 863e9621c5
			
		
	
	
		863e9621c5
		
	
	
	
	
		
			
			Store the page size in each RAMBlock, we need it later. Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
		
			
				
	
	
		
			3662 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3662 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Virtual page mapping
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #ifndef _WIN32
 | |
| #endif
 | |
| 
 | |
| #include "qemu/cutils.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "tcg.h"
 | |
| #include "hw/qdev-core.h"
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #include "hw/boards.h"
 | |
| #include "hw/xen/xen.h"
 | |
| #endif
 | |
| #include "sysemu/kvm.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "qemu/error-report.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include "qemu.h"
 | |
| #else /* !CONFIG_USER_ONLY */
 | |
| #include "hw/hw.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/ioport.h"
 | |
| #include "sysemu/dma.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "sysemu/xen-mapcache.h"
 | |
| #include "trace.h"
 | |
| #endif
 | |
| #include "exec/cpu-all.h"
 | |
| #include "qemu/rcu_queue.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "translate-all.h"
 | |
| #include "sysemu/replay.h"
 | |
| 
 | |
| #include "exec/memory-internal.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "exec/log.h"
 | |
| 
 | |
| #include "migration/vmstate.h"
 | |
| 
 | |
| #include "qemu/range.h"
 | |
| #ifndef _WIN32
 | |
| #include "qemu/mmap-alloc.h"
 | |
| #endif
 | |
| 
 | |
| //#define DEBUG_SUBPAGE
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
 | |
|  * are protected by the ramlist lock.
 | |
|  */
 | |
| RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
 | |
| 
 | |
| static MemoryRegion *system_memory;
 | |
| static MemoryRegion *system_io;
 | |
| 
 | |
| AddressSpace address_space_io;
 | |
| AddressSpace address_space_memory;
 | |
| 
 | |
| MemoryRegion io_mem_rom, io_mem_notdirty;
 | |
| static MemoryRegion io_mem_unassigned;
 | |
| 
 | |
| /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
 | |
| #define RAM_PREALLOC   (1 << 0)
 | |
| 
 | |
| /* RAM is mmap-ed with MAP_SHARED */
 | |
| #define RAM_SHARED     (1 << 1)
 | |
| 
 | |
| /* Only a portion of RAM (used_length) is actually used, and migrated.
 | |
|  * This used_length size can change across reboots.
 | |
|  */
 | |
| #define RAM_RESIZEABLE (1 << 2)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
 | |
| /* current CPU in the current thread. It is only valid inside
 | |
|    cpu_exec() */
 | |
| __thread CPUState *current_cpu;
 | |
| /* 0 = Do not count executed instructions.
 | |
|    1 = Precise instruction counting.
 | |
|    2 = Adaptive rate instruction counting.  */
 | |
| int use_icount;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| typedef struct PhysPageEntry PhysPageEntry;
 | |
| 
 | |
| struct PhysPageEntry {
 | |
|     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 | |
|     uint32_t skip : 6;
 | |
|      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 | |
|     uint32_t ptr : 26;
 | |
| };
 | |
| 
 | |
| #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 | |
| 
 | |
| /* Size of the L2 (and L3, etc) page tables.  */
 | |
| #define ADDR_SPACE_BITS 64
 | |
| 
 | |
| #define P_L2_BITS 9
 | |
| #define P_L2_SIZE (1 << P_L2_BITS)
 | |
| 
 | |
| #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 | |
| 
 | |
| typedef PhysPageEntry Node[P_L2_SIZE];
 | |
| 
 | |
| typedef struct PhysPageMap {
 | |
|     struct rcu_head rcu;
 | |
| 
 | |
|     unsigned sections_nb;
 | |
|     unsigned sections_nb_alloc;
 | |
|     unsigned nodes_nb;
 | |
|     unsigned nodes_nb_alloc;
 | |
|     Node *nodes;
 | |
|     MemoryRegionSection *sections;
 | |
| } PhysPageMap;
 | |
| 
 | |
| struct AddressSpaceDispatch {
 | |
|     struct rcu_head rcu;
 | |
| 
 | |
|     MemoryRegionSection *mru_section;
 | |
|     /* This is a multi-level map on the physical address space.
 | |
|      * The bottom level has pointers to MemoryRegionSections.
 | |
|      */
 | |
|     PhysPageEntry phys_map;
 | |
|     PhysPageMap map;
 | |
|     AddressSpace *as;
 | |
| };
 | |
| 
 | |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 | |
| typedef struct subpage_t {
 | |
|     MemoryRegion iomem;
 | |
|     AddressSpace *as;
 | |
|     hwaddr base;
 | |
|     uint16_t sub_section[TARGET_PAGE_SIZE];
 | |
| } subpage_t;
 | |
| 
 | |
| #define PHYS_SECTION_UNASSIGNED 0
 | |
| #define PHYS_SECTION_NOTDIRTY 1
 | |
| #define PHYS_SECTION_ROM 2
 | |
| #define PHYS_SECTION_WATCH 3
 | |
| 
 | |
| static void io_mem_init(void);
 | |
| static void memory_map_init(void);
 | |
| static void tcg_commit(MemoryListener *listener);
 | |
| 
 | |
| static MemoryRegion io_mem_watch;
 | |
| 
 | |
| /**
 | |
|  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 | |
|  * @cpu: the CPU whose AddressSpace this is
 | |
|  * @as: the AddressSpace itself
 | |
|  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 | |
|  * @tcg_as_listener: listener for tracking changes to the AddressSpace
 | |
|  */
 | |
| struct CPUAddressSpace {
 | |
|     CPUState *cpu;
 | |
|     AddressSpace *as;
 | |
|     struct AddressSpaceDispatch *memory_dispatch;
 | |
|     MemoryListener tcg_as_listener;
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 | |
| {
 | |
|     static unsigned alloc_hint = 16;
 | |
|     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 | |
|         map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
 | |
|         map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
 | |
|         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 | |
|         alloc_hint = map->nodes_nb_alloc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 | |
| {
 | |
|     unsigned i;
 | |
|     uint32_t ret;
 | |
|     PhysPageEntry e;
 | |
|     PhysPageEntry *p;
 | |
| 
 | |
|     ret = map->nodes_nb++;
 | |
|     p = map->nodes[ret];
 | |
|     assert(ret != PHYS_MAP_NODE_NIL);
 | |
|     assert(ret != map->nodes_nb_alloc);
 | |
| 
 | |
|     e.skip = leaf ? 0 : 1;
 | |
|     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 | |
|     for (i = 0; i < P_L2_SIZE; ++i) {
 | |
|         memcpy(&p[i], &e, sizeof(e));
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 | |
|                                 hwaddr *index, hwaddr *nb, uint16_t leaf,
 | |
|                                 int level)
 | |
| {
 | |
|     PhysPageEntry *p;
 | |
|     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 | |
| 
 | |
|     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         lp->ptr = phys_map_node_alloc(map, level == 0);
 | |
|     }
 | |
|     p = map->nodes[lp->ptr];
 | |
|     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 | |
| 
 | |
|     while (*nb && lp < &p[P_L2_SIZE]) {
 | |
|         if ((*index & (step - 1)) == 0 && *nb >= step) {
 | |
|             lp->skip = 0;
 | |
|             lp->ptr = leaf;
 | |
|             *index += step;
 | |
|             *nb -= step;
 | |
|         } else {
 | |
|             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 | |
|         }
 | |
|         ++lp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_page_set(AddressSpaceDispatch *d,
 | |
|                           hwaddr index, hwaddr nb,
 | |
|                           uint16_t leaf)
 | |
| {
 | |
|     /* Wildly overreserve - it doesn't matter much. */
 | |
|     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 | |
| 
 | |
|     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 | |
| }
 | |
| 
 | |
| /* Compact a non leaf page entry. Simply detect that the entry has a single child,
 | |
|  * and update our entry so we can skip it and go directly to the destination.
 | |
|  */
 | |
| static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 | |
| {
 | |
|     unsigned valid_ptr = P_L2_SIZE;
 | |
|     int valid = 0;
 | |
|     PhysPageEntry *p;
 | |
|     int i;
 | |
| 
 | |
|     if (lp->ptr == PHYS_MAP_NODE_NIL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     p = nodes[lp->ptr];
 | |
|     for (i = 0; i < P_L2_SIZE; i++) {
 | |
|         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         valid_ptr = i;
 | |
|         valid++;
 | |
|         if (p[i].skip) {
 | |
|             phys_page_compact(&p[i], nodes);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We can only compress if there's only one child. */
 | |
|     if (valid != 1) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(valid_ptr < P_L2_SIZE);
 | |
| 
 | |
|     /* Don't compress if it won't fit in the # of bits we have. */
 | |
|     if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     lp->ptr = p[valid_ptr].ptr;
 | |
|     if (!p[valid_ptr].skip) {
 | |
|         /* If our only child is a leaf, make this a leaf. */
 | |
|         /* By design, we should have made this node a leaf to begin with so we
 | |
|          * should never reach here.
 | |
|          * But since it's so simple to handle this, let's do it just in case we
 | |
|          * change this rule.
 | |
|          */
 | |
|         lp->skip = 0;
 | |
|     } else {
 | |
|         lp->skip += p[valid_ptr].skip;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
 | |
| {
 | |
|     if (d->phys_map.skip) {
 | |
|         phys_page_compact(&d->phys_map, d->map.nodes);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline bool section_covers_addr(const MemoryRegionSection *section,
 | |
|                                        hwaddr addr)
 | |
| {
 | |
|     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 | |
|      * the section must cover the entire address space.
 | |
|      */
 | |
|     return section->size.hi ||
 | |
|            range_covers_byte(section->offset_within_address_space,
 | |
|                              section->size.lo, addr);
 | |
| }
 | |
| 
 | |
| static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
 | |
|                                            Node *nodes, MemoryRegionSection *sections)
 | |
| {
 | |
|     PhysPageEntry *p;
 | |
|     hwaddr index = addr >> TARGET_PAGE_BITS;
 | |
|     int i;
 | |
| 
 | |
|     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 | |
|         if (lp.ptr == PHYS_MAP_NODE_NIL) {
 | |
|             return §ions[PHYS_SECTION_UNASSIGNED];
 | |
|         }
 | |
|         p = nodes[lp.ptr];
 | |
|         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 | |
|     }
 | |
| 
 | |
|     if (section_covers_addr(§ions[lp.ptr], addr)) {
 | |
|         return §ions[lp.ptr];
 | |
|     } else {
 | |
|         return §ions[PHYS_SECTION_UNASSIGNED];
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool memory_region_is_unassigned(MemoryRegion *mr)
 | |
| {
 | |
|     return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
 | |
|         && mr != &io_mem_watch;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 | |
|                                                         hwaddr addr,
 | |
|                                                         bool resolve_subpage)
 | |
| {
 | |
|     MemoryRegionSection *section = atomic_read(&d->mru_section);
 | |
|     subpage_t *subpage;
 | |
|     bool update;
 | |
| 
 | |
|     if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
 | |
|         section_covers_addr(section, addr)) {
 | |
|         update = false;
 | |
|     } else {
 | |
|         section = phys_page_find(d->phys_map, addr, d->map.nodes,
 | |
|                                  d->map.sections);
 | |
|         update = true;
 | |
|     }
 | |
|     if (resolve_subpage && section->mr->subpage) {
 | |
|         subpage = container_of(section->mr, subpage_t, iomem);
 | |
|         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 | |
|     }
 | |
|     if (update) {
 | |
|         atomic_set(&d->mru_section, section);
 | |
|     }
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| static MemoryRegionSection *
 | |
| address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 | |
|                                  hwaddr *plen, bool resolve_subpage)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     Int128 diff;
 | |
| 
 | |
|     section = address_space_lookup_region(d, addr, resolve_subpage);
 | |
|     /* Compute offset within MemoryRegionSection */
 | |
|     addr -= section->offset_within_address_space;
 | |
| 
 | |
|     /* Compute offset within MemoryRegion */
 | |
|     *xlat = addr + section->offset_within_region;
 | |
| 
 | |
|     mr = section->mr;
 | |
| 
 | |
|     /* MMIO registers can be expected to perform full-width accesses based only
 | |
|      * on their address, without considering adjacent registers that could
 | |
|      * decode to completely different MemoryRegions.  When such registers
 | |
|      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 | |
|      * regions overlap wildly.  For this reason we cannot clamp the accesses
 | |
|      * here.
