
 | |
|         tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc * const error_mem_read[3] = {
 | |
|     NULL, /* never used */
 | |
|     NULL, /* never used */
 | |
|     NULL, /* never used */
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
 | |
|     notdirty_mem_writeb,
 | |
|     notdirty_mem_writew,
 | |
|     notdirty_mem_writel,
 | |
| };
 | |
| 
 | |
| /* Generate a debug exception if a watchpoint has been hit.  */
 | |
| static void check_watchpoint(int offset, int len_mask, int flags)
 | |
| {
 | |
|     CPUState *env = cpu_single_env;
 | |
|     target_ulong pc, cs_base;
 | |
|     TranslationBlock *tb;
 | |
|     target_ulong vaddr;
 | |
|     CPUWatchpoint *wp;
 | |
|     int cpu_flags;
 | |
| 
 | |
|     if (env->watchpoint_hit) {
 | |
|         /* We re-entered the check after replacing the TB. Now raise
 | |
|          * the debug interrupt so that is will trigger after the
 | |
|          * current instruction. */
 | |
|         cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
 | |
|         return;
 | |
|     }
 | |
|     vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | |
|     QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
 | |
|         if ((vaddr == (wp->vaddr & len_mask) ||
 | |
|              (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
 | |
|             wp->flags |= BP_WATCHPOINT_HIT;
 | |
|             if (!env->watchpoint_hit) {
 | |
|                 env->watchpoint_hit = wp;
 | |
|                 tb = tb_find_pc(env->mem_io_pc);
 | |
|                 if (!tb) {
 | |
|                     cpu_abort(env, "check_watchpoint: could not find TB for "
 | |
|                               "pc=%p", (void *)env->mem_io_pc);
 | |
|                 }
 | |
|                 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
 | |
|                 tb_phys_invalidate(tb, -1);
 | |
|                 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 | |
|                     env->exception_index = EXCP_DEBUG;
 | |
|                 } else {
 | |
|                     cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
 | |
|                     tb_gen_code(env, pc, cs_base, cpu_flags, 1);
 | |
|                 }
 | |
|                 cpu_resume_from_signal(env, NULL);
 | |
|             }
 | |
|         } else {
 | |
|             wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | |
|    so these check for a hit then pass through to the normal out-of-line
 | |
|    phys routines.  */
 | |
| static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
 | |
|     return ldub_phys(addr);
 | |
| }
 | |
| 
 | |
| static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
 | |
|     return lduw_phys(addr);
 | |
| }
 | |
| 
 | |
| static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
 | |
|     return ldl_phys(addr);
 | |
| }
 | |
| 
 | |
| static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
 | |
|                              uint32_t val)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
 | |
|     stb_phys(addr, val);
 | |
| }
 | |
| 
 | |
| static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
 | |
|                              uint32_t val)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
 | |
|     stw_phys(addr, val);
 | |
| }
 | |
| 
 | |
| static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
 | |
|                              uint32_t val)
 | |
| {
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
 | |
|     stl_phys(addr, val);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc * const watch_mem_read[3] = {
 | |
|     watch_mem_readb,
 | |
|     watch_mem_readw,
 | |
|     watch_mem_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc * const watch_mem_write[3] = {
 | |
|     watch_mem_writeb,
 | |
|     watch_mem_writew,
 | |
|     watch_mem_writel,
 | |
| };
 | |
| 
 | |
| static inline uint32_t subpage_readlen (subpage_t *mmio,
 | |
|                                         target_phys_addr_t addr,
 | |
|                                         unsigned int len)
 | |
| {
 | |
|     unsigned int idx = SUBPAGE_IDX(addr);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
