[ Upstream commit 9b6412e6979f6f9e0632075f8f008937b5cd4efd ]
Xiumei reported hitting the WARN in xfrm6_tunnel_net_exit while
running tests that boil down to:
- create a pair of netns
- run a basic TCP test over ipcomp6
- delete the pair of netns
The xfrm_state found on spi_byaddr was not deleted at the time we
delete the netns, because we still have a reference on it. This
lingering reference comes from a secpath (which holds a ref on the
xfrm_state), which is still attached to an skb. This skb is not
leaked, it ends up on sk_receive_queue and then gets defer-free'd by
skb_attempt_defer_free.
The problem happens when we defer freeing an skb (push it on one CPU's
defer_list), and don't flush that list before the netns is deleted. In
that case, we still have a reference on the xfrm_state that we don't
expect at this point.
We already drop the skb's dst in the TCP receive path when it's no
longer needed, so let's also drop the secpath. At this point,
tcp_filter has already called into the LSM hooks that may require the
secpath, so it should not be needed anymore. However, in some of those
places, the MPTCP extension has just been attached to the skb, so we
cannot simply drop all extensions.
Fixes: 68822bdf76f1 ("net: generalize skb freeing deferral to per-cpu lists")
Reported-by: Xiumei Mu <xmu@redhat.com>
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/5055ba8f8f72bdcb602faa299faca73c280b7735.1739743613.git.sd@queasysnail.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 80fb40baba19e25a1b6f3ecff6fc5c0171806bde ]
This is a follow-up to 3c5b4d69c358 ("net: annotate data-races around
sk->sk_mark"). sk->sk_mark can be read and written without holding
the socket lock. IPv6 equivalent is already covered with READ_ONCE()
annotation in tcp_v6_send_response().
Fixes: 3c5b4d69c358 ("net: annotate data-races around sk->sk_mark")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/f459d1fc44f205e13f6d8bdca2c8bfb9902ffac9.1736244569.git.daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 0d9e5df4a257afc3a471a82961ace9a22b88295a ]
We found that one close-wait socket was reset by the other side
due to a new connection reusing the same port which is beyond our
expectation, so we have to investigate the underlying reason.
The following experiment is conducted in the test environment. We
limit the port range from 40000 to 40010 and delay the time to close()
after receiving a fin from the active close side, which can help us
easily reproduce like what happened in production.
Here are three connections captured by tcpdump:
127.0.0.1.40002 > 127.0.0.1.9999: Flags [S], seq 2965525191
127.0.0.1.9999 > 127.0.0.1.40002: Flags [S.], seq 2769915070
127.0.0.1.40002 > 127.0.0.1.9999: Flags [.], ack 1
127.0.0.1.40002 > 127.0.0.1.9999: Flags [F.], seq 1, ack 1
// a few seconds later, within 60 seconds
127.0.0.1.40002 > 127.0.0.1.9999: Flags [S], seq 2965590730
127.0.0.1.9999 > 127.0.0.1.40002: Flags [.], ack 2
127.0.0.1.40002 > 127.0.0.1.9999: Flags [R], seq 2965525193
// later, very quickly
127.0.0.1.40002 > 127.0.0.1.9999: Flags [S], seq 2965590730
127.0.0.1.9999 > 127.0.0.1.40002: Flags [S.], seq 3120990805
127.0.0.1.40002 > 127.0.0.1.9999: Flags [.], ack 1
As we can see, the first flow is reset because:
1) client starts a new connection, I mean, the second one
2) client tries to find a suitable port which is a timewait socket
(its state is timewait, substate is fin_wait2)
3) client occupies that timewait port to send a SYN
4) server finds a corresponding close-wait socket in ehash table,
then replies with a challenge ack
5) client sends an RST to terminate this old close-wait socket.
I don't think the port selection algo can choose a FIN_WAIT2 socket
when we turn on tcp_tw_reuse because on the server side there
remain unread data. In some cases, if one side haven't call close() yet,
we should not consider it as expendable and treat it at will.
Even though, sometimes, the server isn't able to call close() as soon
as possible like what we expect, it can not be terminated easily,
especially due to a second unrelated connection happening.
After this patch, we can see the expected failure if we start a
connection when all the ports are occupied in fin_wait2 state:
"Ncat: Cannot assign requested address."
Reported-by: Jade Dong <jadedong@tencent.com>
Signed-off-by: Jason Xing <kernelxing@tencent.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240823001152.31004-1-kerneljasonxing@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 565d121b69980637f040eb4d84289869cdaabedf ]
Its possible that two threads call tcp_sk_exit_batch() concurrently,
once from the cleanup_net workqueue, once from a task that failed to clone
a new netns. In the latter case, error unwinding calls the exit handlers
in reverse order for the 'failed' netns.
tcp_sk_exit_batch() calls tcp_twsk_purge().
Problem is that since commit b099ce2602d8 ("net: Batch inet_twsk_purge"),
this function picks up twsk in any dying netns, not just the one passed
in via exit_batch list.
This means that the error unwind of setup_net() can "steal" and destroy
timewait sockets belonging to the exiting netns.
This allows the netns exit worker to proceed to call
WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
without the expected 1 -> 0 transition, which then splats.
At same time, error unwind path that is also running inet_twsk_purge()
will splat as well:
WARNING: .. at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210
...
refcount_dec include/linux/refcount.h:351 [inline]
inet_twsk_kill+0x758/0x9c0 net/ipv4/inet_timewait_sock.c:70
inet_twsk_deschedule_put net/ipv4/inet_timewait_sock.c:221
inet_twsk_purge+0x725/0x890 net/ipv4/inet_timewait_sock.c:304
tcp_sk_exit_batch+0x1c/0x170 net/ipv4/tcp_ipv4.c:3522
ops_exit_list+0x128/0x180 net/core/net_namespace.c:178
setup_net+0x714/0xb40 net/core/net_namespace.c:375
copy_net_ns+0x2f0/0x670 net/core/net_namespace.c:508
create_new_namespaces+0x3ea/0xb10 kernel/nsproxy.c:110
... because refcount_dec() of tw_refcount unexpectedly dropped to 0.