 | |
|      *
 | |
|      * If the length is small (as is the case for address_space_ldl/stl),
 | |
|      * everything works fine.  If the incoming length is large, however,
 | |
|      * the caller really has to do the clamping through memory_access_size.
 | |
|      */
 | |
|     if (memory_region_is_ram(mr)) {
 | |
|         diff = int128_sub(section->size, int128_make64(addr));
 | |
|         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 | |
|     }
 | |
|     return section;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
 | |
|                                       hwaddr *xlat, hwaddr *plen,
 | |
|                                       bool is_write)
 | |
| {
 | |
|     IOMMUTLBEntry iotlb;
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     for (;;) {
 | |
|         AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
 | |
|         section = address_space_translate_internal(d, addr, &addr, plen, true);
 | |
|         mr = section->mr;
 | |
| 
 | |
|         if (!mr->iommu_ops) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         iotlb = mr->iommu_ops->translate(mr, addr, is_write);
 | |
|         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 | |
|                 | (addr & iotlb.addr_mask));
 | |
|         *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
 | |
|         if (!(iotlb.perm & (1 << is_write))) {
 | |
|             mr = &io_mem_unassigned;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         as = iotlb.target_as;
 | |
|     }
 | |
| 
 | |
|     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 | |
|         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 | |
|         *plen = MIN(page, *plen);
 | |
|     }
 | |
| 
 | |
|     *xlat = addr;
 | |
|     return mr;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| MemoryRegionSection *
 | |
| address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
 | |
|                                   hwaddr *xlat, hwaddr *plen)
 | |
| {
 | |
|     MemoryRegionSection *section;
 | |
|     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
 | |
| 
 | |
|     section = address_space_translate_internal(d, addr, xlat, plen, false);
 | |
| 
 | |
|     assert(!section->mr->iommu_ops);
 | |
|     return section;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static int cpu_common_post_load(void *opaque, int version_id)
 | |
| {
 | |
|     CPUState *cpu = opaque;
 | |
| 
 | |
|     /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
 | |
|        version_id is increased. */
 | |
|     cpu->interrupt_request &= ~0x01;
 | |
|     tlb_flush(cpu, 1);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int cpu_common_pre_load(void *opaque)
 | |
| {
 | |
|     CPUState *cpu = opaque;
 | |
| 
 | |
|     cpu->exception_index = -1;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool cpu_common_exception_index_needed(void *opaque)
 | |
| {
 | |
|     CPUState *cpu = opaque;
 | |
| 
 | |
|     return tcg_enabled() && cpu->exception_index != -1;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_cpu_common_exception_index = {
 | |
|     .name = "cpu_common/exception_index",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = cpu_common_exception_index_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_INT32(exception_index, CPUState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static bool cpu_common_crash_occurred_needed(void *opaque)
 | |
| {
 | |
|     CPUState *cpu = opaque;
 | |
| 
 | |
|     return cpu->crash_occurred;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_cpu_common_crash_occurred = {
 | |
|     .name = "cpu_common/crash_occurred",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .needed = cpu_common_crash_occurred_needed,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_BOOL(crash_occurred, CPUState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| const VMStateDescription vmstate_cpu_common = {
 | |
|     .name = "cpu_common",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .pre_load = cpu_common_pre_load,
 | |
|     .post_load = cpu_common_post_load,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT32(halted, CPUState),
 | |
|         VMSTATE_UINT32(interrupt_request, CPUState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     },
 | |
|     .subsections = (const VMStateDescription*[]) {
 | |
|         &vmstate_cpu_common_exception_index,
 | |
|         &vmstate_cpu_common_crash_occurred,
 | |
|         NULL
 | |
|     }
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| CPUState *qemu_get_cpu(int index)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu->cpu_index == index) {
 | |
|             return cpu;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
 | |
| {
 | |
|     CPUAddressSpace *newas;
 | |
| 
 | |
|     /* Target code should have set num_ases before calling us */
 | |
|     assert(asidx < cpu->num_ases);
 | |
| 
 | |
|     if (asidx == 0) {
 | |
|         /* address space 0 gets the convenience alias */
 | |
|         cpu->as = as;
 | |
|     }
 | |
| 
 | |
|     /* KVM cannot currently support multiple address spaces. */
 | |
|     assert(asidx == 0 || !kvm_enabled());
 | |
| 
 | |
|     if (!cpu->cpu_ases) {
 | |
|         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 | |
|     }
 | |
| 
 | |
|     newas = &cpu->cpu_ases[asidx];
 | |
|     newas->cpu = cpu;
 | |
|     newas->as = as;
 | |
|     if (tcg_enabled()) {
 | |
|         newas->tcg_as_listener.commit = tcg_commit;
 | |
|         memory_listener_register(&newas->tcg_as_listener, as);
 | |
|     }
 | |
| }
 | |
| 
 | |
| AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 | |
| {
 | |
|     /* Return the AddressSpace corresponding to the specified index */
 | |
|     return cpu->cpu_ases[asidx].as;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void cpu_exec_exit(CPUState *cpu)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     cpu_list_remove(cpu);
 | |
| 
 | |
|     if (cc->vmsd != NULL) {
 | |
|         vmstate_unregister(NULL, cc->vmsd, cpu);
 | |
|     }
 | |
|     if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 | |
|         vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_exec_init(CPUState *cpu, Error **errp)
 | |
| {
 | |
|     CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
 | |
|     Error *local_err ATTRIBUTE_UNUSED = NULL;
 | |
| 
 | |
|     cpu->as = NULL;
 | |
|     cpu->num_ases = 0;
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     cpu->thread_id = qemu_get_thread_id();
 | |
| 
 | |
|     /* This is a softmmu CPU object, so create a property for it
 | |
|      * so users can wire up its memory. (This can't go in qom/cpu.c
 | |
|      * because that file is compiled only once for both user-mode
 | |
|      * and system builds.) The default if no link is set up is to use
 | |
|      * the system address space.
 | |
|      */
 | |
|     object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
 | |
|                              (Object **)&cpu->memory,
 | |
|                              qdev_prop_allow_set_link_before_realize,
 | |
|                              OBJ_PROP_LINK_UNREF_ON_RELEASE,
 | |
|                              &error_abort);
 | |
|     cpu->memory = system_memory;
 | |
|     object_ref(OBJECT(cpu->memory));
 | |
| #endif
 | |
| 
 | |
|     cpu_list_add(cpu);
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
 | |
|         vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
 | |
|     }
 | |
|     if (cc->vmsd != NULL) {
 | |
|         vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 | |
| {
 | |
|     tb_invalidate_phys_page_range(pc, pc + 1, 0);
 | |
| }
 | |
| #else
 | |
| static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
 | |
| {
 | |
|     MemTxAttrs attrs;
 | |
|     hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
 | |
|     int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | |
|     if (phys != -1) {
 | |
|         tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
 | |
|                                 phys | (pc & ~TARGET_PAGE_MASK));
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 | |
| 
 | |
| {
 | |
| }
 | |
| 
 | |
| int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
 | |
|                           int flags)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
 | |
| {
 | |
| }
 | |
| 
 | |
| int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| #else
 | |
| /* Add a watchpoint.  */
 | |
| int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
 | |
|                           int flags, CPUWatchpoint **watchpoint)
 | |
| {
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     /* forbid ranges which are empty or run off the end of the address space */
 | |
|     if (len == 0 || (addr + len - 1) < addr) {
 | |
|         error_report("tried to set invalid watchpoint at %"
 | |
|                      VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     wp = g_malloc(sizeof(*wp));
 | |
| 
 | |
|     wp->vaddr = addr;
 | |
|     wp->len = len;
 | |
|     wp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected watchpoints in front */
 | |
|     if (flags & BP_GDB) {
 | |
|         QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
 | |
|     } else {
 | |
|         QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
 | |
|     }
 | |
| 
 | |
|     tlb_flush_page(cpu, addr);
 | |
| 
 | |
|     if (watchpoint)
 | |
|         *watchpoint = wp;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint.  */
 | |
| int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
 | |
|                           int flags)
 | |
| {
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 | |
|         if (addr == wp->vaddr && len == wp->len
 | |
|                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
 | |
|             cpu_watchpoint_remove_by_ref(cpu, wp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /* Remove a specific watchpoint by reference.  */
 | |
| void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
 | |
| {
 | |
|     QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
 | |
| 
 | |
|     tlb_flush_page(cpu, watchpoint->vaddr);
 | |
| 
 | |
|     g_free(watchpoint);
 | |
| }
 | |
| 
 | |
| /* Remove all matching watchpoints.  */
 | |
| void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
 | |
| {
 | |
|     CPUWatchpoint *wp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
 | |
|         if (wp->flags & mask) {
 | |
|             cpu_watchpoint_remove_by_ref(cpu, wp);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if this watchpoint address matches the specified
 | |
|  * access (ie the address range covered by the watchpoint overlaps
 | |
|  * partially or completely with the address range covered by the
 | |
|  * access).
 | |
|  */
 | |
| static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
 | |
|                                                   vaddr addr,
 | |
|                                                   vaddr len)
 | |
| {
 | |
|     /* We know the lengths are non-zero, but a little caution is
 | |
|      * required to avoid errors in the case where the range ends
 | |
|      * exactly at the top of the address space and so addr + len
 | |
|      * wraps round to zero.
 | |
|      */
 | |
|     vaddr wpend = wp->vaddr + wp->len - 1;
 | |
|     vaddr addrend = addr + len - 1;
 | |
| 
 | |
|     return !(addr > wpend || wp->vaddr > addrend);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Add a breakpoint.  */
 | |
| int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
 | |
|                           CPUBreakpoint **breakpoint)
 | |
| {
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     bp = g_malloc(sizeof(*bp));
 | |
| 
 | |
|     bp->pc = pc;
 | |
|     bp->flags = flags;
 | |
| 
 | |
|     /* keep all GDB-injected breakpoints in front */
 | |
|     if (flags & BP_GDB) {
 | |
|         QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
 | |
|     } else {
 | |
|         QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
 | |
|     }
 | |
| 
 | |
|     breakpoint_invalidate(cpu, pc);
 | |
| 
 | |
|     if (breakpoint) {
 | |
|         *breakpoint = bp;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint.  */
 | |
| int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
 | |
| {
 | |
|     CPUBreakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
 | |
|         if (bp->pc == pc && bp->flags == flags) {
 | |
|             cpu_breakpoint_remove_by_ref(cpu, bp);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /* Remove a specific breakpoint by reference.  */
 | |
| void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
 | |
| {
 | |
|     QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
 | |
| 
 | |
|     breakpoint_invalidate(cpu, breakpoint->pc);
 | |
| 
 | |
|     g_free(breakpoint);
 | |
| }
 | |
| 
 | |
| /* Remove all matching breakpoints. */
 | |
| void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
 | |
| {
 | |
|     CPUBreakpoint *bp, *next;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
 | |
|         if (bp->flags & mask) {
 | |
|             cpu_breakpoint_remove_by_ref(cpu, bp);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the
 | |
|    CPU loop after each instruction */
 | |
| void cpu_single_step(CPUState *cpu, int enabled)
 | |
| {
 | |
|     if (cpu->singlestep_enabled != enabled) {
 | |
|         cpu->singlestep_enabled = enabled;
 | |
|         if (kvm_enabled()) {
 | |
|             kvm_update_guest_debug(cpu, 0);
 | |
|         } else {
 | |
|             /* must flush all the translated code to avoid inconsistencies */
 | |
|             /* XXX: only flush what is necessary */
 | |
|             tb_flush(cpu);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_abort(CPUState *cpu, const char *fmt, ...)