 | |
|            mmio, len, addr, idx);
 | |
| #endif
 | |
| 
 | |
|     addr += mmio->region_offset[idx];
 | |
|     idx = mmio->sub_io_index[idx];
 | |
|     return io_mem_read[idx][len](io_mem_opaque[idx], addr);
 | |
| }
 | |
| 
 | |
| static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
 | |
|                                      uint32_t value, unsigned int len)
 | |
| {
 | |
|     unsigned int idx = SUBPAGE_IDX(addr);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
 | |
|            __func__, mmio, len, addr, idx, value);
 | |
| #endif
 | |
| 
 | |
|     addr += mmio->region_offset[idx];
 | |
|     idx = mmio->sub_io_index[idx];
 | |
|     io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
 | |
| }
 | |
| 
 | |
| static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     return subpage_readlen(opaque, addr, 0);
 | |
| }
 | |
| 
 | |
| static void subpage_writeb (void *opaque, target_phys_addr_t addr,
 | |
|                             uint32_t value)
 | |
| {
 | |
|     subpage_writelen(opaque, addr, value, 0);
 | |
| }
 | |
| 
 | |
| static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     return subpage_readlen(opaque, addr, 1);
 | |
| }
 | |
| 
 | |
| static void subpage_writew (void *opaque, target_phys_addr_t addr,
 | |
|                             uint32_t value)
 | |
| {
 | |
|     subpage_writelen(opaque, addr, value, 1);
 | |
| }
 | |
| 
 | |
| static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     return subpage_readlen(opaque, addr, 2);
 | |
| }
 | |
| 
 | |
| static void subpage_writel (void *opaque, target_phys_addr_t addr,
 | |
|                             uint32_t value)
 | |
| {
 | |
|     subpage_writelen(opaque, addr, value, 2);
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc * const subpage_read[] = {
 | |
|     &subpage_readb,
 | |
|     &subpage_readw,
 | |
|     &subpage_readl,
 | |
| };
 | |
| 
 | |
| static CPUWriteMemoryFunc * const subpage_write[] = {
 | |
|     &subpage_writeb,
 | |
|     &subpage_writew,
 | |
|     &subpage_writel,
 | |
| };
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              ram_addr_t memory, ram_addr_t region_offset)
 | |
| {
 | |
|     int idx, eidx;
 | |
| 
 | |
|     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | |
|         return -1;
 | |
|     idx = SUBPAGE_IDX(start);
 | |
|     eidx = SUBPAGE_IDX(end);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
 | |
|            mmio, start, end, idx, eidx, memory);
 | |
| #endif
 | |
|     if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
 | |
|         memory = IO_MEM_UNASSIGNED;
 | |
|     memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|     for (; idx <= eidx; idx++) {
 | |
|         mmio->sub_io_index[idx] = memory;
 | |
|         mmio->region_offset[idx] = region_offset;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
 | |
|                                 ram_addr_t orig_memory,
 | |
|                                 ram_addr_t region_offset)
 | |
| {
 | |
|     subpage_t *mmio;
 | |
|     int subpage_memory;
 | |
| 
 | |
|     mmio = qemu_mallocz(sizeof(subpage_t));
 | |
| 
 | |
|     mmio->base = base;
 | |
|     subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
 | |
|                                             DEVICE_NATIVE_ENDIAN);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
 | |
|            mmio, base, TARGET_PAGE_SIZE, subpage_memory);
 | |
| #endif
 | |
|     *phys = subpage_memory | IO_MEM_SUBPAGE;
 | |
|     subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
 | |
| 
 | |
|     return mmio;
 | |
| }
 | |
| 
 | |
| static int get_free_io_mem_idx(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
 | |
|         if (!io_mem_used[i]) {
 | |
|             io_mem_used[i] = 1;
 | |
|             return i;
 | |
|         }
 | |
|     fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Usually, devices operate in little endian mode. There are devices out
 | |
|  * there that operate in big endian too. Each device gets byte swapped
 | |
|  * mmio if plugged onto a CPU that does the other endianness.
 | |
|  *
 | |
|  * CPU          Device           swap?