This doesn't seem like an actual bug (no tw sockets got lost and I don't
see a use-after-free) but as erroneous trigger of debug check.
Add a mutex to force strict ordering: the task that calls tcp_twsk_purge()
blocks other task from doing final _dec_and_test before mutex-owner has
removed all tw sockets of dying netns.
Fixes: e9bd0cca09d1 ("tcp: Don't allocate tcp_death_row outside of struct netns_ipv4.")
Reported-by: syzbot+8ea26396ff85d23a8929@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/netdev/0000000000003a5292061f5e4e19@google.com/
Link: https://lore.kernel.org/netdev/20240812140104.GA21559@breakpoint.cc/
Signed-off-by: Florian Westphal <fw@strlen.de>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Jason Xing <kerneljasonxing@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://patch.msgid.link/20240812222857.29837-1-fw@strlen.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1eeb5043573981f3a1278876515851b7f6b1df1b ]
We lost ability to unload ipv6 module a long time ago.
Instead of calling expensive inet_twsk_purge() twice,
we can handle all families in one round.
Also remove an extra line added in my prior patch,
per Kuniyuki Iwashima feedback.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/netdev/20240327192934.6843-1-kuniyu@amazon.com/
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240329153203.345203-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 565d121b6998 ("tcp: prevent concurrent execution of tcp_sk_exit_batch")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fde6f897f2a184546bf5516ac736523ef24dc6a7 ]
These functions have races when they:
1) Write sk->sk_err
2) call sk_error_report(sk)
3) call tcp_done(sk)
As described in prior patches in this series:
An smp_wmb() is missing.
We should call tcp_done() before sk_error_report(sk)
to have consistent tcp_poll() results on SMP hosts.
Use tcp_done_with_error() where we centralized the
correct sequence.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20240528125253.1966136-5-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit e13ec3da05d130f0d10da8e1fbe1be26dcdb0e27 ]
tcp_poll() reads sk->sk_err without socket lock held/owned.
We should used READ_ONCE() here, and update writers
to use WRITE_ONCE().
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Stable-dep-of: 853c3bd7b791 ("tcp: fix race in tcp_write_err()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit cee1af825d65b8122627fc2efbc36c1bd51ee103 ]
This field can be read/written without lock synchronization.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Stable-dep-of: 853c3bd7b791 ("tcp: fix race in tcp_write_err()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit ec00ed472bdb7d0af840da68c8c11bff9f4d9caa ]
While testing TCP performance with latest trees,
I saw suspect SOCKET_BACKLOG drops.
tcp_add_backlog() computes its limit with :
limit = (u32)READ_ONCE(sk->sk_rcvbuf) +
(u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
limit += 64 * 1024;
This does not take into account that sk->sk_backlog.len
is reset only at the very end of __release_sock().
Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
sk_rcvbuf in normal conditions.
We should double sk->sk_rcvbuf contribution in the formula
to absorb bubbles in the backlog, which happen more often
for very fast flows.
This change maintains decent protection against abuses.
Fixes: c377411f2494 ("net: sk_add_backlog() take rmem_alloc into account")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240423125620.3309458-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1d7e4538a5463faa0b0e26a7a7b6bd68c7dfdd78 ]
Allow splice to undo the effects of MSG_MORE after prematurely ending a
splice/sendfile due to getting an EOF condition (->splice_read() returned
0) after splice had called sendmsg() with MSG_MORE set when the user didn't
set MSG_MORE.
For UDP, a pending packet will not be emitted if the socket is closed
before it is flushed; with this change, it be flushed by ->splice_eof().
For TCP, it's not clear that MSG_MORE is actually effective.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/CAHk-=wh=V579PDYvkpnTobCLGczbgxpMgGmmhqiTyE34Cpi5Gg@mail.gmail.com/
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Kuniyuki Iwashima <kuniyu@amazon.com>
cc: Willem de Bruijn <willemdebruijn.kernel@gmail.com>
cc: David Ahern <dsahern@kernel.org>
cc: Jens Axboe <axboe@kernel.dk>
cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: a0002127cd74 ("udp: move udp->no_check6_tx to udp->udp_flags")
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 6db8a37dfc541e059851652cfd4f0bb13b8ff6af upstream.
The MPTCP protocol can acquire the subflow-level socket lock and
cause the tcp backlog usage. When inserting new skbs into the
backlog, the stack will try to coalesce them.
Currently, we have no check in place to ensure that such coalescing
will respect the MPTCP-level DSS, and that may cause data stream
corruption, as reported by Christoph.
Address the issue by adding the relevant admission check for coalescing
in tcp_add_backlog().
Note the issue is not easy to reproduce, as the MPTCP protocol tries
hard to avoid acquiring the subflow-level socket lock.
Fixes: 648ef4b88673 ("mptcp: Implement MPTCP receive path")
Cc: stable@vger.kernel.org
Reported-by: Christoph Paasch <cpaasch@apple.com>
Closes: https://github.com/multipath-tcp/mptcp_net-next/issues/420
Reviewed-by: Mat Martineau <martineau@kernel.org>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Mat Martineau <martineau@kernel.org>
Link: https://lore.kernel.org/r/20231018-send-net-20231018-v1-2-17ecb002e41d@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b650d953cd391595e536153ce30b4aab385643ac ]
Under certain circumstances, the tcp receive buffer memory limit
set by autotuning (sk_rcvbuf) is increased due to incoming data
packets as a result of the window not closing when it should be.