 | |
| {
 | |
|     va_list ap;
 | |
|     va_list ap2;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     va_copy(ap2, ap);
 | |
|     fprintf(stderr, "qemu: fatal: ");
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     fprintf(stderr, "\n");
 | |
|     cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | |
|     if (qemu_log_separate()) {
 | |
|         qemu_log("qemu: fatal: ");
 | |
|         qemu_log_vprintf(fmt, ap2);
 | |
|         qemu_log("\n");
 | |
|         log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
 | |
|         qemu_log_flush();
 | |
|         qemu_log_close();
 | |
|     }
 | |
|     va_end(ap2);
 | |
|     va_end(ap);
 | |
|     replay_finish();
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
|         struct sigaction act;
 | |
|         sigfillset(&act.sa_mask);
 | |
|         act.sa_handler = SIG_DFL;
 | |
|         sigaction(SIGABRT, &act, NULL);
 | |
|     }
 | |
| #endif
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* Called from RCU critical section */
 | |
| static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     block = atomic_rcu_read(&ram_list.mru_block);
 | |
|     if (block && addr - block->offset < block->max_length) {
 | |
|         return block;
 | |
|     }
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         if (addr - block->offset < block->max_length) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 | |
|     abort();
 | |
| 
 | |
| found:
 | |
|     /* It is safe to write mru_block outside the iothread lock.  This
 | |
|      * is what happens:
 | |
|      *
 | |
|      *     mru_block = xxx
 | |
|      *     rcu_read_unlock()
 | |
|      *                                        xxx removed from list
 | |
|      *                  rcu_read_lock()
 | |
|      *                  read mru_block
 | |
|      *                                        mru_block = NULL;
 | |
|      *                                        call_rcu(reclaim_ramblock, xxx);
 | |
|      *                  rcu_read_unlock()
 | |
|      *
 | |
|      * atomic_rcu_set is not needed here.  The block was already published
 | |
|      * when it was placed into the list.  Here we're just making an extra
 | |
|      * copy of the pointer.
 | |
|      */
 | |
|     ram_list.mru_block = block;
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     ram_addr_t start1;
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t end;
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start + length);
 | |
|     start &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     block = qemu_get_ram_block(start);
 | |
|     assert(block == qemu_get_ram_block(end - 1));
 | |
|     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
 | |
|     CPU_FOREACH(cpu) {
 | |
|         tlb_reset_dirty(cpu, start1, length);
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Note: start and end must be within the same ram block.  */
 | |
| bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
 | |
|                                               ram_addr_t length,
 | |
|                                               unsigned client)
 | |
| {
 | |
|     DirtyMemoryBlocks *blocks;
 | |
|     unsigned long end, page;
 | |
|     bool dirty = false;
 | |
| 
 | |
|     if (length == 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 | |
|     page = start >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
 | |
| 
 | |
|     while (page < end) {
 | |
|         unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 | |
|         unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 | |
|         unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
 | |
| 
 | |
|         dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
 | |
|                                               offset, num);
 | |
|         page += num;
 | |
|     }
 | |
| 
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     if (dirty && tcg_enabled()) {
 | |
|         tlb_reset_dirty_range_all(start, length);
 | |
|     }
 | |
| 
 | |
|     return dirty;
 | |
| }
 | |
| 
 | |
| /* Called from RCU critical section */
 | |
| hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 | |
|                                        MemoryRegionSection *section,
 | |
|                                        target_ulong vaddr,
 | |
|                                        hwaddr paddr, hwaddr xlat,
 | |
|                                        int prot,
 | |
|                                        target_ulong *address)
 | |
| {
 | |
|     hwaddr iotlb;
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     if (memory_region_is_ram(section->mr)) {
 | |
|         /* Normal RAM.  */
 | |
|         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
 | |
|         if (!section->readonly) {
 | |
|             iotlb |= PHYS_SECTION_NOTDIRTY;
 | |
|         } else {
 | |
|             iotlb |= PHYS_SECTION_ROM;
 | |
|         }
 | |
|     } else {
 | |
|         AddressSpaceDispatch *d;
 | |
| 
 | |
|         d = atomic_rcu_read(§ion->address_space->dispatch);
 | |
|         iotlb = section - d->map.sections;
 | |
|         iotlb += xlat;
 | |
|     }
 | |
| 
 | |
|     /* Make accesses to pages with watchpoints go via the
 | |
|        watchpoint trap routines.  */
 | |
|     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 | |
|         if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
 | |
|             /* Avoid trapping reads of pages with a write breakpoint. */
 | |
|             if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
 | |
|                 iotlb = PHYS_SECTION_WATCH + paddr;
 | |
|                 *address |= TLB_MMIO;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return iotlb;
 | |
| }
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              uint16_t section);
 | |
| static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
 | |
| 
 | |
| static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
 | |
|                                qemu_anon_ram_alloc;
 | |
| 
 | |
| /*
 | |
|  * Set a custom physical guest memory alloator.
 | |
|  * Accelerators with unusual needs may need this.  Hopefully, we can
 | |
|  * get rid of it eventually.
 | |
|  */
 | |
| void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
 | |
| {
 | |
|     phys_mem_alloc = alloc;
 | |
| }
 | |
| 
 | |
| static uint16_t phys_section_add(PhysPageMap *map,
 | |
|                                  MemoryRegionSection *section)
 | |
| {
 | |
|     /* The physical section number is ORed with a page-aligned
 | |
|      * pointer to produce the iotlb entries.  Thus it should
 | |
|      * never overflow into the page-aligned value.
 | |
|      */
 | |
|     assert(map->sections_nb < TARGET_PAGE_SIZE);
 | |
| 
 | |
|     if (map->sections_nb == map->sections_nb_alloc) {
 | |
|         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
 | |
|         map->sections = g_renew(MemoryRegionSection, map->sections,
 | |
|                                 map->sections_nb_alloc);
 | |
|     }
 | |
|     map->sections[map->sections_nb] = *section;
 | |
|     memory_region_ref(section->mr);
 | |
|     return map->sections_nb++;
 | |
| }
 | |
| 
 | |
| static void phys_section_destroy(MemoryRegion *mr)
 | |
| {
 | |
|     bool have_sub_page = mr->subpage;
 | |
| 
 | |
|     memory_region_unref(mr);
 | |
| 
 | |
|     if (have_sub_page) {
 | |
|         subpage_t *subpage = container_of(mr, subpage_t, iomem);
 | |
|         object_unref(OBJECT(&subpage->iomem));
 | |
|         g_free(subpage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void phys_sections_free(PhysPageMap *map)
 | |
| {
 | |
|     while (map->sections_nb > 0) {
 | |
|         MemoryRegionSection *section = &map->sections[--map->sections_nb];
 | |
|         phys_section_destroy(section->mr);
 | |
|     }
 | |
|     g_free(map->sections);
 | |
|     g_free(map->nodes);
 | |
| }
 | |
| 
 | |
| static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
 | |
| {
 | |
|     subpage_t *subpage;
 | |
|     hwaddr base = section->offset_within_address_space
 | |
|         & TARGET_PAGE_MASK;
 | |
|     MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
 | |
|                                                    d->map.nodes, d->map.sections);
 | |
|     MemoryRegionSection subsection = {
 | |
|         .offset_within_address_space = base,
 | |
|         .size = int128_make64(TARGET_PAGE_SIZE),
 | |
|     };
 | |
|     hwaddr start, end;
 | |
| 
 | |
|     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
 | |
| 
 | |
|     if (!(existing->mr->subpage)) {
 | |
|         subpage = subpage_init(d->as, base);
 | |
|         subsection.address_space = d->as;
 | |
|         subsection.mr = &subpage->iomem;
 | |
|         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
 | |
|                       phys_section_add(&d->map, &subsection));
 | |
|     } else {
 | |
|         subpage = container_of(existing->mr, subpage_t, iomem);
 | |
|     }
 | |
|     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
 | |
|     end = start + int128_get64(section->size) - 1;
 | |
|     subpage_register(subpage, start, end,
 | |
|                      phys_section_add(&d->map, section));
 | |
| }
 | |
| 
 | |
| 
 | |
| static void register_multipage(AddressSpaceDispatch *d,
 | |
|                                MemoryRegionSection *section)
 | |
| {
 | |
|     hwaddr start_addr = section->offset_within_address_space;
 | |
|     uint16_t section_index = phys_section_add(&d->map, section);
 | |
|     uint64_t num_pages = int128_get64(int128_rshift(section->size,
 | |
|                                                     TARGET_PAGE_BITS));
 | |
| 
 | |
|     assert(num_pages);
 | |
|     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
 | |
| }
 | |
| 
 | |
| static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
 | |
| {
 | |
|     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
 | |
|     AddressSpaceDispatch *d = as->next_dispatch;
 | |
|     MemoryRegionSection now = *section, remain = *section;
 | |
|     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
 | |
| 
 | |
|     if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
 | |
|         uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
 | |
|                        - now.offset_within_address_space;
 | |
| 
 | |
|         now.size = int128_min(int128_make64(left), now.size);
 | |
|         register_subpage(d, &now);
 | |
|     } else {
 | |
|         now.size = int128_zero();
 | |
|     }
 | |
|     while (int128_ne(remain.size, now.size)) {
 | |
|         remain.size = int128_sub(remain.size, now.size);
 | |
|         remain.offset_within_address_space += int128_get64(now.size);
 | |
|         remain.offset_within_region += int128_get64(now.size);
 | |
|         now = remain;
 | |
|         if (int128_lt(remain.size, page_size)) {
 | |
|             register_subpage(d, &now);
 | |
|         } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
 | |
|             now.size = page_size;
 | |
|             register_subpage(d, &now);
 | |
|         } else {
 | |
|             now.size = int128_and(now.size, int128_neg(page_size));
 | |
|             register_multipage(d, &now);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void qemu_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     if (kvm_enabled())
 | |
|         kvm_flush_coalesced_mmio_buffer();
 | |
| }
 | |
| 
 | |
| void qemu_mutex_lock_ramlist(void)
 | |
| {
 | |
|     qemu_mutex_lock(&ram_list.mutex);
 | |
| }
 | |
| 
 | |
| void qemu_mutex_unlock_ramlist(void)
 | |
| {
 | |
|     qemu_mutex_unlock(&ram_list.mutex);
 | |
| }
 | |
| 
 | |
| #ifdef __linux__
 | |
| static void *file_ram_alloc(RAMBlock *block,
 | |
|                             ram_addr_t memory,
 | |
|                             const char *path,
 | |
|                             Error **errp)
 | |
| {
 | |
|     bool unlink_on_error = false;
 | |
|     char *filename;
 | |
|     char *sanitized_name;
 | |
|     char *c;
 | |
|     void *area = MAP_FAILED;
 | |
|     int fd = -1;
 | |
| 
 | |
|     if (kvm_enabled() && !kvm_has_sync_mmu()) {
 | |
|         error_setg(errp,
 | |
|                    "host lacks kvm mmu notifiers, -mem-path unsupported");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     for (;;) {
 | |
|         fd = open(path, O_RDWR);
 | |
|         if (fd >= 0) {
 | |
|             /* @path names an existing file, use it */
 | |
|             break;
 | |
|         }
 | |
|         if (errno == ENOENT) {
 | |
|             /* @path names a file that doesn't exist, create it */
 | |
|             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
 | |
|             if (fd >= 0) {
 | |
|                 unlink_on_error = true;
 | |
|                 break;
 | |
|             }
 | |
|         } else if (errno == EISDIR) {
 | |
|             /* @path names a directory, create a file there */
 | |
|             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
 | |
|             sanitized_name = g_strdup(memory_region_name(block->mr));
 | |
|             for (c = sanitized_name; *c != '\0'; c++) {
 | |
|                 if (*c == '/') {
 | |
|                     *c = '_';
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
 | |
|                                        sanitized_name);
 | |
|             g_free(sanitized_name);
 | |
| 
 | |
|             fd = mkstemp(filename);
 | |
|             if (fd >= 0) {
 | |
|                 unlink(filename);
 | |
|                 g_free(filename);
 | |
|                 break;
 | |
|             }
 | |
|             g_free(filename);
 | |
|         }
 | |
|         if (errno != EEXIST && errno != EINTR) {
 | |
|             error_setg_errno(errp, errno,
 | |
|                              "can't open backing store %s for guest RAM",
 | |
|                              path);
 | |
|             goto error;
 | |
|         }
 | |
|         /*
 | |
|          * Try again on EINTR and EEXIST.  The latter happens when
 | |
|          * something else creates the file between our two open().