 | |
|  *
 | |
|  * little       little           no
 | |
|  * little       big              yes
 | |
|  * big          little           yes
 | |
|  * big          big              no
 | |
|  */
 | |
| 
 | |
| typedef struct SwapEndianContainer {
 | |
|     CPUReadMemoryFunc *read[3];
 | |
|     CPUWriteMemoryFunc *write[3];
 | |
|     void *opaque;
 | |
| } SwapEndianContainer;
 | |
| 
 | |
| static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     uint32_t val;
 | |
|     SwapEndianContainer *c = opaque;
 | |
|     val = c->read[0](c->opaque, addr);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     uint32_t val;
 | |
|     SwapEndianContainer *c = opaque;
 | |
|     val = bswap16(c->read[1](c->opaque, addr));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
 | |
| {
 | |
|     uint32_t val;
 | |
|     SwapEndianContainer *c = opaque;
 | |
|     val = bswap32(c->read[2](c->opaque, addr));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static CPUReadMemoryFunc * const swapendian_readfn[3]={
 | |
|     swapendian_mem_readb,
 | |
|     swapendian_mem_readw,
 | |
|     swapendian_mem_readl
 | |
| };
 | |
| 
 | |
| static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
 | |
|                                   uint32_t val)
 | |
| {
 | |
|     SwapEndianContainer *c = opaque;
 | |
|     c->write[0](c->opaque, addr, val);
 | |
| }
 | |
| 
 | |
| static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
 | |
|                                   uint32_t val)
 | |
| {
 | |
|     SwapEndianContainer *c = opaque;
 | |
|     c->write[1](c->opaque, addr, bswap16(val));
 | |
| }
 | |
| 
 | |
| static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
 | |
|                                   uint32_t val)
 | |
| {
 | |
|     SwapEndianContainer *c = opaque;
 | |
|     c->write[2](c->opaque, addr, bswap32(val));
 | |
| }
 | |
| 
 | |
| static CPUWriteMemoryFunc * const swapendian_writefn[3]={
 | |
|     swapendian_mem_writeb,
 | |
|     swapendian_mem_writew,
 | |
|     swapendian_mem_writel
 | |
| };
 | |
| 
 | |
| static void swapendian_init(int io_index)
 | |
| {
 | |
|     SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
 | |
|     int i;
 | |
| 
 | |
|     /* Swap mmio for big endian targets */
 | |
|     c->opaque = io_mem_opaque[io_index];
 | |
|     for (i = 0; i < 3; i++) {
 | |
|         c->read[i] = io_mem_read[io_index][i];
 | |
|         c->write[i] = io_mem_write[io_index][i];
 | |
| 
 | |
|         io_mem_read[io_index][i] = swapendian_readfn[i];
 | |
|         io_mem_write[io_index][i] = swapendian_writefn[i];
 | |
|     }
 | |
|     io_mem_opaque[io_index] = c;
 | |
| }
 | |
| 
 | |
| static void swapendian_del(int io_index)
 | |
| {
 | |
|     if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
 | |
|         qemu_free(io_mem_opaque[io_index]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* mem_read and mem_write are arrays of functions containing the
 | |
|    function to access byte (index 0), word (index 1) and dword (index
 | |
|    2). Functions can be omitted with a NULL function pointer.
 | |
|    If io_index is non zero, the corresponding io zone is
 | |
|    modified. If it is zero, a new io zone is allocated. The return
 | |
|    value can be used with cpu_register_physical_memory(). (-1) is
 | |
|    returned if error. */
 | |
| static int cpu_register_io_memory_fixed(int io_index,
 | |
|                                         CPUReadMemoryFunc * const *mem_read,
 | |
|                                         CPUWriteMemoryFunc * const *mem_write,
 | |
|                                         void *opaque, enum device_endian endian)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (io_index <= 0) {
 | |
|         io_index = get_free_io_mem_idx();
 | |
|         if (io_index == -1)
 | |
|             return io_index;
 | |
|     } else {
 | |
|         io_index >>= IO_MEM_SHIFT;
 | |
|         if (io_index >= IO_MEM_NB_ENTRIES)
 | |
|             return -1;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 3; ++i) {
 | |
|         io_mem_read[io_index][i]
 | |
|             = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
 | |
|     }
 | |
|     for (i = 0; i < 3; ++i) {
 | |
|         io_mem_write[io_index][i]
 | |
|             = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
 | |
|     }
 | |
|     io_mem_opaque[io_index] = opaque;
 | |
| 
 | |
|     switch (endian) {
 | |
|     case DEVICE_BIG_ENDIAN:
 | |
| #ifndef TARGET_WORDS_BIGENDIAN
 | |
|         swapendian_init(io_index);
 | |
| #endif
 | |
|         break;
 | |
|     case DEVICE_LITTLE_ENDIAN:
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         swapendian_init(io_index);
 | |
| #endif
 | |
|         break;
 | |
|     case DEVICE_NATIVE_ENDIAN:
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return (io_index << IO_MEM_SHIFT);
 | |
| }
 | |
| 
 | |
| int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
 | |