This can result in the receive buffer growing all the way up to
tcp_rmem[2], even for tcp sessions with a low BDP.
To reproduce: Connect a TCP session with the receiver doing
nothing and the sender sending small packets (an infinite loop
of socket send() with 4 bytes of payload with a sleep of 1 ms
in between each send()). This will cause the tcp receive buffer
to grow all the way up to tcp_rmem[2].
As a result, a host can have individual tcp sessions with receive
buffers of size tcp_rmem[2], and the host itself can reach tcp_mem
limits, causing the host to go into tcp memory pressure mode.
The fundamental issue is the relationship between the granularity
of the window scaling factor and the number of byte ACKed back
to the sender. This problem has previously been identified in
RFC 7323, appendix F [1].
The Linux kernel currently adheres to never shrinking the window.
In addition to the overallocation of memory mentioned above, the
current behavior is functionally incorrect, because once tcp_rmem[2]
is reached when no remediations remain (i.e. tcp collapse fails to
free up any more memory and there are no packets to prune from the
out-of-order queue), the receiver will drop in-window packets
resulting in retransmissions and an eventual timeout of the tcp
session. A receive buffer full condition should instead result
in a zero window and an indefinite wait.
In practice, this problem is largely hidden for most flows. It
is not applicable to mice flows. Elephant flows can send data
fast enough to "overrun" the sk_rcvbuf limit (in a single ACK),
triggering a zero window.
But this problem does show up for other types of flows. Examples
are websockets and other type of flows that send small amounts of
data spaced apart slightly in time. In these cases, we directly
encounter the problem described in [1].
RFC 7323, section 2.4 [2], says there are instances when a retracted
window can be offered, and that TCP implementations MUST ensure
that they handle a shrinking window, as specified in RFC 1122,
section 4.2.2.16 [3]. All prior RFCs on the topic of tcp window
management have made clear that sender must accept a shrunk window
from the receiver, including RFC 793 [4] and RFC 1323 [5].
This patch implements the functionality to shrink the tcp window
when necessary to keep the right edge within the memory limit by
autotuning (sk_rcvbuf). This new functionality is enabled with
the new sysctl: net.ipv4.tcp_shrink_window
Additional information can be found at:
https://blog.cloudflare.com/unbounded-memory-usage-by-tcp-for-receive-buffers-and-how-we-fixed-it/
[1] https://www.rfc-editor.org/rfc/rfc7323#appendix-F
[2] https://www.rfc-editor.org/rfc/rfc7323#section-2.4
[3] https://www.rfc-editor.org/rfc/rfc1122#page-91
[4] https://www.rfc-editor.org/rfc/rfc793
[5] https://www.rfc-editor.org/rfc/rfc1323
Signed-off-by: Mike Freemon <mfreemon@cloudflare.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f866fbc842de5976e41ba874b76ce31710b634b5 ]
UDP sendmsg() is lockless, so ip_select_ident_segs()
can very well be run from multiple cpus [1]
Convert inet->inet_id to an atomic_t, but implement
a dedicated path for TCP, avoiding cost of a locked
instruction (atomic_add_return())
Note that this patch will cause a trivial merge conflict
because we added inet->flags in net-next tree.
v2: added missing change in
drivers/net/ethernet/chelsio/inline_crypto/chtls/chtls_cm.c
(David Ahern)
[1]
BUG: KCSAN: data-race in __ip_make_skb / __ip_make_skb
read-write to 0xffff888145af952a of 2 bytes by task 7803 on cpu 1:
ip_select_ident_segs include/net/ip.h:542 [inline]
ip_select_ident include/net/ip.h:556 [inline]
__ip_make_skb+0x844/0xc70 net/ipv4/ip_output.c:1446
ip_make_skb+0x233/0x2c0 net/ipv4/ip_output.c:1560
udp_sendmsg+0x1199/0x1250 net/ipv4/udp.c:1260
inet_sendmsg+0x63/0x80 net/ipv4/af_inet.c:830
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg net/socket.c:748 [inline]
____sys_sendmsg+0x37c/0x4d0 net/socket.c:2494
___sys_sendmsg net/socket.c:2548 [inline]
__sys_sendmmsg+0x269/0x500 net/socket.c:2634
__do_sys_sendmmsg net/socket.c:2663 [inline]
__se_sys_sendmmsg net/socket.c:2660 [inline]
__x64_sys_sendmmsg+0x57/0x60 net/socket.c:2660
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888145af952a of 2 bytes by task 7804 on cpu 0:
ip_select_ident_segs include/net/ip.h:541 [inline]
ip_select_ident include/net/ip.h:556 [inline]
__ip_make_skb+0x817/0xc70 net/ipv4/ip_output.c:1446
ip_make_skb+0x233/0x2c0 net/ipv4/ip_output.c:1560
udp_sendmsg+0x1199/0x1250 net/ipv4/udp.c:1260
inet_sendmsg+0x63/0x80 net/ipv4/af_inet.c:830
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg net/socket.c:748 [inline]
____sys_sendmsg+0x37c/0x4d0 net/socket.c:2494
___sys_sendmsg net/socket.c:2548 [inline]
__sys_sendmmsg+0x269/0x500 net/socket.c:2634
__do_sys_sendmmsg net/socket.c:2663 [inline]
__se_sys_sendmmsg net/socket.c:2660 [inline]
__x64_sys_sendmmsg+0x57/0x60 net/socket.c:2660
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x184d -> 0x184e
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 7804 Comm: syz-executor.1 Not tainted 6.5.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
==================================================================
Fixes: 23f57406b82d ("ipv4: avoid using shared IP generator for connected sockets")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 8bf43be799d4b242ea552a14db10456446be843e ]
sk_getsockopt() runs locklessly. This means sk->sk_priority
can be read while other threads are changing its value.