 | |
|          */
 | |
|     }
 | |
| 
 | |
|     block->page_size = qemu_fd_getpagesize(fd);
 | |
|     block->mr->align = MAX(block->page_size, QEMU_VMALLOC_ALIGN);
 | |
| 
 | |
|     if (memory < block->page_size) {
 | |
|         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
 | |
|                    "or larger than page size 0x%zx",
 | |
|                    memory, block->page_size);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     memory = ROUND_UP(memory, block->page_size);
 | |
| 
 | |
|     /*
 | |
|      * ftruncate is not supported by hugetlbfs in older
 | |
|      * hosts, so don't bother bailing out on errors.
 | |
|      * If anything goes wrong with it under other filesystems,
 | |
|      * mmap will fail.
 | |
|      */
 | |
|     if (ftruncate(fd, memory)) {
 | |
|         perror("ftruncate");
 | |
|     }
 | |
| 
 | |
|     area = qemu_ram_mmap(fd, memory, block->mr->align,
 | |
|                          block->flags & RAM_SHARED);
 | |
|     if (area == MAP_FAILED) {
 | |
|         error_setg_errno(errp, errno,
 | |
|                          "unable to map backing store for guest RAM");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (mem_prealloc) {
 | |
|         os_mem_prealloc(fd, area, memory, errp);
 | |
|         if (errp && *errp) {
 | |
|             goto error;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     block->fd = fd;
 | |
|     return area;
 | |
| 
 | |
| error:
 | |
|     if (area != MAP_FAILED) {
 | |
|         qemu_ram_munmap(area, memory);
 | |
|     }
 | |
|     if (unlink_on_error) {
 | |
|         unlink(path);
 | |
|     }
 | |
|     if (fd != -1) {
 | |
|         close(fd);
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Called with the ramlist lock held.  */
 | |
| static ram_addr_t find_ram_offset(ram_addr_t size)
 | |
| {
 | |
|     RAMBlock *block, *next_block;
 | |
|     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
 | |
| 
 | |
|     assert(size != 0); /* it would hand out same offset multiple times */
 | |
| 
 | |
|     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         ram_addr_t end, next = RAM_ADDR_MAX;
 | |
| 
 | |
|         end = block->offset + block->max_length;
 | |
| 
 | |
|         QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
 | |
|             if (next_block->offset >= end) {
 | |
|                 next = MIN(next, next_block->offset);
 | |
|             }
 | |
|         }
 | |
|         if (next - end >= size && next - end < mingap) {
 | |
|             offset = end;
 | |
|             mingap = next - end;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (offset == RAM_ADDR_MAX) {
 | |
|         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
 | |
|                 (uint64_t)size);
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return offset;
 | |
| }
 | |
| 
 | |
| ram_addr_t last_ram_offset(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t last = 0;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         last = MAX(last, block->offset + block->max_length);
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return last;
 | |
| }
 | |
| 
 | |
| static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
 | |
|     if (!machine_dump_guest_core(current_machine)) {
 | |
|         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
 | |
|         if (ret) {
 | |
|             perror("qemu_madvise");
 | |
|             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
 | |
|                             "but dump_guest_core=off specified\n");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| const char *qemu_ram_get_idstr(RAMBlock *rb)
 | |
| {
 | |
|     return rb->idstr;
 | |
| }
 | |
| 
 | |
| /* Called with iothread lock held.  */
 | |
| void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     assert(new_block);
 | |
|     assert(!new_block->idstr[0]);
 | |
| 
 | |
|     if (dev) {
 | |
|         char *id = qdev_get_dev_path(dev);
 | |
|         if (id) {
 | |
|             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
 | |
|             g_free(id);
 | |
|         }
 | |
|     }
 | |
|     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         if (block != new_block &&
 | |
|             !strcmp(block->idstr, new_block->idstr)) {
 | |
|             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
 | |
|                     new_block->idstr);
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* Called with iothread lock held.  */
 | |
| void qemu_ram_unset_idstr(RAMBlock *block)
 | |
| {
 | |
|     /* FIXME: arch_init.c assumes that this is not called throughout
 | |
|      * migration.  Ignore the problem since hot-unplug during migration
 | |
|      * does not work anyway.
 | |
|      */
 | |
|     if (block) {
 | |
|         memset(block->idstr, 0, sizeof(block->idstr));
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t qemu_ram_pagesize(RAMBlock *rb)
 | |
| {
 | |
|     return rb->page_size;
 | |
| }
 | |
| 
 | |
| static int memory_try_enable_merging(void *addr, size_t len)
 | |
| {
 | |
|     if (!machine_mem_merge(current_machine)) {
 | |
|         /* disabled by the user */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
 | |
| }
 | |
| 
 | |
| /* Only legal before guest might have detected the memory size: e.g. on
 | |
|  * incoming migration, or right after reset.
 | |
|  *
 | |
|  * As memory core doesn't know how is memory accessed, it is up to
 | |
|  * resize callback to update device state and/or add assertions to detect
 | |
|  * misuse, if necessary.
 | |
|  */
 | |
| int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
 | |
| {
 | |
|     assert(block);
 | |
| 
 | |
|     newsize = HOST_PAGE_ALIGN(newsize);
 | |
| 
 | |
|     if (block->used_length == newsize) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!(block->flags & RAM_RESIZEABLE)) {
 | |
|         error_setg_errno(errp, EINVAL,
 | |
|                          "Length mismatch: %s: 0x" RAM_ADDR_FMT
 | |
|                          " in != 0x" RAM_ADDR_FMT, block->idstr,
 | |
|                          newsize, block->used_length);
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     if (block->max_length < newsize) {
 | |
|         error_setg_errno(errp, EINVAL,
 | |
|                          "Length too large: %s: 0x" RAM_ADDR_FMT
 | |
|                          " > 0x" RAM_ADDR_FMT, block->idstr,
 | |
|                          newsize, block->max_length);
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
 | |
|     block->used_length = newsize;
 | |
|     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
 | |
|                                         DIRTY_CLIENTS_ALL);
 | |
|     memory_region_set_size(block->mr, newsize);
 | |
|     if (block->resized) {
 | |
|         block->resized(block->idstr, newsize, block->host);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Called with ram_list.mutex held */
 | |
| static void dirty_memory_extend(ram_addr_t old_ram_size,
 | |
|                                 ram_addr_t new_ram_size)
 | |
| {
 | |
|     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
 | |
|                                              DIRTY_MEMORY_BLOCK_SIZE);
 | |
|     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
 | |
|                                              DIRTY_MEMORY_BLOCK_SIZE);
 | |
|     int i;
 | |
| 
 | |
|     /* Only need to extend if block count increased */
 | |
|     if (new_num_blocks <= old_num_blocks) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
 | |
|         DirtyMemoryBlocks *old_blocks;
 | |
|         DirtyMemoryBlocks *new_blocks;
 | |
|         int j;
 | |
| 
 | |
|         old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
 | |
|         new_blocks = g_malloc(sizeof(*new_blocks) +
 | |
|                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
 | |
| 
 | |
|         if (old_num_blocks) {
 | |
|             memcpy(new_blocks->blocks, old_blocks->blocks,
 | |
|                    old_num_blocks * sizeof(old_blocks->blocks[0]));
 | |
|         }
 | |
| 
 | |
|         for (j = old_num_blocks; j < new_num_blocks; j++) {
 | |
|             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
 | |
|         }
 | |
| 
 | |
|         atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
 | |
| 
 | |
|         if (old_blocks) {
 | |
|             g_free_rcu(old_blocks, rcu);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ram_block_add(RAMBlock *new_block, Error **errp)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     RAMBlock *last_block = NULL;
 | |
|     ram_addr_t old_ram_size, new_ram_size;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     new_block->offset = find_ram_offset(new_block->max_length);
 | |
| 
 | |
|     if (!new_block->host) {
 | |
|         if (xen_enabled()) {
 | |
|             xen_ram_alloc(new_block->offset, new_block->max_length,
 | |
|                           new_block->mr, &err);
 | |
|             if (err) {
 | |
|                 error_propagate(errp, err);
 | |
|                 qemu_mutex_unlock_ramlist();
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             new_block->host = phys_mem_alloc(new_block->max_length,
 | |
|                                              &new_block->mr->align);
 | |
|             if (!new_block->host) {
 | |
|                 error_setg_errno(errp, errno,
 | |
|                                  "cannot set up guest memory '%s'",
 | |
|                                  memory_region_name(new_block->mr));
 | |
|                 qemu_mutex_unlock_ramlist();
 | |
|                 return;
 | |
|             }
 | |
|             memory_try_enable_merging(new_block->host, new_block->max_length);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     new_ram_size = MAX(old_ram_size,
 | |
|               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
 | |
|     if (new_ram_size > old_ram_size) {
 | |
|         migration_bitmap_extend(old_ram_size, new_ram_size);
 | |
|         dirty_memory_extend(old_ram_size, new_ram_size);
 | |
|     }
 | |
|     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
 | |
|      * QLIST (which has an RCU-friendly variant) does not have insertion at
 | |
|      * tail, so save the last element in last_block.
 | |
|      */
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         last_block = block;
 | |
|         if (block->max_length < new_block->max_length) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (block) {
 | |
|         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
 | |
|     } else if (last_block) {
 | |
|         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
 | |
|     } else { /* list is empty */
 | |
|         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
 | |
|     }
 | |
|     ram_list.mru_block = NULL;
 | |
| 
 | |
|     /* Write list before version */
 | |
|     smp_wmb();
 | |
|     ram_list.version++;
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| 
 | |
|     cpu_physical_memory_set_dirty_range(new_block->offset,
 | |
|                                         new_block->used_length,
 | |
|                                         DIRTY_CLIENTS_ALL);
 | |
| 
 | |
|     if (new_block->host) {
 | |
|         qemu_ram_setup_dump(new_block->host, new_block->max_length);
 | |
|         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
 | |
|         /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
 | |
|         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef __linux__
 | |
| RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
 | |
|                                    bool share, const char *mem_path,
 | |
|                                    Error **errp)
 | |
| {
 | |
|     RAMBlock *new_block;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         error_setg(errp, "-mem-path not supported with Xen");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (phys_mem_alloc != qemu_anon_ram_alloc) {
 | |
|         /*
 | |
|          * file_ram_alloc() needs to allocate just like
 | |
|          * phys_mem_alloc, but we haven't bothered to provide
 | |
|          * a hook there.