|                            CPUWriteMemoryFunc * const *mem_write,
 | |
|                            void *opaque, enum device_endian endian)
 | |
| {
 | |
|     return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
 | |
| }
 | |
| 
 | |
| void cpu_unregister_io_memory(int io_table_address)
 | |
| {
 | |
|     int i;
 | |
|     int io_index = io_table_address >> IO_MEM_SHIFT;
 | |
| 
 | |
|     swapendian_del(io_index);
 | |
| 
 | |
|     for (i=0;i < 3; i++) {
 | |
|         io_mem_read[io_index][i] = unassigned_mem_read[i];
 | |
|         io_mem_write[io_index][i] = unassigned_mem_write[i];
 | |
|     }
 | |
|     io_mem_opaque[io_index] = NULL;
 | |
|     io_mem_used[io_index] = 0;
 | |
| }
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
 | |
|                                  unassigned_mem_write, NULL,
 | |
|                                  DEVICE_NATIVE_ENDIAN);
 | |
|     cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
 | |
|                                  unassigned_mem_write, NULL,
 | |
|                                  DEVICE_NATIVE_ENDIAN);
 | |
|     cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
 | |
|                                  notdirty_mem_write, NULL,
 | |
|                                  DEVICE_NATIVE_ENDIAN);
 | |
|     for (i=0; i<5; i++)
 | |
|         io_mem_used[i] = 1;
 | |
| 
 | |
|     io_mem_watch = cpu_register_io_memory(watch_mem_read,
 | |
|                                           watch_mem_write, NULL,
 | |
|                                           DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| #endif /* !defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* physical memory access (slow version, mainly for debug) */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l, flags;
 | |
|     target_ulong page;
 | |
|     void * p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         flags = page_get_flags(page);
 | |
|         if (!(flags & PAGE_VALID))
 | |
|             return -1;
 | |
|         if (is_write) {
 | |
|             if (!(flags & PAGE_WRITE))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | |
|                 return -1;
 | |
|             memcpy(p, buf, l);
 | |
|             unlock_user(p, addr, l);
 | |
|         } else {
 | |
|             if (!(flags & PAGE_READ))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | |
|                 return -1;
 | |
|             memcpy(buf, p, l);
 | |
|             unlock_user(p, addr, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     int l, io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
| 
 | |
|         if (is_write) {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|                 target_phys_addr_t addr1 = addr;
 | |
|                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|                 if (p)
 | |
|                     addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|                 /* XXX: could force cpu_single_env to NULL to avoid
 | |
|                    potential bugs */
 | |
|                 if (l >= 4 && ((addr1 & 3) == 0)) {
 | |
|                     /* 32 bit write access */
 | |
|                     val = ldl_p(buf);
 | |
|                     io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | |
|                     /* 16 bit write access */
 | |
|                     val = lduw_p(buf);
 | |
|                     io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit write access */
 | |
|                     val = ldub_p(buf);
 | |
|                     io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 unsigned long addr1;
 | |
|                 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|                 /* RAM case */
 | |
|                 ptr = qemu_get_ram_ptr(addr1);
 | |
|                 memcpy(ptr, buf, l);
 | |
|                 if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                     /* invalidate code */
 | |
|                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
 | |
|                     /* set dirty bit */
 | |
|                     cpu_physical_memory_set_dirty_flags(
 | |
|                         addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|                 !(pd & IO_MEM_ROMD)) {
 | |
|                 target_phys_addr_t addr1 = addr;
 | |
|                 /* I/O case */
 | |
|                 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|                 if (p)
 | |
|                     addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|                 if (l >= 4 && ((addr1 & 3) == 0)) {
 | |
|                     /* 32 bit read access */
 | |
|                     val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
 | |
|                     stl_p(buf, val);
 | |
|                     l = 4;
 | |
|                 } else if (l >= 2 && ((addr1 & 1) == 0)) {
 | |
|                     /* 16 bit read access */
 | |
|                     val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
 | |