Other reads also happen without socket lock being held.
Add missing annotations where needed.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3c5b4d69c358a9275a8de98f87caf6eda644b086 ]
sk->sk_mark is often read while another thread could change the value.
Fixes: 4a19ec5800fc ("[NET]: Introducing socket mark socket option.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit dd23c9f1e8d5c1d2e3d29393412385ccb9c7a948 ]
do_tcp_getsockopt() reads tp->tsoffset while another cpu
might change its value.
Fixes: 93be6ce0e91b ("tcp: set and get per-socket timestamp")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20230719212857.3943972-3-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit c0a8966e2bc7d31f77a7246947ebc09c1ff06066 ]
When using IPv4/TCP, skb->hash comes from sk->sk_txhash except in
TIME_WAIT and SYN_RECV where it's not set in the reply skb from
ip_send_unicast_reply. Those packets will have a mismatched hash with
others from the same flow as their hashes will be 0. IPv6 does not have
the same issue as the hash is set from the socket txhash in those cases.
This commits sets the hash in the reply skb from ip_send_unicast_reply,
which makes the IPv4 code behaving like IPv6.
Signed-off-by: Antoine Tenart <atenart@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Stable-dep-of: 5e5265522a9a ("tcp: annotate data-races around tcp_rsk(req)->txhash")
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 9378096e8a656fb5c4099b26b1370c56f056eab9 ]
This is a preparatory commit to replace `lock_sock_fast` with
`lock_sock`,and facilitate BPF programs executed from the TCP sockets
iterator to be able to destroy TCP sockets using the bpf_sock_destroy
kfunc (implemented in follow-up commits).
Previously, BPF TCP iterator was acquiring the sock lock with BH
disabled. This led to scenarios where the sockets hash table bucket lock
can be acquired with BH enabled in some path versus disabled in other.
In such situation, kernel issued a warning since it thinks that in the
BH enabled path the same bucket lock *might* be acquired again in the
softirq context (BH disabled), which will lead to a potential dead lock.
Since bpf_sock_destroy also happens in a process context, the potential
deadlock warning is likely a false alarm.
Here is a snippet of annotated stack trace that motivated this change:
```
Possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&h->lhash2[i].lock);
local_bh_disable();
lock(&h->lhash2[i].lock);
kernel imagined possible scenario:
local_bh_disable(); /* Possible softirq */
lock(&h->lhash2[i].lock);
*** Potential Deadlock ***
process context:
lock_acquire+0xcd/0x330
_raw_spin_lock+0x33/0x40
------> Acquire (bucket) lhash2.lock with BH enabled
__inet_hash+0x4b/0x210
inet_csk_listen_start+0xe6/0x100
inet_listen+0x95/0x1d0
__sys_listen+0x69/0xb0
__x64_sys_listen+0x14/0x20
do_syscall_64+0x3c/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
bpf_sock_destroy run from iterator:
lock_acquire+0xcd/0x330
_raw_spin_lock+0x33/0x40
------> Acquire (bucket) lhash2.lock with BH disabled
inet_unhash+0x9a/0x110
tcp_set_state+0x6a/0x210
tcp_abort+0x10d/0x200
bpf_prog_6793c5ca50c43c0d_iter_tcp6_server+0xa4/0xa9
bpf_iter_run_prog+0x1ff/0x340
------> lock_sock_fast that acquires sock lock with BH disabled
bpf_iter_tcp_seq_show+0xca/0x190
bpf_seq_read+0x177/0x450
```
Also, Yonghong reported a deadlock for non-listening TCP sockets that
this change resolves. Previously, `lock_sock_fast` held the sock spin
lock with BH which was again being acquired in `tcp_abort`:
```
watchdog: BUG: soft lockup - CPU#0 stuck for 86s! [test_progs:2331]
RIP: 0010:queued_spin_lock_slowpath+0xd8/0x500
Call Trace:
<TASK>
_raw_spin_lock+0x84/0x90
tcp_abort+0x13c/0x1f0
bpf_prog_88539c5453a9dd47_iter_tcp6_client+0x82/0x89
bpf_iter_run_prog+0x1aa/0x2c0
? preempt_count_sub+0x1c/0xd0
? from_kuid_munged+0x1c8/0x210
bpf_iter_tcp_seq_show+0x14e/0x1b0
bpf_seq_read+0x36c/0x6a0
bpf_iter_tcp_seq_show
lock_sock_fast
__lock_sock_fast
spin_lock_bh(&sk->sk_lock.slock);
/* * Fast path return with bottom halves disabled and * sock::sk_lock.slock held.* */
...
tcp_abort
local_bh_disable();
spin_lock(&((sk)->sk_lock.slock)); // from bh_lock_sock(sk)
```
With the switch to `lock_sock`, it calls `spin_unlock_bh` before returning:
```
lock_sock
lock_sock_nested
spin_lock_bh(&sk->sk_lock.slock);
:
spin_unlock_bh(&sk->sk_lock.slock);
```
Acked-by: Yonghong Song <yhs@meta.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com>
Link: https://lore.kernel.org/r/20230519225157.760788-2-aditi.ghag@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1e306ec49a1f206fd2cc89a42fac6e6f592a8cc1 ]
When tcp_v4_send_reset() is called with @sk == NULL,
we do not change ctl_sk->sk_priority, which could have been
set from a prior invocation.
Change tcp_v4_send_reset() to set sk_priority and sk_mark
fields before calling ip_send_unicast_reply().