 | |
|          */
 | |
|         error_setg(errp,
 | |
|                    "-mem-path not supported with this accelerator");
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     size = HOST_PAGE_ALIGN(size);
 | |
|     new_block = g_malloc0(sizeof(*new_block));
 | |
|     new_block->mr = mr;
 | |
|     new_block->used_length = size;
 | |
|     new_block->max_length = size;
 | |
|     new_block->flags = share ? RAM_SHARED : 0;
 | |
|     new_block->host = file_ram_alloc(new_block, size,
 | |
|                                      mem_path, errp);
 | |
|     if (!new_block->host) {
 | |
|         g_free(new_block);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     ram_block_add(new_block, &local_err);
 | |
|     if (local_err) {
 | |
|         g_free(new_block);
 | |
|         error_propagate(errp, local_err);
 | |
|         return NULL;
 | |
|     }
 | |
|     return new_block;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static
 | |
| RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
 | |
|                                   void (*resized)(const char*,
 | |
|                                                   uint64_t length,
 | |
|                                                   void *host),
 | |
|                                   void *host, bool resizeable,
 | |
|                                   MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     RAMBlock *new_block;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     size = HOST_PAGE_ALIGN(size);
 | |
|     max_size = HOST_PAGE_ALIGN(max_size);
 | |
|     new_block = g_malloc0(sizeof(*new_block));
 | |
|     new_block->mr = mr;
 | |
|     new_block->resized = resized;
 | |
|     new_block->used_length = size;
 | |
|     new_block->max_length = max_size;
 | |
|     assert(max_size >= size);
 | |
|     new_block->fd = -1;
 | |
|     new_block->page_size = getpagesize();
 | |
|     new_block->host = host;
 | |
|     if (host) {
 | |
|         new_block->flags |= RAM_PREALLOC;
 | |
|     }
 | |
|     if (resizeable) {
 | |
|         new_block->flags |= RAM_RESIZEABLE;
 | |
|     }
 | |
|     ram_block_add(new_block, &local_err);
 | |
|     if (local_err) {
 | |
|         g_free(new_block);
 | |
|         error_propagate(errp, local_err);
 | |
|         return NULL;
 | |
|     }
 | |
|     return new_block;
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 | |
|                                    MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
 | |
| }
 | |
| 
 | |
| RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
 | |
|                                      void (*resized)(const char*,
 | |
|                                                      uint64_t length,
 | |
|                                                      void *host),
 | |
|                                      MemoryRegion *mr, Error **errp)
 | |
| {
 | |
|     return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
 | |
| }
 | |
| 
 | |
| static void reclaim_ramblock(RAMBlock *block)
 | |
| {
 | |
|     if (block->flags & RAM_PREALLOC) {
 | |
|         ;
 | |
|     } else if (xen_enabled()) {
 | |
|         xen_invalidate_map_cache_entry(block->host);
 | |
| #ifndef _WIN32
 | |
|     } else if (block->fd >= 0) {
 | |
|         qemu_ram_munmap(block->host, block->max_length);
 | |
|         close(block->fd);
 | |
| #endif
 | |
|     } else {
 | |
|         qemu_anon_ram_free(block->host, block->max_length);
 | |
|     }
 | |
|     g_free(block);
 | |
| }
 | |
| 
 | |
| void qemu_ram_free(RAMBlock *block)
 | |
| {
 | |
|     if (!block) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_lock_ramlist();
 | |
|     QLIST_REMOVE_RCU(block, next);
 | |
|     ram_list.mru_block = NULL;
 | |
|     /* Write list before version */
 | |
|     smp_wmb();
 | |
|     ram_list.version++;
 | |
|     call_rcu(block, reclaim_ramblock, rcu);
 | |
|     qemu_mutex_unlock_ramlist();
 | |
| }
 | |
| 
 | |
| #ifndef _WIN32
 | |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
|     int flags;
 | |
|     void *area, *vaddr;
 | |
| 
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         offset = addr - block->offset;
 | |
|         if (offset < block->max_length) {
 | |
|             vaddr = ramblock_ptr(block, offset);
 | |
|             if (block->flags & RAM_PREALLOC) {
 | |
|                 ;
 | |
|             } else if (xen_enabled()) {
 | |
|                 abort();
 | |
|             } else {
 | |
|                 flags = MAP_FIXED;
 | |
|                 if (block->fd >= 0) {
 | |
|                     flags |= (block->flags & RAM_SHARED ?
 | |
|                               MAP_SHARED : MAP_PRIVATE);
 | |
|                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                 flags, block->fd, offset);
 | |
|                 } else {
 | |
|                     /*
 | |
|                      * Remap needs to match alloc.  Accelerators that
 | |
|                      * set phys_mem_alloc never remap.  If they did,
 | |
|                      * we'd need a remap hook here.
 | |
|                      */
 | |
|                     assert(phys_mem_alloc == qemu_anon_ram_alloc);
 | |
| 
 | |
|                     flags |= MAP_PRIVATE | MAP_ANONYMOUS;
 | |
|                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
 | |
|                                 flags, -1, 0);
 | |
|                 }
 | |
|                 if (area != vaddr) {
 | |
|                     fprintf(stderr, "Could not remap addr: "
 | |
|                             RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
 | |
|                             length, addr);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 memory_try_enable_merging(vaddr, length);
 | |
|                 qemu_ram_setup_dump(vaddr, length);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif /* !_WIN32 */
 | |
| 
 | |
| /* Return a host pointer to ram allocated with qemu_ram_alloc.
 | |
|  * This should not be used for general purpose DMA.  Use address_space_map
 | |
|  * or address_space_rw instead. For local memory (e.g. video ram) that the
 | |
|  * device owns, use memory_region_get_ram_ptr.
 | |
|  *
 | |
|  * Called within RCU critical section.
 | |
|  */
 | |
| void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
 | |
| {
 | |
|     RAMBlock *block = ram_block;
 | |
| 
 | |
|     if (block == NULL) {
 | |
|         block = qemu_get_ram_block(addr);
 | |
|         addr -= block->offset;
 | |
|     }
 | |
| 
 | |
|     if (xen_enabled() && block->host == NULL) {
 | |
|         /* We need to check if the requested address is in the RAM
 | |
|          * because we don't want to map the entire memory in QEMU.
 | |
|          * In that case just map until the end of the page.
 | |
|          */
 | |
|         if (block->offset == 0) {
 | |
|             return xen_map_cache(addr, 0, 0);
 | |
|         }
 | |
| 
 | |
|         block->host = xen_map_cache(block->offset, block->max_length, 1);
 | |
|     }
 | |
|     return ramblock_ptr(block, addr);
 | |
| }
 | |
| 
 | |
| /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
 | |
|  * but takes a size argument.
 | |
|  *
 | |
|  * Called within RCU critical section.
 | |
|  */
 | |
| static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
 | |
|                                  hwaddr *size)
 | |
| {
 | |
|     RAMBlock *block = ram_block;
 | |
|     if (*size == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (block == NULL) {
 | |
|         block = qemu_get_ram_block(addr);
 | |
|         addr -= block->offset;
 | |
|     }
 | |
|     *size = MIN(*size, block->max_length - addr);
 | |
| 
 | |
|     if (xen_enabled() && block->host == NULL) {
 | |
|         /* We need to check if the requested address is in the RAM
 | |
|          * because we don't want to map the entire memory in QEMU.
 | |
|          * In that case just map the requested area.
 | |
|          */
 | |
|         if (block->offset == 0) {
 | |
|             return xen_map_cache(addr, *size, 1);
 | |
|         }
 | |
| 
 | |
|         block->host = xen_map_cache(block->offset, block->max_length, 1);
 | |
|     }
 | |
| 
 | |
|     return ramblock_ptr(block, addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
 | |
|  * in that RAMBlock.
 | |
|  *
 | |
|  * ptr: Host pointer to look up
 | |
|  * round_offset: If true round the result offset down to a page boundary
 | |
|  * *ram_addr: set to result ram_addr
 | |
|  * *offset: set to result offset within the RAMBlock
 | |
|  *
 | |
|  * Returns: RAMBlock (or NULL if not found)
 | |
|  *
 | |
|  * By the time this function returns, the returned pointer is not protected
 | |
|  * by RCU anymore.  If the caller is not within an RCU critical section and
 | |
|  * does not hold the iothread lock, it must have other means of protecting the
 | |
|  * pointer, such as a reference to the region that includes the incoming
 | |
|  * ram_addr_t.
 | |
|  */
 | |
| RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
 | |
|                                    ram_addr_t *offset)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint8_t *host = ptr;
 | |
| 
 | |
|     if (xen_enabled()) {
 | |
|         ram_addr_t ram_addr;
 | |
|         rcu_read_lock();
 | |
|         ram_addr = xen_ram_addr_from_mapcache(ptr);
 | |
|         block = qemu_get_ram_block(ram_addr);
 | |
|         if (block) {
 | |
|             *offset = ram_addr - block->offset;
 | |
|         }
 | |
|         rcu_read_unlock();
 | |
|         return block;
 | |
|     }
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     block = atomic_rcu_read(&ram_list.mru_block);
 | |
|     if (block && block->host && host - block->host < block->max_length) {
 | |
|         goto found;
 | |
|     }
 | |
| 
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         /* This case append when the block is not mapped. */
 | |
|         if (block->host == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         if (host - block->host < block->max_length) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rcu_read_unlock();
 | |
|     return NULL;
 | |
| 
 | |
| found:
 | |
|     *offset = (host - block->host);
 | |
|     if (round_offset) {
 | |
|         *offset &= TARGET_PAGE_MASK;
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finds the named RAMBlock
 | |
|  *
 | |
|  * name: The name of RAMBlock to find
 | |
|  *
 | |
|  * Returns: RAMBlock (or NULL if not found)
 | |
|  */
 | |
| RAMBlock *qemu_ram_block_by_name(const char *name)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         if (!strcmp(name, block->idstr)) {
 | |
|             return block;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Some of the softmmu routines need to translate from a host pointer
 | |
|    (typically a TLB entry) back to a ram offset.  */
 | |
| ram_addr_t qemu_ram_addr_from_host(void *ptr)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
| 
 | |
|     block = qemu_ram_block_from_host(ptr, false, &offset);
 | |
|     if (!block) {
 | |
|         return RAM_ADDR_INVALID;
 | |
|     }
 | |
| 
 | |
|     return block->offset + offset;
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
 | |
|                                uint64_t val, unsigned size)
 | |
| {
 | |
|     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
 | |
|         tb_invalidate_phys_page_fast(ram_addr, size);
 | |
|     }
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     /* Set both VGA and migration bits for simplicity and to remove
 | |
|      * the notdirty callback faster.
