llvm-for-llvmta/include/llvm/CodeGen/MachineOperand.h

996 lines
38 KiB
C
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- llvm/CodeGen/MachineOperand.h - MachineOperand class ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineOperand class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEOPERAND_H
#define LLVM_CODEGEN_MACHINEOPERAND_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include <cassert>
namespace llvm {
class BlockAddress;
class Constant;
class ConstantFP;
class ConstantInt;
class GlobalValue;
class MachineBasicBlock;
class MachineInstr;
class MachineRegisterInfo;
class MCCFIInstruction;
class MDNode;
class ModuleSlotTracker;
class TargetIntrinsicInfo;
class TargetRegisterInfo;
class hash_code;
class raw_ostream;
class MCSymbol;
/// MachineOperand class - Representation of each machine instruction operand.
///
/// This class isn't a POD type because it has a private constructor, but its
/// destructor must be trivial. Functions like MachineInstr::addOperand(),
/// MachineRegisterInfo::moveOperands(), and MF::DeleteMachineInstr() depend on
/// not having to call the MachineOperand destructor.
///
class MachineOperand {
public:
enum MachineOperandType : unsigned char {
MO_Register, ///< Register operand.
MO_Immediate, ///< Immediate operand
MO_CImmediate, ///< Immediate >64bit operand
MO_FPImmediate, ///< Floating-point immediate operand
MO_MachineBasicBlock, ///< MachineBasicBlock reference
MO_FrameIndex, ///< Abstract Stack Frame Index
MO_ConstantPoolIndex, ///< Address of indexed Constant in Constant Pool
MO_TargetIndex, ///< Target-dependent index+offset operand.
MO_JumpTableIndex, ///< Address of indexed Jump Table for switch
MO_ExternalSymbol, ///< Name of external global symbol
MO_GlobalAddress, ///< Address of a global value
MO_BlockAddress, ///< Address of a basic block
MO_RegisterMask, ///< Mask of preserved registers.
MO_RegisterLiveOut, ///< Mask of live-out registers.
MO_Metadata, ///< Metadata reference (for debug info)
MO_MCSymbol, ///< MCSymbol reference (for debug/eh info)
MO_CFIIndex, ///< MCCFIInstruction index.
MO_IntrinsicID, ///< Intrinsic ID for ISel
MO_Predicate, ///< Generic predicate for ISel
MO_ShuffleMask, ///< Other IR Constant for ISel (shuffle masks)
MO_Last = MO_ShuffleMask
};
private:
/// OpKind - Specify what kind of operand this is. This discriminates the
/// union.
unsigned OpKind : 8;
/// Subregister number for MO_Register. A value of 0 indicates the
/// MO_Register has no subReg.
///
/// For all other kinds of operands, this field holds target-specific flags.
unsigned SubReg_TargetFlags : 12;
/// TiedTo - Non-zero when this register operand is tied to another register
/// operand. The encoding of this field is described in the block comment
/// before MachineInstr::tieOperands().
unsigned TiedTo : 4;
/// IsDef - True if this is a def, false if this is a use of the register.
/// This is only valid on register operands.
///
unsigned IsDef : 1;
/// IsImp - True if this is an implicit def or use, false if it is explicit.
/// This is only valid on register opderands.
///
unsigned IsImp : 1;
/// IsDeadOrKill
/// For uses: IsKill - True if this instruction is the last use of the
/// register on this path through the function.
/// For defs: IsDead - True if this register is never used by a subsequent
/// instruction.
/// This is only valid on register operands.
unsigned IsDeadOrKill : 1;
/// See isRenamable().
unsigned IsRenamable : 1;
/// IsUndef - True if this register operand reads an "undef" value, i.e. the
/// read value doesn't matter. This flag can be set on both use and def
/// operands. On a sub-register def operand, it refers to the part of the
/// register that isn't written. On a full-register def operand, it is a
/// noop. See readsReg().
///
/// This is only valid on registers.
///
/// Note that an instruction may have multiple <undef> operands referring to
/// the same register. In that case, the instruction may depend on those
/// operands reading the same dont-care value. For example:
///
/// %1 = XOR undef %2, undef %2
///
/// Any register can be used for %2, and its value doesn't matter, but
/// the two operands must be the same register.