This means tcp_v4_send_reset() and tcp_v4_send_ack()
no longer have to clear ctl_sk->sk_mark after
their call to ip_send_unicast_reply().
Fixes: f6c0f5d209fa ("tcp: honor SO_PRIORITY in TIME_WAIT state")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Antoine Tenart <atenart@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 580031ff9952b7dbf48dedba6b56a100ae002bef ]
While reviewing the udp-iter batching patches, noticed the bpf_iter_tcp
calling sock_put() is incorrect. It should call sock_gen_put instead
because bpf_iter_tcp is iterating the ehash table which has the req sk
and tw sk. This patch replaces all sock_put with sock_gen_put in the
bpf_iter_tcp codepath.
Fixes: 04c7820b776f ("bpf: tcp: Bpf iter batching and lock_sock")
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230328004232.2134233-1-martin.lau@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
When we call connect() for a socket bound to a wildcard address, we update
saddr locklessly. However, it could result in a data race; another thread
iterating over bhash might see a corrupted address.
Let's update saddr under the bhash bucket's lock.
Fixes: 3df80d9320bc ("[DCCP]: Introduce DCCPv6")
Fixes: 7c657876b63c ("[DCCP]: Initial implementation")
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When connect() is called on a socket bound to the wildcard address,
we change the socket's saddr to a local address. If the socket
fails to connect() to the destination, we have to reset the saddr.
However, when an error occurs after inet_hash6?_connect() in
(dccp|tcp)_v[46]_conect(), we forget to reset saddr and leave
the socket bound to the address.
From the user's point of view, whether saddr is reset or not varies
with errno. Let's fix this inconsistent behaviour.
Note that after this patch, the repro [0] will trigger the WARN_ON()
in inet_csk_get_port() again, but this patch is not buggy and rather
fixes a bug papering over the bhash2's bug for which we need another
fix.
For the record, the repro causes -EADDRNOTAVAIL in inet_hash6_connect()
by this sequence:
s1 = socket()
s1.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
s1.bind(('127.0.0.1', 10000))
s1.sendto(b'hello', MSG_FASTOPEN, (('127.0.0.1', 10000)))
# or s1.connect(('127.0.0.1', 10000))
s2 = socket()
s2.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
s2.bind(('0.0.0.0', 10000))
s2.connect(('127.0.0.1', 10000)) # -EADDRNOTAVAIL
s2.listen(32) # WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
[0]: https://syzkaller.appspot.com/bug?extid=015d756bbd1f8b5c8f09
Fixes: 3df80d9320bc ("[DCCP]: Introduce DCCPv6")
Fixes: 7c657876b63c ("[DCCP]: Initial implementation")
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The type of sk_rcvbuf and sk_sndbuf in struct sock is int, and
in tcp_add_backlog(), the variable limit is caculated by adding
sk_rcvbuf, sk_sndbuf and 64 * 1024, it may exceed the max value
of int and overflow. This patch reduces the limit budget by
halving the sndbuf to solve this issue since ACK packets are much
smaller than the payload.
Fixes: c9c3321257e1 ("tcp: add tcp_add_backlog()")
Signed-off-by: Lu Wei <luwei32@huawei.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The more sockets we have in the hash table, the longer we spend looking
up the socket. While running a number of small workloads on the same
host, they penalise each other and cause performance degradation.
The root cause might be a single workload that consumes much more
resources than the others. It often happens on a cloud service where
different workloads share the same computing resource.
On EC2 c5.24xlarge instance (196 GiB memory and 524288 (1Mi / 2) ehash
entries), after running iperf3 in different netns, creating 24Mi sockets
without data transfer in the root netns causes about 10% performance
regression for the iperf3's connection.
thash_entries sockets length Gbps
524288 1 1 50.7
24Mi 48 45.1
It is basically related to the length of the list of each hash bucket.
For testing purposes to see how performance drops along the length,
I set 131072 (1Mi / 8) to thash_entries, and here's the result.
thash_entries sockets length Gbps
131072 1 1 50.7
1Mi 8 49.9
2Mi 16 48.9
4Mi 32 47.3
8Mi 64 44.6
16Mi 128 40.6
24Mi 192 36.3
32Mi 256 32.5
40Mi 320 27.0
48Mi 384 25.0
To resolve the socket lookup degradation, we introduce an optional
per-netns hash table for TCP, but it's just ehash, and we still share
the global bhash, bhash2 and lhash2.
With a smaller ehash, we can look up non-listener sockets faster and
isolate such noisy neighbours. In addition, we can reduce lock contention.
We can control the ehash size by a new sysctl knob. However, depending
on workloads, it will require very sensitive tuning, so we disable the
feature by default (net.ipv4.tcp_child_ehash_entries == 0). Moreover,
we can fall back to using the global ehash in case we fail to allocate
enough memory for a new ehash. The maximum size is 16Mi, which is large
enough that even if we have 48Mi sockets, the average list length is 3,
and regression would be less than 1%.
We can check the current ehash size by another read-only sysctl knob,
net.ipv4.tcp_ehash_entries. A negative value means the netns shares
the global ehash (per-netns ehash is disabled or failed to allocate
memory).