 | |
|      */
 | |
|     cpu_physical_memory_set_dirty_range(ram_addr, size,
 | |
|                                         DIRTY_CLIENTS_NOCODE);
 | |
|     /* we remove the notdirty callback only if the code has been
 | |
|        flushed */
 | |
|     if (!cpu_physical_memory_is_clean(ram_addr)) {
 | |
|         tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
 | |
|                                  unsigned size, bool is_write)
 | |
| {
 | |
|     return is_write;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps notdirty_mem_ops = {
 | |
|     .write = notdirty_mem_write,
 | |
|     .valid.accepts = notdirty_mem_accepts,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /* Generate a debug exception if a watchpoint has been hit.  */
 | |
| static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
 | |
| {
 | |
|     CPUState *cpu = current_cpu;
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     target_ulong pc, cs_base;
 | |
|     target_ulong vaddr;
 | |
|     CPUWatchpoint *wp;
 | |
|     uint32_t cpu_flags;
 | |
| 
 | |
|     if (cpu->watchpoint_hit) {
 | |
|         /* We re-entered the check after replacing the TB. Now raise
 | |
|          * the debug interrupt so that is will trigger after the
 | |
|          * current instruction. */
 | |
|         cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
 | |
|         return;
 | |
|     }
 | |
|     vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
 | |
|     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 | |
|         if (cpu_watchpoint_address_matches(wp, vaddr, len)
 | |
|             && (wp->flags & flags)) {
 | |
|             if (flags == BP_MEM_READ) {
 | |
|                 wp->flags |= BP_WATCHPOINT_HIT_READ;
 | |
|             } else {
 | |
|                 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
 | |
|             }
 | |
|             wp->hitaddr = vaddr;
 | |
|             wp->hitattrs = attrs;
 | |
|             if (!cpu->watchpoint_hit) {
 | |
|                 if (wp->flags & BP_CPU &&
 | |
|                     !cc->debug_check_watchpoint(cpu, wp)) {
 | |
|                     wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|                     continue;
 | |
|                 }
 | |
|                 cpu->watchpoint_hit = wp;
 | |
|                 tb_check_watchpoint(cpu);
 | |
|                 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
 | |
|                     cpu->exception_index = EXCP_DEBUG;
 | |
|                     cpu_loop_exit(cpu);
 | |
|                 } else {
 | |
|                     cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
 | |
|                     tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
 | |
|                     cpu_loop_exit_noexc(cpu);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
 | |
|    so these check for a hit then pass through to the normal out-of-line
 | |
|    phys routines.  */
 | |
| static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
 | |
|                                   unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     MemTxResult res;
 | |
|     uint64_t data;
 | |
|     int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
 | |
|     AddressSpace *as = current_cpu->cpu_ases[asidx].as;
 | |
| 
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         data = address_space_ldub(as, addr, attrs, &res);
 | |
|         break;
 | |
|     case 2:
 | |
|         data = address_space_lduw(as, addr, attrs, &res);
 | |
|         break;
 | |
|     case 4:
 | |
|         data = address_space_ldl(as, addr, attrs, &res);
 | |
|         break;
 | |
|     default: abort();
 | |
|     }
 | |
|     *pdata = data;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
 | |
|                                    uint64_t val, unsigned size,
 | |
|                                    MemTxAttrs attrs)
 | |
| {
 | |
|     MemTxResult res;
 | |
|     int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
 | |
|     AddressSpace *as = current_cpu->cpu_ases[asidx].as;
 | |
| 
 | |
|     check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         address_space_stb(as, addr, val, attrs, &res);
 | |
|         break;
 | |
|     case 2:
 | |
|         address_space_stw(as, addr, val, attrs, &res);
 | |
|         break;
 | |
|     case 4:
 | |
|         address_space_stl(as, addr, val, attrs, &res);
 | |
|         break;
 | |
|     default: abort();
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps watch_mem_ops = {
 | |
|     .read_with_attrs = watch_mem_read,
 | |
|     .write_with_attrs = watch_mem_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
 | |
|                                 unsigned len, MemTxAttrs attrs)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
|     uint8_t buf[8];
 | |
|     MemTxResult res;
 | |
| 
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
 | |
|            subpage, len, addr);
 | |
| #endif
 | |
|     res = address_space_read(subpage->as, addr + subpage->base,
 | |
|                              attrs, buf, len);
 | |
|     if (res) {
 | |
|         return res;
 | |
|     }
 | |
|     switch (len) {
 | |
|     case 1:
 | |
|         *data = ldub_p(buf);
 | |
|         return MEMTX_OK;
 | |
|     case 2:
 | |
|         *data = lduw_p(buf);
 | |
|         return MEMTX_OK;
 | |
|     case 4:
 | |
|         *data = ldl_p(buf);
 | |
|         return MEMTX_OK;
 | |
|     case 8:
 | |
|         *data = ldq_p(buf);
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult subpage_write(void *opaque, hwaddr addr,
 | |
|                                  uint64_t value, unsigned len, MemTxAttrs attrs)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
|     uint8_t buf[8];
 | |
| 
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p len %u addr " TARGET_FMT_plx
 | |
|            " value %"PRIx64"\n",
 | |
|            __func__, subpage, len, addr, value);
 | |
| #endif
 | |
|     switch (len) {
 | |
|     case 1:
 | |
|         stb_p(buf, value);
 | |
|         break;
 | |
|     case 2:
 | |
|         stw_p(buf, value);
 | |
|         break;
 | |
|     case 4:
 | |
|         stl_p(buf, value);
 | |
|         break;
 | |
|     case 8:
 | |
|         stq_p(buf, value);
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     return address_space_write(subpage->as, addr + subpage->base,
 | |
|                                attrs, buf, len);
 | |
| }
 | |
| 
 | |
| static bool subpage_accepts(void *opaque, hwaddr addr,
 | |
|                             unsigned len, bool is_write)
 | |
| {
 | |
|     subpage_t *subpage = opaque;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
 | |
|            __func__, subpage, is_write ? 'w' : 'r', len, addr);
 | |
| #endif
 | |
| 
 | |
|     return address_space_access_valid(subpage->as, addr + subpage->base,
 | |
|                                       len, is_write);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps subpage_ops = {
 | |
|     .read_with_attrs = subpage_read,
 | |
|     .write_with_attrs = subpage_write,
 | |
|     .impl.min_access_size = 1,
 | |
|     .impl.max_access_size = 8,
 | |
|     .valid.min_access_size = 1,
 | |
|     .valid.max_access_size = 8,
 | |
|     .valid.accepts = subpage_accepts,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
 | |
|                              uint16_t section)
 | |
| {
 | |
|     int idx, eidx;
 | |
| 
 | |
|     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
 | |
|         return -1;
 | |
|     idx = SUBPAGE_IDX(start);
 | |
|     eidx = SUBPAGE_IDX(end);
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
 | |
|            __func__, mmio, start, end, idx, eidx, section);
 | |
| #endif
 | |
|     for (; idx <= eidx; idx++) {
 | |
|         mmio->sub_section[idx] = section;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
 | |
| {
 | |
|     subpage_t *mmio;
 | |
| 
 | |
|     mmio = g_malloc0(sizeof(subpage_t));
 | |
| 
 | |
|     mmio->as = as;
 | |
|     mmio->base = base;
 | |
|     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
 | |
|                           NULL, TARGET_PAGE_SIZE);
 | |
|     mmio->iomem.subpage = true;
 | |
| #if defined(DEBUG_SUBPAGE)
 | |
|     printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
 | |
|            mmio, base, TARGET_PAGE_SIZE);
 | |
| #endif
 | |
|     subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
 | |
| 
 | |
|     return mmio;
 | |
| }
 | |
| 
 | |
| static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
 | |
|                               MemoryRegion *mr)
 | |
| {
 | |
|     assert(as);
 | |
|     MemoryRegionSection section = {
 | |
|         .address_space = as,
 | |
|         .mr = mr,
 | |
|         .offset_within_address_space = 0,
 | |
|         .offset_within_region = 0,
 | |
|         .size = int128_2_64(),
 | |
|     };
 | |
| 
 | |
|     return phys_section_add(map, §ion);
 | |
| }
 | |
| 
 | |
| MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
 | |
| {
 | |
|     int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | |
|     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
 | |
|     AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
 | |
|     MemoryRegionSection *sections = d->map.sections;
 | |
| 
 | |
|     return sections[index & ~TARGET_PAGE_MASK].mr;
 | |
| }
 | |
| 
 | |
| static void io_mem_init(void)
 | |
| {
 | |
|     memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
 | |
|                           NULL, UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL,
 | |
|                           NULL, UINT64_MAX);
 | |
|     memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
 | |
|                           NULL, UINT64_MAX);
 | |
| }
 | |
| 
 | |
| static void mem_begin(MemoryListener *listener)
 | |
| {
 | |
|     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
 | |
|     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
 | |
|     uint16_t n;
 | |
| 
 | |
|     n = dummy_section(&d->map, as, &io_mem_unassigned);
 | |
|     assert(n == PHYS_SECTION_UNASSIGNED);
 | |
|     n = dummy_section(&d->map, as, &io_mem_notdirty);
 | |
|     assert(n == PHYS_SECTION_NOTDIRTY);
 | |
|     n = dummy_section(&d->map, as, &io_mem_rom);
 | |
|     assert(n == PHYS_SECTION_ROM);
 | |
|     n = dummy_section(&d->map, as, &io_mem_watch);
 | |
|     assert(n == PHYS_SECTION_WATCH);
 | |
| 
 | |
|     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
 | |
|     d->as = as;
 | |
|     as->next_dispatch = d;
 | |
| }
 | |
| 
 | |
| static void address_space_dispatch_free(AddressSpaceDispatch *d)
 | |
| {
 | |
|     phys_sections_free(&d->map);
 | |
|     g_free(d);
 | |
| }
 | |
| 
 | |
| static void mem_commit(MemoryListener *listener)
 | |
| {
 | |
|     AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
 | |
|     AddressSpaceDispatch *cur = as->dispatch;
 | |
|     AddressSpaceDispatch *next = as->next_dispatch;
 | |
| 
 | |
|     phys_page_compact_all(next, next->map.nodes_nb);
 | |
| 
 | |
|     atomic_rcu_set(&as->dispatch, next);
 | |
|     if (cur) {
 | |
|         call_rcu(cur, address_space_dispatch_free, rcu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tcg_commit(MemoryListener *listener)
 | |
| {
 | |
|     CPUAddressSpace *cpuas;
 | |
|     AddressSpaceDispatch *d;
 | |
| 
 | |
|     /* since each CPU stores ram addresses in its TLB cache, we must
 | |
|        reset the modified entries */
 | |
|     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
 | |
|     cpu_reloading_memory_map();
 | |
|     /* The CPU and TLB are protected by the iothread lock.
 | |
|      * We reload the dispatch pointer now because cpu_reloading_memory_map()
 | |
|      * may have split the RCU critical section.
 | |
|      */
 | |
|     d = atomic_rcu_read(&cpuas->as->dispatch);
 | |
|     cpuas->memory_dispatch = d;
 | |
|     tlb_flush(cpuas->cpu, 1);
 | |
| }
 | |
| 
 | |
| void address_space_init_dispatch(AddressSpace *as)
 | |
| {
 | |
|     as->dispatch = NULL;
 | |
|     as->dispatch_listener = (MemoryListener) {
 | |
|         .begin = mem_begin,
 | |
|         .commit = mem_commit,
 | |
|         .region_add = mem_add,
 | |
|         .region_nop = mem_add,
 | |
|         .priority = 0,
 | |
|     };
 | |
|     memory_listener_register(&as->dispatch_listener, as);
 | |
| }
 | |
| 
 | |
| void address_space_unregister(AddressSpace *as)
 | |
| {
 | |
|     memory_listener_unregister(&as->dispatch_listener);
 | |
| }
 | |
| 
 | |
| void address_space_destroy_dispatch(AddressSpace *as)
 | |
| {
 | |
|     AddressSpaceDispatch *d = as->dispatch;
 | |
| 
 | |
|     atomic_rcu_set(&as->dispatch, NULL);
 | |
|     if (d) {
 | |
|         call_rcu(d, address_space_dispatch_free, rcu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void memory_map_init(void)
 | |
| {
 | |
|     system_memory = g_malloc(sizeof(*system_memory));
 | |
| 
 | |
|     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
 | |
|     address_space_init(&address_space_memory, system_memory, "memory");
 | |
| 
 | |
|     system_io = g_malloc(sizeof(*system_io));
 | |
|     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
 | |
|                           65536);
 | |
|     address_space_init(&address_space_io, system_io, "I/O");
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_memory(void)
 | |
| {
 | |
|     return system_memory;
 | |
| }
 | |
| 
 | |
| MemoryRegion *get_system_io(void)
 | |
| {
 | |
|     return system_io;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* physical memory access (slow version, mainly for debug) */
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l, flags;
 | |
|     target_ulong page;
 | |
|     void * p;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         flags = page_get_flags(page);
 | |
|         if (!(flags & PAGE_VALID))
 | |
|             return -1;
 | |
|         if (is_write) {
 | |
|             if (!(flags & PAGE_WRITE))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
 | |
|                 return -1;
 | |
|             memcpy(p, buf, l);
 | |
|             unlock_user(p, addr, l);
 | |
|         } else {
 | |
|             if (!(flags & PAGE_READ))
 | |
|                 return -1;
 | |
|             /* XXX: this code should not depend on lock_user */
 | |
|             if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
 | |
|                 return -1;
 | |
|             memcpy(buf, p, l);
 | |
|             unlock_user(p, addr, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
 | |
|                                      hwaddr length)
 | |
| {
 | |
|     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 | |
|     addr += memory_region_get_ram_addr(mr);
 | |
| 
 | |
|     /* No early return if dirty_log_mask is or becomes 0, because
 | |
|      * cpu_physical_memory_set_dirty_range will still call
 | |
|      * xen_modified_memory.