///
unsigned IsUndef : 1;
/// IsInternalRead - True if this operand reads a value that was defined
/// inside the same instruction or bundle. This flag can be set on both use
/// and def operands. On a sub-register def operand, it refers to the part
/// of the register that isn't written. On a full-register def operand, it
/// is a noop.
///
/// When this flag is set, the instruction bundle must contain at least one
/// other def of the register. If multiple instructions in the bundle define
/// the register, the meaning is target-defined.
unsigned IsInternalRead : 1;
/// IsEarlyClobber - True if this MO_Register 'def' operand is written to
/// by the MachineInstr before all input registers are read. This is used to
/// model the GCC inline asm '&' constraint modifier.
unsigned IsEarlyClobber : 1;
/// IsDebug - True if this MO_Register 'use' operand is in a debug pseudo,
/// not a real instruction. Such uses should be ignored during codegen.
unsigned IsDebug : 1;
/// SmallContents - This really should be part of the Contents union, but
/// lives out here so we can get a better packed struct.
/// MO_Register: Register number.
/// OffsetedInfo: Low bits of offset.
union {
unsigned RegNo; // For MO_Register.
unsigned OffsetLo; // Matches Contents.OffsetedInfo.OffsetHi.
} SmallContents;
/// ParentMI - This is the instruction that this operand is embedded into.
/// This is valid for all operand types, when the operand is in an instr.
MachineInstr *ParentMI;
/// Contents union - This contains the payload for the various operand types.
union ContentsUnion {
ContentsUnion() {}
MachineBasicBlock *MBB; // For MO_MachineBasicBlock.
const ConstantFP *CFP; // For MO_FPImmediate.
const ConstantInt *CI; // For MO_CImmediate. Integers > 64bit.
int64_t ImmVal; // For MO_Immediate.
const uint32_t *RegMask; // For MO_RegisterMask and MO_RegisterLiveOut.
const MDNode *MD; // For MO_Metadata.
MCSymbol *Sym; // For MO_MCSymbol.
unsigned CFIIndex; // For MO_CFI.
Intrinsic::ID IntrinsicID; // For MO_IntrinsicID.
unsigned Pred; // For MO_Predicate
ArrayRef<int> ShuffleMask; // For MO_ShuffleMask
struct { // For MO_Register.
// Register number is in SmallContents.RegNo.
MachineOperand *Prev; // Access list for register. See MRI.
MachineOperand *Next;
} Reg;
/// OffsetedInfo - This struct contains the offset and an object identifier.
/// this represent the object as with an optional offset from it.
struct {
union {
int Index; // For MO_*Index - The index itself.
const char *SymbolName; // For MO_ExternalSymbol.
const GlobalValue *GV; // For MO_GlobalAddress.
const BlockAddress *BA; // For MO_BlockAddress.
} Val;
// Low bits of offset are in SmallContents.OffsetLo.
int OffsetHi; // An offset from the object, high 32 bits.
} OffsetedInfo;
} Contents;
explicit MachineOperand(MachineOperandType K)
: OpKind(K), SubReg_TargetFlags(0), ParentMI(nullptr) {
// Assert that the layout is what we expect. It's easy to grow this object.
static_assert(alignof(MachineOperand) <= alignof(int64_t),
"MachineOperand shouldn't be more than 8 byte aligned");
static_assert(sizeof(Contents) <= 2 * sizeof(void *),
"Contents should be at most two pointers");
static_assert(sizeof(MachineOperand) <=
alignTo<alignof(int64_t)>(2 * sizeof(unsigned) +
3 * sizeof(void *)),
"MachineOperand too big. Should be Kind, SmallContents, "
"ParentMI, and Contents");
}
public:
/// getType - Returns the MachineOperandType for this operand.
///
MachineOperandType getType() const { return (MachineOperandType)OpKind; }
unsigned getTargetFlags() const {
return isReg() ? 0 : SubReg_TargetFlags;
}
void setTargetFlags(unsigned F) {
assert(!isReg() && "Register operands can't have target flags");
SubReg_TargetFlags = F;
assert(SubReg_TargetFlags == F && "Target flags out of range");
}
void addTargetFlag(unsigned F) {
assert(!isReg() && "Register operands can't have target flags");
SubReg_TargetFlags |= F;
assert((SubReg_TargetFlags & F) && "Target flags out of range");
}
/// getParent - Return the instruction that this operand belongs to.
///
MachineInstr *getParent() { return ParentMI; }
const MachineInstr *getParent() const { return ParentMI; }
/// clearParent - Reset the parent pointer.