|                     stw_p(buf, val);
 | |
|                     l = 2;
 | |
|                 } else {
 | |
|                     /* 8 bit read access */
 | |
|                     val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
 | |
|                     stb_p(buf, val);
 | |
|                     l = 1;
 | |
|                 }
 | |
|             } else {
 | |
|                 /* RAM case */
 | |
|                 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
 | |
|                     (addr & ~TARGET_PAGE_MASK);
 | |
|                 memcpy(buf, ptr, l);
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| void cpu_physical_memory_write_rom(target_phys_addr_t addr,
 | |
|                                    const uint8_t *buf, int len)
 | |
| {
 | |
|     int l;
 | |
|     uint8_t *ptr;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
| 
 | |
|         if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
 | |
|             (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
 | |
|             !(pd & IO_MEM_ROMD)) {
 | |
|             /* do nothing */
 | |
|         } else {
 | |
|             unsigned long addr1;
 | |
|             addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|             /* ROM/RAM case */
 | |
|             ptr = qemu_get_ram_ptr(addr1);
 | |
|             memcpy(ptr, buf, l);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     void *buffer;
 | |
|     target_phys_addr_t addr;
 | |
|     target_phys_addr_t len;
 | |
| } BounceBuffer;
 | |
| 
 | |
| static BounceBuffer bounce;
 | |
| 
 | |
| typedef struct MapClient {
 | |
|     void *opaque;
 | |
|     void (*callback)(void *opaque);
 | |
|     QLIST_ENTRY(MapClient) link;
 | |
| } MapClient;
 | |
| 
 | |
| static QLIST_HEAD(map_client_list, MapClient) map_client_list
 | |
|     = QLIST_HEAD_INITIALIZER(map_client_list);
 | |
| 
 | |
| void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
 | |
| {
 | |
|     MapClient *client = qemu_malloc(sizeof(*client));
 | |
| 
 | |
|     client->opaque = opaque;
 | |
|     client->callback = callback;
 | |
|     QLIST_INSERT_HEAD(&map_client_list, client, link);
 | |
|     return client;
 | |
| }
 | |
| 
 | |
| void cpu_unregister_map_client(void *_client)
 | |
| {
 | |
|     MapClient *client = (MapClient *)_client;
 | |
| 
 | |
|     QLIST_REMOVE(client, link);
 | |
|     qemu_free(client);
 | |
| }
 | |
| 
 | |
| static void cpu_notify_map_clients(void)
 | |
| {
 | |
|     MapClient *client;
 | |
| 
 | |
|     while (!QLIST_EMPTY(&map_client_list)) {
 | |
|         client = QLIST_FIRST(&map_client_list);
 | |
|         client->callback(client->opaque);
 | |
|         cpu_unregister_map_client(client);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Map a physical memory region into a host virtual address.
 | |
|  * May map a subset of the requested range, given by and returned in *plen.
 | |
|  * May return NULL if resources needed to perform the mapping are exhausted.
 | |
|  * Use only for reads OR writes - not for read-modify-write operations.
 | |
|  * Use cpu_register_map_client() to know when retrying the map operation is
 | |
|  * likely to succeed.
 | |
|  */
 | |
| void *cpu_physical_memory_map(target_phys_addr_t addr,
 | |
|                               target_phys_addr_t *plen,
 | |
|                               int is_write)
 | |
| {
 | |
|     target_phys_addr_t len = *plen;
 | |
|     target_phys_addr_t done = 0;
 | |
|     int l;
 | |
|     uint8_t *ret = NULL;
 | |
|     uint8_t *ptr;
 | |
|     target_phys_addr_t page;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
|     unsigned long addr1;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         p = phys_page_find(page >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             pd = IO_MEM_UNASSIGNED;
 | |
|         } else {
 | |
|             pd = p->phys_offset;
 | |
|         }
 | |
| 
 | |
|         if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|             if (done || bounce.buffer) {
 | |
|                 break;
 | |
|             }
 | |
|             bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
 | |
|             bounce.addr = addr;
 | |
|             bounce.len = l;
 | |
|             if (!is_write) {
 | |
|                 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
 | |
|             }
 | |
|             ptr = bounce.buffer;
 | |
|         } else {
 | |
|             addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|             ptr = qemu_get_ram_ptr(addr1);
 | |
|         }
 | |
|         if (!done) {
 | |
|             ret = ptr;
 | |
|         } else if (ret + done != ptr) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|         done += l;
 | |
|     }
 | |
|     *plen = done;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
 | |
|  * Will also mark the memory as dirty if is_write == 1.  access_len gives
 | |
|  * the amount of memory that was actually read or written by the caller.