 | |
|      */
 | |
|     if (dirty_log_mask) {
 | |
|         dirty_log_mask =
 | |
|             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
 | |
|     }
 | |
|     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
 | |
|         tb_invalidate_phys_range(addr, addr + length);
 | |
|         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
 | |
|     }
 | |
|     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
 | |
| }
 | |
| 
 | |
| static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
 | |
| {
 | |
|     unsigned access_size_max = mr->ops->valid.max_access_size;
 | |
| 
 | |
|     /* Regions are assumed to support 1-4 byte accesses unless
 | |
|        otherwise specified.  */
 | |
|     if (access_size_max == 0) {
 | |
|         access_size_max = 4;
 | |
|     }
 | |
| 
 | |
|     /* Bound the maximum access by the alignment of the address.  */
 | |
|     if (!mr->ops->impl.unaligned) {
 | |
|         unsigned align_size_max = addr & -addr;
 | |
|         if (align_size_max != 0 && align_size_max < access_size_max) {
 | |
|             access_size_max = align_size_max;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Don't attempt accesses larger than the maximum.  */
 | |
|     if (l > access_size_max) {
 | |
|         l = access_size_max;
 | |
|     }
 | |
|     l = pow2floor(l);
 | |
| 
 | |
|     return l;
 | |
| }
 | |
| 
 | |
| static bool prepare_mmio_access(MemoryRegion *mr)
 | |
| {
 | |
|     bool unlocked = !qemu_mutex_iothread_locked();
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     if (unlocked && mr->global_locking) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         unlocked = false;
 | |
|         release_lock = true;
 | |
|     }
 | |
|     if (mr->flush_coalesced_mmio) {
 | |
|         if (unlocked) {
 | |
|             qemu_mutex_lock_iothread();
 | |
|         }
 | |
|         qemu_flush_coalesced_mmio_buffer();
 | |
|         if (unlocked) {
 | |
|             qemu_mutex_unlock_iothread();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return release_lock;
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
 | |
|                                                 MemTxAttrs attrs,
 | |
|                                                 const uint8_t *buf,
 | |
|                                                 int len, hwaddr addr1,
 | |
|                                                 hwaddr l, MemoryRegion *mr)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (!memory_access_is_direct(mr, true)) {
 | |
|             release_lock |= prepare_mmio_access(mr);
 | |
|             l = memory_access_size(mr, l, addr1);
 | |
|             /* XXX: could force current_cpu to NULL to avoid
 | |
|                potential bugs */
 | |
|             switch (l) {
 | |
|             case 8:
 | |
|                 /* 64 bit write access */
 | |
|                 val = ldq_p(buf);
 | |
|                 result |= memory_region_dispatch_write(mr, addr1, val, 8,
 | |
|                                                        attrs);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 /* 32 bit write access */
 | |
|                 val = ldl_p(buf);
 | |
|                 result |= memory_region_dispatch_write(mr, addr1, val, 4,
 | |
|                                                        attrs);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 /* 16 bit write access */
 | |
|                 val = lduw_p(buf);
 | |
|                 result |= memory_region_dispatch_write(mr, addr1, val, 2,
 | |
|                                                        attrs);
 | |
|                 break;
 | |
|             case 1:
 | |
|                 /* 8 bit write access */
 | |
|                 val = ldub_p(buf);
 | |
|                 result |= memory_region_dispatch_write(mr, addr1, val, 1,
 | |
|                                                        attrs);
 | |
|                 break;
 | |
|             default:
 | |
|                 abort();
 | |
|             }
 | |
|         } else {
 | |
|             /* RAM case */
 | |
|             ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|             memcpy(ptr, buf, l);
 | |
|             invalidate_and_set_dirty(mr, addr1, l);
 | |
|         }
 | |
| 
 | |
|         if (release_lock) {
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             release_lock = false;
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
| 
 | |
|         if (!len) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, true);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
 | |
|                                 const uint8_t *buf, int len)
 | |
| {
 | |
|     hwaddr l;
 | |
|     hwaddr addr1;
 | |
|     MemoryRegion *mr;
 | |
|     MemTxResult result = MEMTX_OK;
 | |
| 
 | |
|     if (len > 0) {
 | |
|         rcu_read_lock();
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, true);
 | |
|         result = address_space_write_continue(as, addr, attrs, buf, len,
 | |
|                                               addr1, l, mr);
 | |
|         rcu_read_unlock();
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* Called within RCU critical section.  */
 | |
| MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
 | |
|                                         MemTxAttrs attrs, uint8_t *buf,
 | |
|                                         int len, hwaddr addr1, hwaddr l,
 | |
|                                         MemoryRegion *mr)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemTxResult result = MEMTX_OK;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     for (;;) {
 | |
|         if (!memory_access_is_direct(mr, false)) {
 | |
|             /* I/O case */
 | |
|             release_lock |= prepare_mmio_access(mr);
 | |
|             l = memory_access_size(mr, l, addr1);
 | |
|             switch (l) {
 | |
|             case 8:
 | |
|                 /* 64 bit read access */
 | |
|                 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
 | |
|                                                       attrs);
 | |
|                 stq_p(buf, val);
 | |
|                 break;
 | |
|             case 4:
 | |
|                 /* 32 bit read access */
 | |
|                 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
 | |
|                                                       attrs);
 | |
|                 stl_p(buf, val);
 | |
|                 break;
 | |
|             case 2:
 | |
|                 /* 16 bit read access */
 | |
|                 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
 | |
|                                                       attrs);
 | |
|                 stw_p(buf, val);
 | |
|                 break;
 | |
|             case 1:
 | |
|                 /* 8 bit read access */
 | |
|                 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
 | |
|                                                       attrs);
 | |
|                 stb_p(buf, val);
 | |
|                 break;
 | |
|             default:
 | |
|                 abort();
 | |
|             }
 | |
|         } else {
 | |
|             /* RAM case */
 | |
|             ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|             memcpy(buf, ptr, l);
 | |
|         }
 | |
| 
 | |
|         if (release_lock) {
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             release_lock = false;
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
| 
 | |
|         if (!len) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, false);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
 | |
|                                     MemTxAttrs attrs, uint8_t *buf, int len)
 | |
| {
 | |
|     hwaddr l;
 | |
|     hwaddr addr1;
 | |
|     MemoryRegion *mr;
 | |
|     MemTxResult result = MEMTX_OK;
 | |
| 
 | |
|     if (len > 0) {
 | |
|         rcu_read_lock();
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, false);
 | |
|         result = address_space_read_continue(as, addr, attrs, buf, len,
 | |
|                                              addr1, l, mr);
 | |
|         rcu_read_unlock();
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
 | |
|                              uint8_t *buf, int len, bool is_write)
 | |
| {
 | |
|     if (is_write) {
 | |
|         return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
 | |
|     } else {
 | |
|         return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
 | |
|                             int len, int is_write)
 | |
| {
 | |
|     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
 | |
|                      buf, len, is_write);
 | |
| }
 | |
| 
 | |
| enum write_rom_type {
 | |
|     WRITE_DATA,
 | |
|     FLUSH_CACHE,
 | |
| };
 | |
| 
 | |
| static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
 | |
|     hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
 | |
| {
 | |
|     hwaddr l;
 | |
|     uint8_t *ptr;
 | |
|     hwaddr addr1;
 | |
|     MemoryRegion *mr;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &addr1, &l, true);
 | |
| 
 | |
|         if (!(memory_region_is_ram(mr) ||
 | |
|               memory_region_is_romd(mr))) {
 | |
|             l = memory_access_size(mr, l, addr1);
 | |
|         } else {
 | |
|             /* ROM/RAM case */
 | |
|             ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|             switch (type) {
 | |
|             case WRITE_DATA:
 | |
|                 memcpy(ptr, buf, l);
 | |
|                 invalidate_and_set_dirty(mr, addr1, l);
 | |
|                 break;
 | |
|             case FLUSH_CACHE:
 | |
|                 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| /* used for ROM loading : can write in RAM and ROM */
 | |
| void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
 | |
|                                    const uint8_t *buf, int len)
 | |
| {
 | |
|     cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
 | |
| }
 | |
| 
 | |
| void cpu_flush_icache_range(hwaddr start, int len)
 | |
| {
 | |
|     /*
 | |
|      * This function should do the same thing as an icache flush that was
 | |
|      * triggered from within the guest. For TCG we are always cache coherent,
 | |
|      * so there is no need to flush anything. For KVM / Xen we need to flush
 | |
|      * the host's instruction cache at least.
 | |
|      */
 | |
|     if (tcg_enabled()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu_physical_memory_write_rom_internal(&address_space_memory,
 | |
|                                            start, NULL, len, FLUSH_CACHE);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     MemoryRegion *mr;
 | |
|     void *buffer;
 | |
|     hwaddr addr;
 | |
|     hwaddr len;
 | |
|     bool in_use;
 | |
| } BounceBuffer;
 | |
| 
 | |
| static BounceBuffer bounce;
 | |
| 
 | |
| typedef struct MapClient {
 | |
|     QEMUBH *bh;
 | |
|     QLIST_ENTRY(MapClient) link;
 | |
| } MapClient;
 | |
| 
 | |
| QemuMutex map_client_list_lock;
 | |
| static QLIST_HEAD(map_client_list, MapClient) map_client_list
 | |
|     = QLIST_HEAD_INITIALIZER(map_client_list);
 | |
| 
 | |
| static void cpu_unregister_map_client_do(MapClient *client)
 | |
| {
 | |
|     QLIST_REMOVE(client, link);
 | |
|     g_free(client);
 | |
| }
 | |
| 
 | |
| static void cpu_notify_map_clients_locked(void)
 | |
| {
 | |
|     MapClient *client;
 | |
| 
 | |
|     while (!QLIST_EMPTY(&map_client_list)) {
 | |
|         client = QLIST_FIRST(&map_client_list);
 | |
|         qemu_bh_schedule(client->bh);
 | |
|         cpu_unregister_map_client_do(client);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_register_map_client(QEMUBH *bh)
 | |
| {
 | |
|     MapClient *client = g_malloc(sizeof(*client));
 | |
| 
 | |
|     qemu_mutex_lock(&map_client_list_lock);
 | |
|     client->bh = bh;
 | |
|     QLIST_INSERT_HEAD(&map_client_list, client, link);
 | |
|     if (!atomic_read(&bounce.in_use)) {
 | |
|         cpu_notify_map_clients_locked();
 | |
|     }
 | |
|     qemu_mutex_unlock(&map_client_list_lock);
 | |
| }
 | |
| 
 | |
| void cpu_exec_init_all(void)
 | |
| {
 | |
|     qemu_mutex_init(&ram_list.mutex);
 | |
|     io_mem_init();
 | |
|     memory_map_init();
 | |
|     qemu_mutex_init(&map_client_list_lock);
 | |
| }
 | |
| 
 | |
| void cpu_unregister_map_client(QEMUBH *bh)
 | |
| {
 | |
|     MapClient *client;
 | |
| 
 | |
|     qemu_mutex_lock(&map_client_list_lock);
 | |
|     QLIST_FOREACH(client, &map_client_list, link) {
 | |
|         if (client->bh == bh) {
 | |
|             cpu_unregister_map_client_do(client);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&map_client_list_lock);
 | |
| }
 | |
| 
 | |
| static void cpu_notify_map_clients(void)
 | |
| {
 | |
|     qemu_mutex_lock(&map_client_list_lock);
 | |
|     cpu_notify_map_clients_locked();
 | |
|     qemu_mutex_unlock(&map_client_list_lock);
 | |
| }
 | |
| 
 | |
| bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
 | |
| {
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l, xlat;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     while (len > 0) {
 | |
|         l = len;
 | |
|         mr = address_space_translate(as, addr, &xlat, &l, is_write);
 | |
|         if (!memory_access_is_direct(mr, is_write)) {
 | |
|             l = memory_access_size(mr, l, addr);
 | |
|             if (!memory_region_access_valid(mr, xlat, l, is_write)) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Map a physical memory region into a host virtual address.
 | |
|  * May map a subset of the requested range, given by and returned in *plen.
 | |
|  * May return NULL if resources needed to perform the mapping are exhausted.
 | |
|  * Use only for reads OR writes - not for read-modify-write operations.
 | |
|  * Use cpu_register_map_client() to know when retrying the map operation is
 | |
|  * likely to succeed.
 | |
|  */
 | |
| void *address_space_map(AddressSpace *as,
 | |
|                         hwaddr addr,
 | |
|                         hwaddr *plen,
 | |
|                         bool is_write)
 | |
| {
 | |
|     hwaddr len = *plen;
 | |
|     hwaddr done = 0;
 | |
|     hwaddr l, xlat, base;
 | |
|     MemoryRegion *mr, *this_mr;
 | |
|     void *ptr;
 | |
| 
 | |
|     if (len == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     l = len;
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &xlat, &l, is_write);
 | |
| 
 | |
|     if (!memory_access_is_direct(mr, is_write)) {
 | |
|         if (atomic_xchg(&bounce.in_use, true)) {
 | |
|             rcu_read_unlock();
 | |
|             return NULL;
 | |
|         }
 | |
|         /* Avoid unbounded allocations */
 | |
|         l = MIN(l, TARGET_PAGE_SIZE);
 | |
|         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
 | |
|         bounce.addr = addr;
 | |
|         bounce.len = l;
 | |
| 
 | |
|         memory_region_ref(mr);
 | |
|         bounce.mr = mr;
 | |
|         if (!is_write) {
 | |
|             address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
 | |
|                                bounce.buffer, l);
 | |
|         }
 | |
| 
 | |
|         rcu_read_unlock();
 | |
|         *plen = l;
 | |
|         return bounce.buffer;
 | |
|     }
 | |
| 
 | |
|     base = xlat;
 | |
| 
 | |
|     for (;;) {
 | |
|         len -= l;
 | |
|         addr += l;
 | |
|         done += l;
 | |
|         if (len == 0) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         l = len;
 | |
|         this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
 | |
|         if (this_mr != mr || xlat != base + done) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memory_region_ref(mr);
 | |
|     *plen = done;
 | |
|     ptr = qemu_ram_ptr_length(mr->ram_block, base, plen);
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* Unmaps a memory region previously mapped by address_space_map().