///
/// The MachineOperand copy constructor also copies ParentMI, expecting the
/// original to be deleted. If a MachineOperand is ever stored outside a
/// MachineInstr, the parent pointer must be cleared.
///
/// Never call clearParent() on an operand in a MachineInstr.
///
void clearParent() { ParentMI = nullptr; }
/// Print a subreg index operand.
/// MO_Immediate operands can also be subreg idices. If it's the case, the
/// subreg index name will be printed. MachineInstr::isOperandSubregIdx can be
/// called to check this.
static void printSubRegIdx(raw_ostream &OS, uint64_t Index,
const TargetRegisterInfo *TRI);
/// Print operand target flags.
static void printTargetFlags(raw_ostream& OS, const MachineOperand &Op);
/// Print a MCSymbol as an operand.
static void printSymbol(raw_ostream &OS, MCSymbol &Sym);
/// Print a stack object reference.
static void printStackObjectReference(raw_ostream &OS, unsigned FrameIndex,
bool IsFixed, StringRef Name);
/// Print the offset with explicit +/- signs.
static void printOperandOffset(raw_ostream &OS, int64_t Offset);
/// Print an IRSlotNumber.
static void printIRSlotNumber(raw_ostream &OS, int Slot);
/// Print the MachineOperand to \p os.
/// Providing a valid \p TRI and \p IntrinsicInfo results in a more
/// target-specific printing. If \p TRI and \p IntrinsicInfo are null, the
/// function will try to pick it up from the parent.
void print(raw_ostream &os, const TargetRegisterInfo *TRI = nullptr,
const TargetIntrinsicInfo *IntrinsicInfo = nullptr) const;
/// More complex way of printing a MachineOperand.
/// \param TypeToPrint specifies the generic type to be printed on uses and
/// defs. It can be determined using MachineInstr::getTypeToPrint.
/// \param OpIdx - specifies the index of the operand in machine instruction.
/// This will be used by target dependent MIR formatter. Could be None if the
/// index is unknown, e.g. called by dump().
/// \param PrintDef - whether we want to print `def` on an operand which
/// isDef. Sometimes, if the operand is printed before '=', we don't print
/// `def`.
/// \param IsStandalone - whether we want a verbose output of the MO. This
/// prints extra information that can be easily inferred when printing the
/// whole function, but not when printing only a fragment of it.
/// \param ShouldPrintRegisterTies - whether we want to print register ties.
/// Sometimes they are easily determined by the instruction's descriptor
/// (MachineInstr::hasComplexRegiterTies can determine if it's needed).
/// \param TiedOperandIdx - if we need to print register ties this needs to
/// provide the index of the tied register. If not, it will be ignored.
/// \param TRI - provide more target-specific information to the printer.
/// Unlike the previous function, this one will not try and get the
/// information from it's parent.
/// \param IntrinsicInfo - same as \p TRI.
void print(raw_ostream &os, ModuleSlotTracker &MST, LLT TypeToPrint,
Optional<unsigned> OpIdx, bool PrintDef, bool IsStandalone,
bool ShouldPrintRegisterTies, unsigned TiedOperandIdx,
const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const;
/// Same as print(os, TRI, IntrinsicInfo), but allows to specify the low-level
/// type to be printed the same way the full version of print(...) does it.
void print(raw_ostream &os, LLT TypeToPrint,
const TargetRegisterInfo *TRI = nullptr,
const TargetIntrinsicInfo *IntrinsicInfo = nullptr) const;
void dump() const;
//===--------------------------------------------------------------------===//
// Accessors that tell you what kind of MachineOperand you're looking at.
//===--------------------------------------------------------------------===//
/// isReg - Tests if this is a MO_Register operand.
bool isReg() const { return OpKind == MO_Register; }
/// isImm - Tests if this is a MO_Immediate operand.
bool isImm() const { return OpKind == MO_Immediate; }
/// isCImm - Test if this is a MO_CImmediate operand.
bool isCImm() const { return OpKind == MO_CImmediate; }
/// isFPImm - Tests if this is a MO_FPImmediate operand.
bool isFPImm() const { return OpKind == MO_FPImmediate; }
/// isMBB - Tests if this is a MO_MachineBasicBlock operand.
bool isMBB() const { return OpKind == MO_MachineBasicBlock; }
/// isFI - Tests if this is a MO_FrameIndex operand.