# dmesg | cut -d ' ' -f 5- | grep "established hash"
TCP established hash table entries: 524288 (order: 10, 4194304 bytes, vmalloc hugepage)
# sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = 524288 # can be changed by thash_entries
# sysctl net.ipv4.tcp_child_ehash_entries
net.ipv4.tcp_child_ehash_entries = 0 # disabled by default
# ip netns add test1
# ip netns exec test1 sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = -524288 # share the global ehash
# sysctl -w net.ipv4.tcp_child_ehash_entries=100
net.ipv4.tcp_child_ehash_entries = 100
# ip netns add test2
# ip netns exec test2 sysctl net.ipv4.tcp_ehash_entries
net.ipv4.tcp_ehash_entries = 128 # own a per-netns ehash with 2^n buckets
When more than two processes in the same netns create per-netns ehash
concurrently with different sizes, we need to guarantee the size in
one of the following ways:
1) Share the global ehash and create per-netns ehash
First, unshare() with tcp_child_ehash_entries==0. It creates dedicated
netns sysctl knobs where we can safely change tcp_child_ehash_entries
and clone()/unshare() to create a per-netns ehash.
2) Control write on sysctl by BPF
We can use BPF_PROG_TYPE_CGROUP_SYSCTL to allow/deny read/write on
sysctl knobs.
Note that the global ehash allocated at the boot time is spread over
available NUMA nodes, but inet_pernet_hashinfo_alloc() will allocate
pages for each per-netns ehash depending on the current process's NUMA
policy. By default, the allocation is done in the local node only, so
the per-netns hash table could fully reside on a random node. Thus,
depending on the NUMA policy the netns is created with and the CPU the
current thread is running on, we could see some performance differences
for highly optimised networking applications.
Note also that the default values of two sysctl knobs depend on the ehash
size and should be tuned carefully:
tcp_max_tw_buckets : tcp_child_ehash_entries / 2
tcp_max_syn_backlog : max(128, tcp_child_ehash_entries / 128)
As a bonus, we can dismantle netns faster. Currently, while destroying
netns, we call inet_twsk_purge(), which walks through the global ehash.
It can be potentially big because it can have many sockets other than
TIME_WAIT in all netns. Splitting ehash changes that situation, where
it's only necessary for inet_twsk_purge() to clean up TIME_WAIT sockets
in each netns.
With regard to this, we do not free the per-netns ehash in inet_twsk_kill()
to avoid UAF while iterating the per-netns ehash in inet_twsk_purge().
Instead, we do it in tcp_sk_exit_batch() after calling tcp_twsk_purge() to
keep it protocol-family-independent.
In the future, we could optimise ehash lookup/iteration further by removing
netns comparison for the per-netns ehash.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
While destroying netns, we call inet_twsk_purge() in tcp_sk_exit_batch()
and tcpv6_net_exit_batch() for AF_INET and AF_INET6. These commands
trigger the kernel to walk through the potentially big ehash twice even
though the netns has no TIME_WAIT sockets.
# ip netns add test
# ip netns del test
or
# unshare -n /bin/true >/dev/null
When tw_refcount is 1, we need not call inet_twsk_purge() at least
for the net. We can save such unneeded iterations if all netns in
net_exit_list have no TIME_WAIT sockets. This change eliminates
the tax by the additional unshare() described in the next patch to
guarantee the per-netns ehash size.
Tested:
# mount -t debugfs none /sys/kernel/debug/
# echo cleanup_net > /sys/kernel/debug/tracing/set_ftrace_filter
# echo inet_twsk_purge >> /sys/kernel/debug/tracing/set_ftrace_filter
# echo function > /sys/kernel/debug/tracing/current_tracer
# cat ./add_del_unshare.sh
for i in `seq 1 40`
do
(for j in `seq 1 100` ; do unshare -n /bin/true >/dev/null ; done) &
done
wait;
# ./add_del_unshare.sh
Before the patch:
# cat /sys/kernel/debug/tracing/trace_pipe
kworker/u128:0-8 [031] ...1. 174.162765: cleanup_net <-process_one_work
kworker/u128:0-8 [031] ...1. 174.240796: inet_twsk_purge <-cleanup_net
kworker/u128:0-8 [032] ...1. 174.244759: inet_twsk_purge <-tcp_sk_exit_batch
kworker/u128:0-8 [034] ...1. 174.290861: cleanup_net <-process_one_work
kworker/u128:0-8 [039] ...1. 175.245027: inet_twsk_purge <-cleanup_net
kworker/u128:0-8 [046] ...1. 175.290541: inet_twsk_purge <-tcp_sk_exit_batch
kworker/u128:0-8 [037] ...1. 175.321046: cleanup_net <-process_one_work
kworker/u128:0-8 [024] ...1. 175.941633: inet_twsk_purge <-cleanup_net
kworker/u128:0-8 [025] ...1. 176.242539: inet_twsk_purge <-tcp_sk_exit_batch
After:
# cat /sys/kernel/debug/tracing/trace_pipe
kworker/u128:0-8 [038] ...1. 428.116174: cleanup_net <-process_one_work
kworker/u128:0-8 [038] ...1. 428.262532: cleanup_net <-process_one_work
kworker/u128:0-8 [030] ...1. 429.292645: cleanup_net <-process_one_work
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We will soon introduce an optional per-netns ehash.
This means we cannot use tcp_hashinfo directly in most places.
Instead, access it via net->ipv4.tcp_death_row.hashinfo.
The access will be valid only while initialising tcp_hashinfo
itself and creating/destroying each netns.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We will soon introduce an optional per-netns ehash.
This means we cannot use the global sk->sk_prot->h.hashinfo
to fetch a TCP hashinfo.
Instead, set NULL to sk->sk_prot->h.hashinfo for TCP and get
a proper hashinfo from net->ipv4.tcp_death_row.hashinfo.
Note that we need not use sk->sk_prot->h.hashinfo if DCCP is
disabled.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We will soon introduce an optional per-netns ehash and access hash
tables via net->ipv4.tcp_death_row->hashinfo instead of &tcp_hashinfo
in most places.