 | |
|  */
 | |
| void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
 | |
|                                int is_write, target_phys_addr_t access_len)
 | |
| {
 | |
|     if (buffer != bounce.buffer) {
 | |
|         if (is_write) {
 | |
|             ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
 | |
|             while (access_len) {
 | |
|                 unsigned l;
 | |
|                 l = TARGET_PAGE_SIZE;
 | |
|                 if (l > access_len)
 | |
|                     l = access_len;
 | |
|                 if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                     /* invalidate code */
 | |
|                     tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
 | |
|                     /* set dirty bit */
 | |
|                     cpu_physical_memory_set_dirty_flags(
 | |
|                         addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|                 }
 | |
|                 addr1 += l;
 | |
|                 access_len -= l;
 | |
|             }
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     if (is_write) {
 | |
|         cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
 | |
|     }
 | |
|     qemu_vfree(bounce.buffer);
 | |
|     bounce.buffer = NULL;
 | |
|     cpu_notify_map_clients();
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint32_t ldl_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint32_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = ldl_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint64_t ldq_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
 | |
|         val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
 | |
| #else
 | |
|         val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
 | |
|         val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = ldq_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t ldub_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     uint8_t val;
 | |
|     cpu_physical_memory_read(addr, &val, 1);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| uint32_t lduw_phys(target_phys_addr_t addr)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
 | |
|         !(pd & IO_MEM_ROMD)) {
 | |
|         /* I/O case */
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|         val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         val = lduw_p(ptr);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned. The ram page is not masked as dirty
 | |
|    and the code inside is not invalidated. It is useful if the dirty
 | |
|    bits are used to track modified PTEs */
 | |
| void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         stl_p(ptr, val);
 | |
| 
 | |
|         if (unlikely(in_migration)) {
 | |
|             if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|                 /* invalidate code */
 | |
|                 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|                 /* set dirty bit */
 | |
|                 cpu_physical_memory_set_dirty_flags(
 | |
|                     addr1, (0xff & ~CODE_DIRTY_FLAG));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
 | |
| #else
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
 | |
| #endif
 | |
|     } else {
 | |
|         ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
 | |
|             (addr & ~TARGET_PAGE_MASK);
 | |
|         stq_p(ptr, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| void stl_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|         io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         unsigned long addr1;
 | |
|         addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         stl_p(ptr, val);
 | |
|         if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|             /* invalidate code */
 | |
|             tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
 | |
|             /* set dirty bit */
 | |
|             cpu_physical_memory_set_dirty_flags(addr1,
 | |
|                 (0xff & ~CODE_DIRTY_FLAG));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stb_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     uint8_t v = val;
 | |
|     cpu_physical_memory_write(addr, &v, 1);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| void stw_phys(target_phys_addr_t addr, uint32_t val)
 | |
| {
 | |
|     int io_index;
 | |
|     uint8_t *ptr;
 | |
|     unsigned long pd;
 | |
|     PhysPageDesc *p;
 | |
| 
 | |
|     p = phys_page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         pd = IO_MEM_UNASSIGNED;
 | |
|     } else {
 | |
|         pd = p->phys_offset;
 | |
|     }
 | |
| 
 | |
|     if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
 | |
|         io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
 | |
|         if (p)
 | |
|             addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
 | |
|         io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
 | |
|     } else {
 | |
|         unsigned long addr1;
 | |
|         addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
 | |
|         /* RAM case */
 | |
|         ptr = qemu_get_ram_ptr(addr1);
 | |
|         stw_p(ptr, val);
 | |
|         if (!cpu_physical_memory_is_dirty(addr1)) {
 | |
|             /* invalidate code */
 | |
|             tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
 | |
|             /* set dirty bit */
 | |
|             cpu_physical_memory_set_dirty_flags(addr1,
 | |
|                 (0xff & ~CODE_DIRTY_FLAG));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void stq_phys(target_phys_addr_t addr, uint64_t val)
 | |
| {
 | |
|     val = tswap64(val);
 | |
|     cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
 | |
| }