bool isFI() const { return OpKind == MO_FrameIndex; }
/// isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isCPI() const { return OpKind == MO_ConstantPoolIndex; }
/// isTargetIndex - Tests if this is a MO_TargetIndex operand.
bool isTargetIndex() const { return OpKind == MO_TargetIndex; }
/// isJTI - Tests if this is a MO_JumpTableIndex operand.
bool isJTI() const { return OpKind == MO_JumpTableIndex; }
/// isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isGlobal() const { return OpKind == MO_GlobalAddress; }
/// isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isSymbol() const { return OpKind == MO_ExternalSymbol; }
/// isBlockAddress - Tests if this is a MO_BlockAddress operand.
bool isBlockAddress() const { return OpKind == MO_BlockAddress; }
/// isRegMask - Tests if this is a MO_RegisterMask operand.
bool isRegMask() const { return OpKind == MO_RegisterMask; }
/// isRegLiveOut - Tests if this is a MO_RegisterLiveOut operand.
bool isRegLiveOut() const { return OpKind == MO_RegisterLiveOut; }
/// isMetadata - Tests if this is a MO_Metadata operand.
bool isMetadata() const { return OpKind == MO_Metadata; }
bool isMCSymbol() const { return OpKind == MO_MCSymbol; }
bool isCFIIndex() const { return OpKind == MO_CFIIndex; }
bool isIntrinsicID() const { return OpKind == MO_IntrinsicID; }
bool isPredicate() const { return OpKind == MO_Predicate; }
bool isShuffleMask() const { return OpKind == MO_ShuffleMask; }
//===--------------------------------------------------------------------===//
// Accessors for Register Operands
//===--------------------------------------------------------------------===//
/// getReg - Returns the register number.
Register getReg() const {
assert(isReg() && "This is not a register operand!");
return Register(SmallContents.RegNo);
}
unsigned getSubReg() const {
assert(isReg() && "Wrong MachineOperand accessor");
return SubReg_TargetFlags;
}
bool isUse() const {
assert(isReg() && "Wrong MachineOperand accessor");
return !IsDef;
}
bool isDef() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDef;
}
bool isImplicit() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsImp;
}
bool isDead() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDeadOrKill & IsDef;
}
bool isKill() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDeadOrKill & !IsDef;
}
bool isUndef() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsUndef;
}
/// isRenamable - Returns true if this register may be renamed, i.e. it does
/// not generate a value that is somehow read in a way that is not represented
/// by the Machine IR (e.g. to meet an ABI or ISA requirement). This is only
/// valid on physical register operands. Virtual registers are assumed to
/// always be renamable regardless of the value of this field.
///
/// Operands that are renamable can freely be changed to any other register
/// that is a member of the register class returned by
/// MI->getRegClassConstraint().
///
/// isRenamable can return false for several different reasons:
///
/// - ABI constraints (since liveness is not always precisely modeled). We
/// conservatively handle these cases by setting all physical register
/// operands that didnt start out as virtual regs to not be renamable.
/// Also any physical register operands created after register allocation or
/// whose register is changed after register allocation will not be
/// renamable. This state is tracked in the MachineOperand::IsRenamable
/// bit.
///
/// - Opcode/target constraints: for opcodes that have complex register class
/// requirements (e.g. that depend on other operands/instructions), we set
/// hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq in the machine opcode
/// description. Operands belonging to instructions with opcodes that are
/// marked hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq return false from
/// isRenamable(). Additionally, the AllowRegisterRenaming target property
/// prevents any operands from being marked renamable for targets that don't
/// have detailed opcode hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
/// values.
bool isRenamable() const;
bool isInternalRead() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsInternalRead;
}
bool isEarlyClobber() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsEarlyClobber;
}
bool isTied() const {
assert(isReg() && "Wrong MachineOperand accessor");
return TiedTo;
}
bool isDebug() const {
assert(isReg() && "Wrong MachineOperand accessor");
return IsDebug;
}
/// readsReg - Returns true if this operand reads the previous value of its
/// register. A use operand with the <undef> flag set doesn't read its
/// register. A sub-register def implicitly reads the other parts of the
/// register being redefined unless the <undef> flag is set.
///
/// This refers to reading the register value from before the current
/// instruction or bundle. Internal bundle reads are not included.
bool readsReg() const {
assert(isReg() && "Wrong MachineOperand accessor");
return !isUndef() && !isInternalRead() && (isUse() || getSubReg());
}
//===--------------------------------------------------------------------===//
// Mutators for Register Operands
//===--------------------------------------------------------------------===//
/// Change the register this operand corresponds to.