 | |
|  * Will also mark the memory as dirty if is_write == 1.  access_len gives
 | |
|  * the amount of memory that was actually read or written by the caller.
 | |
|  */
 | |
| void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
 | |
|                          int is_write, hwaddr access_len)
 | |
| {
 | |
|     if (buffer != bounce.buffer) {
 | |
|         MemoryRegion *mr;
 | |
|         ram_addr_t addr1;
 | |
| 
 | |
|         mr = memory_region_from_host(buffer, &addr1);
 | |
|         assert(mr != NULL);
 | |
|         if (is_write) {
 | |
|             invalidate_and_set_dirty(mr, addr1, access_len);
 | |
|         }
 | |
|         if (xen_enabled()) {
 | |
|             xen_invalidate_map_cache_entry(buffer);
 | |
|         }
 | |
|         memory_region_unref(mr);
 | |
|         return;
 | |
|     }
 | |
|     if (is_write) {
 | |
|         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
 | |
|                             bounce.buffer, access_len);
 | |
|     }
 | |
|     qemu_vfree(bounce.buffer);
 | |
|     bounce.buffer = NULL;
 | |
|     memory_region_unref(bounce.mr);
 | |
|     atomic_mb_set(&bounce.in_use, false);
 | |
|     cpu_notify_map_clients();
 | |
| }
 | |
| 
 | |
| void *cpu_physical_memory_map(hwaddr addr,
 | |
|                               hwaddr *plen,
 | |
|                               int is_write)
 | |
| {
 | |
|     return address_space_map(&address_space_memory, addr, plen, is_write);
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_unmap(void *buffer, hwaddr len,
 | |
|                                int is_write, hwaddr access_len)
 | |
| {
 | |
|     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
 | |
|                                                   MemTxAttrs attrs,
 | |
|                                                   MemTxResult *result,
 | |
|                                                   enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 4;
 | |
|     hwaddr addr1;
 | |
|     MemTxResult r;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &addr1, &l, false);
 | |
|     if (l < 4 || !memory_access_is_direct(mr, false)) {
 | |
|         release_lock |= prepare_mmio_access(mr);
 | |
| 
 | |
|         /* I/O case */
 | |
|         r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = ldl_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = ldl_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = ldl_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|         r = MEMTX_OK;
 | |
|     }
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     if (release_lock) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_ldl_internal(as, addr, attrs, result,
 | |
|                                       DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
 | |
|                               MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_ldl_internal(as, addr, attrs, result,
 | |
|                                       DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
 | |
|                               MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_ldl_internal(as, addr, attrs, result,
 | |
|                                       DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
 | |
|                                                   MemTxAttrs attrs,
 | |
|                                                   MemTxResult *result,
 | |
|                                                   enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 8;
 | |
|     hwaddr addr1;
 | |
|     MemTxResult r;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &addr1, &l,
 | |
|                                  false);
 | |
|     if (l < 8 || !memory_access_is_direct(mr, false)) {
 | |
|         release_lock |= prepare_mmio_access(mr);
 | |
| 
 | |
|         /* I/O case */
 | |
|         r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap64(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap64(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = ldq_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = ldq_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = ldq_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|         r = MEMTX_OK;
 | |
|     }
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     if (release_lock) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_ldq_internal(as, addr, attrs, result,
 | |
|                                       DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_ldq_internal(as, addr, attrs, result,
 | |
|                                       DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_ldq_internal(as, addr, attrs, result,
 | |
|                                       DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
 | |
|                             MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     uint8_t val;
 | |
|     MemTxResult r;
 | |
| 
 | |
|     r = address_space_rw(as, addr, attrs, &val, 1, 0);
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline uint32_t address_space_lduw_internal(AddressSpace *as,
 | |
|                                                    hwaddr addr,
 | |
|                                                    MemTxAttrs attrs,
 | |
|                                                    MemTxResult *result,
 | |
|                                                    enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     uint64_t val;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 2;
 | |
|     hwaddr addr1;
 | |
|     MemTxResult r;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &addr1, &l,
 | |
|                                  false);
 | |
|     if (l < 2 || !memory_access_is_direct(mr, false)) {
 | |
|         release_lock |= prepare_mmio_access(mr);
 | |
| 
 | |
|         /* I/O case */
 | |
|         r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #endif
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             val = lduw_le_p(ptr);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             val = lduw_be_p(ptr);
 | |
|             break;
 | |
|         default:
 | |
|             val = lduw_p(ptr);
 | |
|             break;
 | |
|         }
 | |
|         r = MEMTX_OK;
 | |
|     }
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     if (release_lock) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_lduw_internal(as, addr, attrs, result,
 | |
|                                        DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_lduw_internal(as, addr, attrs, result,
 | |
|                                        DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
 | |
|                            MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     return address_space_lduw_internal(as, addr, attrs, result,
 | |
|                                        DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
 | |
| {
 | |
|     return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned. The ram page is not masked as dirty
 | |
|    and the code inside is not invalidated. It is useful if the dirty
 | |
|    bits are used to track modified PTEs */
 | |
| void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                                 MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 4;
 | |
|     hwaddr addr1;
 | |
|     MemTxResult r;
 | |
|     uint8_t dirty_log_mask;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &addr1, &l,
 | |
|                                  true);
 | |
|     if (l < 4 || !memory_access_is_direct(mr, true)) {
 | |
|         release_lock |= prepare_mmio_access(mr);
 | |
| 
 | |
|         r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
 | |
|     } else {
 | |
|         ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|         stl_p(ptr, val);
 | |
| 
 | |
|         dirty_log_mask = memory_region_get_dirty_log_mask(mr);
 | |
|         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
 | |
|         cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
 | |
|                                             4, dirty_log_mask);
 | |
|         r = MEMTX_OK;
 | |
|     }
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     if (release_lock) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline void address_space_stl_internal(AddressSpace *as,
 | |
|                                               hwaddr addr, uint32_t val,
 | |
|                                               MemTxAttrs attrs,
 | |
|                                               MemTxResult *result,
 | |
|                                               enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 4;
 | |
|     hwaddr addr1;
 | |
|     MemTxResult r;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &addr1, &l,
 | |
|                                  true);
 | |
|     if (l < 4 || !memory_access_is_direct(mr, true)) {
 | |
|         release_lock |= prepare_mmio_access(mr);
 | |
| 
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap32(val);
 | |
|         }
 | |
| #endif
 | |
|         r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             stl_le_p(ptr, val);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             stl_be_p(ptr, val);
 | |
|             break;
 | |
|         default:
 | |
|             stl_p(ptr, val);
 | |
|             break;
 | |
|         }
 | |
|         invalidate_and_set_dirty(mr, addr1, 4);
 | |
|         r = MEMTX_OK;
 | |
|     }
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     if (release_lock) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     address_space_stl_internal(as, addr, val, attrs, result,
 | |
|                                DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     address_space_stl_internal(as, addr, val, attrs, result,
 | |
|                                DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     address_space_stl_internal(as, addr, val, attrs, result,
 | |
|                                DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     uint8_t v = val;
 | |
|     MemTxResult r;
 | |
| 
 | |
|     r = address_space_rw(as, addr, attrs, &v, 1, 1);
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* warning: addr must be aligned */
 | |
| static inline void address_space_stw_internal(AddressSpace *as,
 | |
|                                               hwaddr addr, uint32_t val,
 | |
|                                               MemTxAttrs attrs,
 | |
|                                               MemTxResult *result,
 | |
|                                               enum device_endian endian)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     MemoryRegion *mr;
 | |
|     hwaddr l = 2;
 | |
|     hwaddr addr1;
 | |
|     MemTxResult r;
 | |
|     bool release_lock = false;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(as, addr, &addr1, &l, true);
 | |
|     if (l < 2 || !memory_access_is_direct(mr, true)) {
 | |
|         release_lock |= prepare_mmio_access(mr);
 | |
| 
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|         if (endian == DEVICE_LITTLE_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #else
 | |
|         if (endian == DEVICE_BIG_ENDIAN) {
 | |
|             val = bswap16(val);
 | |
|         }
 | |
| #endif
 | |
|         r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
 | |
|     } else {
 | |
|         /* RAM case */
 | |
|         ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
 | |
|         switch (endian) {
 | |
|         case DEVICE_LITTLE_ENDIAN:
 | |
|             stw_le_p(ptr, val);
 | |
|             break;
 | |
|         case DEVICE_BIG_ENDIAN:
 | |
|             stw_be_p(ptr, val);
 | |
|             break;
 | |
|         default:
 | |
|             stw_p(ptr, val);
 | |
|             break;
 | |
|         }
 | |
|         invalidate_and_set_dirty(mr, addr1, 2);
 | |
|         r = MEMTX_OK;
 | |
|     }
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
|     if (release_lock) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     address_space_stw_internal(as, addr, val, attrs, result,
 | |
|                                DEVICE_NATIVE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     address_space_stw_internal(as, addr, val, attrs, result,
 | |
|                                DEVICE_LITTLE_ENDIAN);
 | |
| }
 | |
| 
 | |
| void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     address_space_stw_internal(as, addr, val, attrs, result,
 | |
|                                DEVICE_BIG_ENDIAN);
 | |
| }
 | |
| 
 | |
| void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* XXX: optimize */
 | |
| void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     MemTxResult r;
 | |
|     val = tswap64(val);
 | |
|     r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     MemTxResult r;
 | |
|     val = cpu_to_le64(val);
 | |
|     r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
| }
 | |
| void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
 | |
|                        MemTxAttrs attrs, MemTxResult *result)
 | |
| {
 | |
|     MemTxResult r;
 | |
|     val = cpu_to_be64(val);
 | |
|     r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
 | |
|     if (result) {
 | |
|         *result = r;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
 | |
| {
 | |
|     address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
 | |
| {
 | |
|     address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
 | |
| {
 | |
|     address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
| }
 | |
| 
 | |
| /* virtual memory access for debug (includes writing to ROM) */
 | |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write)
 | |
| {
 | |
|     int l;
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         int asidx;
 | |
|         MemTxAttrs attrs;
 | |
| 
 | |
|         page = addr & TARGET_PAGE_MASK;
 | |
|         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
 | |
|         asidx = cpu_asidx_from_attrs(cpu, attrs);
 | |
|         /* if no physical page mapped, return an error */
 | |
|         if (phys_addr == -1)
 | |
|             return -1;
 | |
|         l = (page + TARGET_PAGE_SIZE) - addr;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         phys_addr += (addr & ~TARGET_PAGE_MASK);
 | |
|         if (is_write) {
 | |
|             cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
 | |
|                                           phys_addr, buf, l);
 | |
|         } else {
 | |
|             address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
 | |
|                              MEMTXATTRS_UNSPECIFIED,
 | |
|                              buf, l, 0);
 | |
|         }
 | |
|         len -= l;
 | |
|         buf += l;
 | |
|         addr += l;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allows code that needs to deal with migration bitmaps etc to still be built
 | |
|  * target independent.
 | |
|  */
 | |
| size_t qemu_target_page_bits(void)
 | |
| {
 | |
|     return TARGET_PAGE_BITS;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A helper function for the _utterly broken_ virtio device model to find out if
 | |
|  * it's running on a big endian machine. Don't do this at home kids!
 | |
|  */
 | |
| bool target_words_bigendian(void);
 | |
| bool target_words_bigendian(void)
 | |
| {
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
|     return true;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| bool cpu_physical_memory_is_io(hwaddr phys_addr)
 | |
| {
 | |
|     MemoryRegion*mr;
 | |
|     hwaddr l = 1;
 | |
|     bool res;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     mr = address_space_translate(&address_space_memory,
 | |
|                                  phys_addr, &phys_addr, &l, false);
 | |
| 
 | |
|     res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
 | |
|     rcu_read_unlock();
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     int ret = 0;
 | |
| 
 | |
|     rcu_read_lock();
 | |
|     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
 | |
|         ret = func(block->idstr, block->host, block->offset,
 | |
|                    block->used_length, opaque);
 | |
|         if (ret) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     rcu_read_unlock();
 | |
|     return ret;
 | |
| }
 | |
| #endif
 |