 | |
| 
 | |
| /* virtual memory access for debug (includes writing to ROM) */
 | |
| int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     target_phys_addr_t phys_addr;
 | |
|     target_ulong page;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_debug(env, page);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         phys_addr += (addr & ~TARGET_PAGE_MASK);
 | |
|         if (is_write)
 | |
|             cpu_physical_memory_write_rom(phys_addr, buf, l);
 | |
|         else
 | |
|             cpu_physical_memory_rw(phys_addr, buf, l, is_write);
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* in deterministic execution mode, instructions doing device I/Os
 | |
|    must be at the end of the TB */
 | |
| void cpu_io_recompile(CPUState *env, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint32_t n, cflags;
 | |
|     target_ulong pc, cs_base;
 | |
|     uint64_t flags;
 | |
| 
 | |
|     tb = tb_find_pc((unsigned long)retaddr);
 | |
|     if (!tb) {
 | |
|         cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
 | |
|                   retaddr);
 | |
|     }
 | |
|     n = env->icount_decr.u16.low + tb->icount;
 | |
|     cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
 | |
|     /* Calculate how many instructions had been executed before the fault
 | |
|        occurred.  */
 | |
|     n = n - env->icount_decr.u16.low;
 | |
|     /* Generate a new TB ending on the I/O insn.  */
 | |
|     n++;
 | |
|     /* On MIPS and SH, delay slot instructions can only be restarted if
 | |
|        they were already the first instruction in the TB.  If this is not
 | |
|        the first instruction in a TB then re-execute the preceding
 | |
|        branch.  */
 | |
| #if defined(TARGET_MIPS)
 | |
|     if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
 | |
|         env->active_tc.PC -= 4;
 | |
|         env->icount_decr.u16.low++;
 | |
|         env->hflags &= ~MIPS_HFLAG_BMASK;
 | |
|     }
 | |
| #elif defined(TARGET_SH4)
 | |
|     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
 | |
|             && n > 1) {
 | |
|         env->pc -= 2;
 | |
|         env->icount_decr.u16.low++;
 | |
|         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
 | |
|     }
 | |
| #endif
 | |
|     /* This should never happen.  */
 | |
|     if (n > CF_COUNT_MASK)
 | |
|         cpu_abort(env, "TB too big during recompile");
 | |
| 
 | |
|     cflags = n | CF_LAST_IO;
 | |
|     pc = tb->pc;
 | |
|     cs_base = tb->cs_base;
 | |
|     flags = tb->flags;
 | |
|     tb_phys_invalidate(tb, -1);
 | |
|     /* FIXME: In theory this could raise an exception.  In practice
 | |
|        we have already translated the block once so it's probably ok.  */
 | |
|     tb_gen_code(env, pc, cs_base, flags, cflags);
 | |
|     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
 | |
|        the first in the TB) then we end up generating a whole new TB and
 | |
|        repeating the fault, which is horribly inefficient.
 | |
|        Better would be to execute just this insn uncached, or generate a
 | |
|        second new TB.  */
 | |
|     cpu_resume_from_signal(env, NULL);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     int i, target_code_size, max_target_code_size;
 | |
|     int direct_jmp_count, direct_jmp2_count, cross_page;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     target_code_size = 0;
 | |
|     max_target_code_size = 0;
 | |
|     cross_page = 0;
 | |
|     direct_jmp_count = 0;
 | |
|     direct_jmp2_count = 0;
 | |
|     for(i = 0; i < nb_tbs; i++) {
 | |
|         tb = &tbs[i];
 | |
|         target_code_size += tb->size;
 | |
|         if (tb->size > max_target_code_size)
 | |
|             max_target_code_size = tb->size;
 | |
|         if (tb->page_addr[1] != -1)
 | |
|             cross_page++;
 | |
|         if (tb->tb_next_offset[0] != 0xffff) {
 | |
|             direct_jmp_count++;
 | |
|             if (tb->tb_next_offset[1] != 0xffff) {
 | |
|                 direct_jmp2_count++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* XXX: avoid using doubles ? */
 | |
|     cpu_fprintf(f, "Translation buffer state:\n");
 | |
|     cpu_fprintf(f, "gen code size       %td/%ld\n",
 | |
|                 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
 | |
|     cpu_fprintf(f, "TB count            %d/%d\n", 
 | |
|                 nb_tbs, code_gen_max_blocks);
 | |
|     cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
 | |
|                 nb_tbs ? target_code_size / nb_tbs : 0,
 | |
|                 max_target_code_size);
 | |
|     cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n",
 | |
|                 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
 | |
|                 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
 | |
|     cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
 | |
|             cross_page,
 | |
|             nb_tbs ? (cross_page * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
 | |
|                 direct_jmp_count,
 | |
|                 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
 | |
|                 direct_jmp2_count,
 | |
|                 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "\nStatistics:\n");
 | |
|     cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
 | |
|     cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
 | |
|     cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
 | |
|     tcg_dump_info(f, cpu_fprintf);
 | |
| }
 | |
| 
 | |
| #define MMUSUFFIX _cmmu
 | |
| #define GETPC() NULL
 | |
| #define env cpu_single_env
 | |
| #define SOFTMMU_CODE_ACCESS
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #undef env
 | |
| 
 | |
| #endif
 |