///
void setReg(Register Reg);
void setSubReg(unsigned subReg) {
assert(isReg() && "Wrong MachineOperand mutator");
SubReg_TargetFlags = subReg;
assert(SubReg_TargetFlags == subReg && "SubReg out of range");
}
/// substVirtReg - Substitute the current register with the virtual
/// subregister Reg:SubReg. Take any existing SubReg index into account,
/// using TargetRegisterInfo to compose the subreg indices if necessary.
/// Reg must be a virtual register, SubIdx can be 0.
///
void substVirtReg(Register Reg, unsigned SubIdx, const TargetRegisterInfo&);
/// substPhysReg - Substitute the current register with the physical register
/// Reg, taking any existing SubReg into account. For instance,
/// substPhysReg(%eax) will change %reg1024:sub_8bit to %al.
///
void substPhysReg(MCRegister Reg, const TargetRegisterInfo&);
void setIsUse(bool Val = true) { setIsDef(!Val); }
/// Change a def to a use, or a use to a def.
void setIsDef(bool Val = true);
void setImplicit(bool Val = true) {
assert(isReg() && "Wrong MachineOperand mutator");
IsImp = Val;
}
void setIsKill(bool Val = true) {
assert(isReg() && !IsDef && "Wrong MachineOperand mutator");
assert((!Val || !isDebug()) && "Marking a debug operation as kill");
IsDeadOrKill = Val;
}
void setIsDead(bool Val = true) {
assert(isReg() && IsDef && "Wrong MachineOperand mutator");
IsDeadOrKill = Val;
}
void setIsUndef(bool Val = true) {
assert(isReg() && "Wrong MachineOperand mutator");
IsUndef = Val;
}
void setIsRenamable(bool Val = true);
void setIsInternalRead(bool Val = true) {
assert(isReg() && "Wrong MachineOperand mutator");
IsInternalRead = Val;
}
void setIsEarlyClobber(bool Val = true) {
assert(isReg() && IsDef && "Wrong MachineOperand mutator");
IsEarlyClobber = Val;
}
void setIsDebug(bool Val = true) {
assert(isReg() && !IsDef && "Wrong MachineOperand mutator");
IsDebug = Val;
}
//===--------------------------------------------------------------------===//
// Accessors for various operand types.
//===--------------------------------------------------------------------===//
int64_t getImm() const {
assert(isImm() && "Wrong MachineOperand accessor");
return Contents.ImmVal;
}
const ConstantInt *getCImm() const {
assert(isCImm() && "Wrong MachineOperand accessor");
return Contents.CI;
}
const ConstantFP *getFPImm() const {
assert(isFPImm() && "Wrong MachineOperand accessor");
return Contents.CFP;
}
MachineBasicBlock *getMBB() const {
assert(isMBB() && "Wrong MachineOperand accessor");
return Contents.MBB;
}
int getIndex() const {
assert((isFI() || isCPI() || isTargetIndex() || isJTI()) &&
"Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.Index;
}
const GlobalValue *getGlobal() const {
assert(isGlobal() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.GV;
}
const BlockAddress *getBlockAddress() const {
assert(isBlockAddress() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.BA;
}
MCSymbol *getMCSymbol() const {
assert(isMCSymbol() && "Wrong MachineOperand accessor");
return Contents.Sym;
}
unsigned getCFIIndex() const {
assert(isCFIIndex() && "Wrong MachineOperand accessor");
return Contents.CFIIndex;
}
Intrinsic::ID getIntrinsicID() const {
assert(isIntrinsicID() && "Wrong MachineOperand accessor");
return Contents.IntrinsicID;
}
unsigned getPredicate() const {
assert(isPredicate() && "Wrong MachineOperand accessor");
return Contents.Pred;
}
ArrayRef<int> getShuffleMask() const {
assert(isShuffleMask() && "Wrong MachineOperand accessor");
return Contents.ShuffleMask;
}
/// Return the offset from the symbol in this operand. This always returns 0
/// for ExternalSymbol operands.