It could harm the fast path because dereferences of two fields in net
and tcp_death_row might incur two extra cache line misses. To save one
dereference, let's place tcp_death_row back in netns_ipv4 and fetch
hashinfo via net->ipv4.tcp_death_row"."hashinfo.
Note tcp_death_row was initially placed in netns_ipv4, and commit
fbb8295248e1 ("tcp: allocate tcp_death_row outside of struct netns_ipv4")
changed it to a pointer so that we can fire TIME_WAIT timers after freeing
net. However, we don't do so after commit 04c494e68a13 ("Revert "tcp/dccp:
get rid of inet_twsk_purge()""), so we need not define tcp_death_row as a
pointer.
Also, we move refcount_dec_and_test(&tw_refcount) from tcp_sk_exit() to
tcp_sk_exit_batch() as a debug check.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch adds no functional change and cleans up some functions
that the following patches touch around so that we make them tidy
and easy to review/revert. The changes are
- Keep reverse christmas tree order
- Remove unnecessary init of port in inet_csk_find_open_port()
- Use req_to_sk() once in reqsk_queue_unlink()
- Use sock_net(sk) once in tcp_time_wait() and tcp_v[46]_connect()
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Because per host rate limiting has been proven problematic (side channel
attacks can be based on it), per host rate limiting of challenge acks ideally
should be per netns and turned off by default.
This is a long due followup of following commits:
083ae308280d ("tcp: enable per-socket rate limiting of all 'challenge acks'")
f2b2c582e824 ("tcp: mitigate ACK loops for connections as tcp_sock")
75ff39ccc1bd ("tcp: make challenge acks less predictable")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Jason Baron <jbaron@akamai.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The current bind hashtable (bhash) is hashed by port only.
In the socket bind path, we have to check for bind conflicts by
traversing the specified port's inet_bind_bucket while holding the
hashbucket's spinlock (see inet_csk_get_port() and
inet_csk_bind_conflict()). In instances where there are tons of
sockets hashed to the same port at different addresses, the bind
conflict check is time-intensive and can cause softirq cpu lockups,
as well as stops new tcp connections since __inet_inherit_port()
also contests for the spinlock.
This patch adds a second bind table, bhash2, that hashes by
port and sk->sk_rcv_saddr (ipv4) and sk->sk_v6_rcv_saddr (ipv6).
Searching the bhash2 table leads to significantly faster conflict
resolution and less time holding the hashbucket spinlock.
Please note a few things:
* There can be the case where the a socket's address changes after it
has been bound. There are two cases where this happens:
1) The case where there is a bind() call on INADDR_ANY (ipv4) or
IPV6_ADDR_ANY (ipv6) and then a connect() call. The kernel will
assign the socket an address when it handles the connect()
2) In inet_sk_reselect_saddr(), which is called when rebuilding the
sk header and a few pre-conditions are met (eg rerouting fails).
In these two cases, we need to update the bhash2 table by removing the
entry for the old address, and add a new entry reflecting the updated
address.
* The bhash2 table must have its own lock, even though concurrent
accesses on the same port are protected by the bhash lock. Bhash2 must
have its own lock to protect against cases where sockets on different
ports hash to different bhash hashbuckets but to the same bhash2
hashbucket.
This brings up a few stipulations:
1) When acquiring both the bhash and the bhash2 lock, the bhash2 lock
will always be acquired after the bhash lock and released before the
bhash lock is released.
2) There are no nested bhash2 hashbucket locks. A bhash2 lock is always
acquired+released before another bhash2 lock is acquired+released.
* The bhash table cannot be superseded by the bhash2 table because for
bind requests on INADDR_ANY (ipv4) or IPV6_ADDR_ANY (ipv6), every socket
bound to that port must be checked for a potential conflict. The bhash
table is the only source of port->socket associations.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
While reading sysctl_tcp_reflect_tos, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers.
Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Wei Wang <weiwan@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
While reading sysctl_tcp_tw_reuse, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
If we set XFRM security policy by calling setsockopt with option
IPV6_XFRM_POLICY, the policy will be stored in 'sock_policy' in 'sock'
struct. However tcp_v6_send_response doesn't look up dst_entry with the
actual socket but looks up with tcp control socket. This may cause a
problem that a RST packet is sent without ESP encryption & peer's TCP
socket can't receive it.
This patch will make the function look up dest_entry with actual socket,
if the socket has XFRM policy(sock_policy), so that the TCP response
packet via this function can be encrypted, & aligned on the encrypted
TCP socket.
Tested: We encountered this problem when a TCP socket which is encrypted
in ESP transport mode encryption, receives challenge ACK at SYN_SENT
state. After receiving challenge ACK, TCP needs to send RST to
establish the socket at next SYN try. But the RST was not encrypted &
peer TCP socket still remains on ESTABLISHED state.
So we verified this with test step as below.
[Test step]
1. Making a TCP state mismatch between client(IDLE) & server(ESTABLISHED).
2. Client tries a new connection on the same TCP ports(src & dst).
3. Server will return challenge ACK instead of SYN,ACK.
4. Client will send RST to server to clear the SOCKET.
5. Client will retransmit SYN to server on the same TCP ports.
[Expected result]
The TCP connection should be established.
Cc: Maciej Żenczykowski <maze@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Sehee Lee <seheele@google.com>
Signed-off-by: Sewook Seo <sewookseo@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
drivers/net/ethernet/microchip/sparx5/sparx5_switchdev.c
9c5de246c1db ("net: sparx5: mdb add/del handle non-sparx5 devices")
fbb89d02e33a ("net: sparx5: Allow mdb entries to both CPU and ports")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When the third packet of 3WHS connection establishment
contains payload, it is added into socket receive queue
without the XFRM check and the drop of connection tracking
context.