int64_t getOffset() const {
assert((isGlobal() || isSymbol() || isMCSymbol() || isCPI() ||
isTargetIndex() || isBlockAddress()) &&
"Wrong MachineOperand accessor");
return int64_t(uint64_t(Contents.OffsetedInfo.OffsetHi) << 32) |
SmallContents.OffsetLo;
}
const char *getSymbolName() const {
assert(isSymbol() && "Wrong MachineOperand accessor");
return Contents.OffsetedInfo.Val.SymbolName;
}
/// clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
/// It is sometimes necessary to detach the register mask pointer from its
/// machine operand. This static method can be used for such detached bit
/// mask pointers.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg) {
// See TargetRegisterInfo.h.
assert(PhysReg < (1u << 30) && "Not a physical register");
return !(RegMask[PhysReg / 32] & (1u << PhysReg % 32));
}
/// clobbersPhysReg - Returns true if this RegMask operand clobbers PhysReg.
bool clobbersPhysReg(MCRegister PhysReg) const {
return clobbersPhysReg(getRegMask(), PhysReg);
}
/// getRegMask - Returns a bit mask of registers preserved by this RegMask
/// operand.
const uint32_t *getRegMask() const {
assert(isRegMask() && "Wrong MachineOperand accessor");
return Contents.RegMask;
}
/// Returns number of elements needed for a regmask array.
static unsigned getRegMaskSize(unsigned NumRegs) {
return (NumRegs + 31) / 32;
}
/// getRegLiveOut - Returns a bit mask of live-out registers.
const uint32_t *getRegLiveOut() const {
assert(isRegLiveOut() && "Wrong MachineOperand accessor");
return Contents.RegMask;
}
const MDNode *getMetadata() const {
assert(isMetadata() && "Wrong MachineOperand accessor");
return Contents.MD;
}
//===--------------------------------------------------------------------===//
// Mutators for various operand types.
//===--------------------------------------------------------------------===//
void setImm(int64_t immVal) {
assert(isImm() && "Wrong MachineOperand mutator");
Contents.ImmVal = immVal;
}
void setCImm(const ConstantInt *CI) {
assert(isCImm() && "Wrong MachineOperand mutator");
Contents.CI = CI;
}
void setFPImm(const ConstantFP *CFP) {
assert(isFPImm() && "Wrong MachineOperand mutator");
Contents.CFP = CFP;
}
void setOffset(int64_t Offset) {
assert((isGlobal() || isSymbol() || isMCSymbol() || isCPI() ||
isTargetIndex() || isBlockAddress()) &&
"Wrong MachineOperand mutator");
SmallContents.OffsetLo = unsigned(Offset);
Contents.OffsetedInfo.OffsetHi = int(Offset >> 32);
}
void setIndex(int Idx) {
assert((isFI() || isCPI() || isTargetIndex() || isJTI()) &&
"Wrong MachineOperand mutator");
Contents.OffsetedInfo.Val.Index = Idx;
}
void setMetadata(const MDNode *MD) {
assert(isMetadata() && "Wrong MachineOperand mutator");
Contents.MD = MD;
}
void setMBB(MachineBasicBlock *MBB) {
assert(isMBB() && "Wrong MachineOperand mutator");
Contents.MBB = MBB;
}
/// Sets value of register mask operand referencing Mask. The
/// operand does not take ownership of the memory referenced by Mask, it must
/// remain valid for the lifetime of the operand. See CreateRegMask().
/// Any physreg with a 0 bit in the mask is clobbered by the instruction.
void setRegMask(const uint32_t *RegMaskPtr) {
assert(isRegMask() && "Wrong MachineOperand mutator");
Contents.RegMask = RegMaskPtr;
}
void setIntrinsicID(Intrinsic::ID IID) {
assert(isIntrinsicID() && "Wrong MachineOperand mutator");
Contents.IntrinsicID = IID;
}
void setPredicate(unsigned Predicate) {
assert(isPredicate() && "Wrong MachineOperand mutator");
Contents.Pred = Predicate;
}
//===--------------------------------------------------------------------===//
// Other methods.
//===--------------------------------------------------------------------===//
/// Returns true if this operand is identical to the specified operand except
/// for liveness related flags (isKill, isUndef and isDead). Note that this
/// should stay in sync with the hash_value overload below.
bool isIdenticalTo(const MachineOperand &Other) const;
/// MachineOperand hash_value overload.