This means that if the data is left unread in the socket
receive queue, conntrack module can not be unloaded.
As most applications usually reads the incoming data
immediately after accept(), bug has been hiding for
quite a long time.
Commit 68822bdf76f1 ("net: generalize skb freeing
deferral to per-cpu lists") exposed this bug because
even if the application reads this data, the skb
with nfct state could stay in a per-cpu cache for
an arbitrary time, if said cpu no longer process RX softirqs.
Many thanks to Ilya Maximets for reporting this issue,
and for testing various patches:
https://lore.kernel.org/netdev/20220619003919.394622-1-i.maximets@ovn.org/
Note that I also added a missing xfrm4_policy_check() call,
although this is probably not a big issue, as the SYN
packet should have been dropped earlier.
Fixes: b59c270104f0 ("[NETFILTER]: Keep conntrack reference until IPsec policy checks are done")
Reported-by: Ilya Maximets <i.maximets@ovn.org>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Florian Westphal <fw@strlen.de>
Cc: Pablo Neira Ayuso <pablo@netfilter.org>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Tested-by: Ilya Maximets <i.maximets@ovn.org>
Reviewed-by: Ilya Maximets <i.maximets@ovn.org>
Link: https://lore.kernel.org/r/20220623050436.1290307-1-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Each protocol having a ->memory_allocated pointer gets a corresponding
per-cpu reserve, that following patches will use.
Instead of having reserved bytes per socket,
we want to have per-cpu reserves.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Fix the following build warning when CONFIG_IPV6 is not set:
In function ‘fortify_memcpy_chk’,
inlined from ‘tcp_md5_do_add’ at net/ipv4/tcp_ipv4.c:1210:2:
./include/linux/fortify-string.h:328:4: error: call to ‘__write_overflow_field’ declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
328 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suggested-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: huhai <huhai@kylinos.cn>
Reviewed-by: David Ahern <dsahern@kernel.org>
Link: https://lore.kernel.org/r/20220526101213.2392980-1-zhanggenjian@kylinos.cn
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The 'drop_reason' that passed to kfree_skb_reason() in tcp_v4_rcv()
and tcp_v6_rcv() can be SKB_NOT_DROPPED_YET(0), as it is used as the
return value of tcp_inbound_md5_hash().
And it can panic the kernel with NULL pointer in
net_dm_packet_report_size() if the reason is 0, as drop_reasons[0]
is NULL.
Fixes: 1330b6ef3313 ("skb: make drop reason booleanable")
Reviewed-by: Jiang Biao <benbjiang@tencent.com>
Reviewed-by: Hao Peng <flyingpeng@tencent.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commits:
0dad4087a86a2cbe177404dc73f18ada26a2c390 ("tcp/dccp: get rid of inet_twsk_purge()")
d507204d3c5cc57d9a8bdf0a477615bb59ea1611 ("tcp/dccp: add tw->tw_bslot")
As Leonard pointed out, a newly allocated netns can happen
to reuse a freed 'struct net'.
While TCP TW timers were covered by my patches, other things were not:
1) Lookups in rx path (INET_MATCH() and INET6_MATCH()), as they look
at 4-tuple plus the 'struct net' pointer.
2) /proc/net/tcp[6] and inet_diag, same reason.
3) hashinfo->bhash[], same reason.
Fixing all this seems risky, lets instead revert.
In the future, we might have a per netns tcp hash table, or
a per netns list of timewait sockets...
Fixes: 0dad4087a86a ("tcp/dccp: get rid of inet_twsk_purge()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Leonard Crestez <cdleonard@gmail.com>
Tested-by: Leonard Crestez <cdleonard@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The listen sk is currently stored in two hash tables,
listening_hash (hashed by port) and lhash2 (hashed by port and address).
After commit 0ee58dad5b06 ("net: tcp6: prefer listeners bound to an address")
and commit d9fbc7f6431f ("net: tcp: prefer listeners bound to an address"),
the TCP-SYN lookup fast path does not use listening_hash.
The commit 05c0b35709c5 ("tcp: seq_file: Replace listening_hash with lhash2")
also moved the seq_file (/proc/net/tcp) iteration usage from
listening_hash to lhash2.
There are still a few listening_hash usages left.
One of them is inet_reuseport_add_sock() which uses the listening_hash
to search a listen sk during the listen() system call. This turns
out to be very slow on use cases that listen on many different
VIPs at a popular port (e.g. 443). [ On top of the slowness in
adding to the tail in the IPv6 case ]. The latter patch has a
selftest to demonstrate this case.
This patch takes this chance to move all remaining listening_hash
usages to lhash2 and then retire listening_hash.
Since most changes need to be done together, it is hard to cut
the listening_hash to lhash2 switch into small patches. The
changes in this patch is highlighted here for the review
purpose.
1. Because of the listening_hash removal, lhash2 can use the
sk->sk_nulls_node instead of the icsk->icsk_listen_portaddr_node.
This will also keep the sk_unhashed() check to work as is
after stop adding sk to listening_hash.
The union is removed from inet_listen_hashbucket because
only nulls_head is needed.
2. icsk->icsk_listen_portaddr_node and its helpers are removed.
3. The current lhash2 users needs to iterate with sk_nulls_node
instead of icsk_listen_portaddr_node.
One case is in the inet[6]_lhash2_lookup().
Another case is the seq_file iterator in tcp_ipv4.c.
One thing to note is sk_nulls_next() is needed
because the old inet_lhash2_for_each_icsk_continue()
does a "next" first before iterating.
4. Move the remaining listening_hash usage to lhash2
inet_reuseport_add_sock() which this series is
trying to improve.
inet_diag.c and mptcp_diag.c are the final two
remaining use cases and is moved to lhash2 now also.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>