///
/// Note that this includes the same information in the hash that
/// isIdenticalTo uses for comparison. It is thus suited for use in hash
/// tables which use that function for equality comparisons only. This must
/// stay exactly in sync with isIdenticalTo above.
friend hash_code hash_value(const MachineOperand &MO);
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags = 0);
/// ChangeToFPImmediate - Replace this operand with a new FP immediate operand
/// of the specified value. If an operand is known to be an FP immediate
/// already, the setFPImm method should be used.
void ChangeToFPImmediate(const ConstantFP *FPImm, unsigned TargetFlags = 0);
/// ChangeToES - Replace this operand with a new external symbol operand.
void ChangeToES(const char *SymName, unsigned TargetFlags = 0);
/// ChangeToGA - Replace this operand with a new global address operand.
void ChangeToGA(const GlobalValue *GV, int64_t Offset,
unsigned TargetFlags = 0);
/// ChangeToMCSymbol - Replace this operand with a new MC symbol operand.
void ChangeToMCSymbol(MCSymbol *Sym, unsigned TargetFlags = 0);
/// Replace this operand with a frame index.
void ChangeToFrameIndex(int Idx, unsigned TargetFlags = 0);
/// Replace this operand with a target index.
void ChangeToTargetIndex(unsigned Idx, int64_t Offset,
unsigned TargetFlags = 0);
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
void ChangeToRegister(Register Reg, bool isDef, bool isImp = false,
bool isKill = false, bool isDead = false,
bool isUndef = false, bool isDebug = false);
/// getTargetIndexName - If this MachineOperand is a TargetIndex that has a
/// name, attempt to get the name. Returns nullptr if the TargetIndex does not
/// have a name. Asserts if MO is not a TargetIndex.
const char *getTargetIndexName() const;
//===--------------------------------------------------------------------===//
// Construction methods.
//===--------------------------------------------------------------------===//
static MachineOperand CreateImm(int64_t Val) {
MachineOperand Op(MachineOperand::MO_Immediate);
Op.setImm(Val);
return Op;
}
static MachineOperand CreateCImm(const ConstantInt *CI) {
MachineOperand Op(MachineOperand::MO_CImmediate);
Op.Contents.CI = CI;
return Op;
}
static MachineOperand CreateFPImm(const ConstantFP *CFP) {
MachineOperand Op(MachineOperand::MO_FPImmediate);
Op.Contents.CFP = CFP;
return Op;
}
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp = false,
bool isKill = false, bool isDead = false,
bool isUndef = false,
bool isEarlyClobber = false,
unsigned SubReg = 0, bool isDebug = false,
bool isInternalRead = false,
bool isRenamable = false) {
assert(!(isDead && !isDef) && "Dead flag on non-def");
assert(!(isKill && isDef) && "Kill flag on def");
MachineOperand Op(MachineOperand::MO_Register);
Op.IsDef = isDef;
Op.IsImp = isImp;
Op.IsDeadOrKill = isKill | isDead;
Op.IsRenamable = isRenamable;
Op.IsUndef = isUndef;
Op.IsInternalRead = isInternalRead;
Op.IsEarlyClobber = isEarlyClobber;
Op.TiedTo = 0;
Op.IsDebug = isDebug;
Op.SmallContents.RegNo = Reg;
Op.Contents.Reg.Prev = nullptr;
Op.Contents.Reg.Next = nullptr;
Op.setSubReg(SubReg);
return Op;
}
static MachineOperand CreateMBB(MachineBasicBlock *MBB,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_MachineBasicBlock);
Op.setMBB(MBB);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateFI(int Idx) {
MachineOperand Op(MachineOperand::MO_FrameIndex);
Op.setIndex(Idx);
return Op;
}
static MachineOperand CreateCPI(unsigned Idx, int Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_ConstantPoolIndex);
Op.setIndex(Idx);
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_TargetIndex);
Op.setIndex(Idx);
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateJTI(unsigned Idx, unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_JumpTableIndex);
Op.setIndex(Idx);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_GlobalAddress);
Op.Contents.OffsetedInfo.Val.GV = GV;
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateES(const char *SymName,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_ExternalSymbol);
Op.Contents.OffsetedInfo.Val.SymbolName = SymName;
Op.setOffset(0); // Offset is always 0.
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_BlockAddress);
Op.Contents.OffsetedInfo.Val.BA = BA;
Op.setOffset(Offset);
Op.setTargetFlags(TargetFlags);
return Op;
}
/// CreateRegMask - Creates a register mask operand referencing Mask. The
/// operand does not take ownership of the memory referenced by Mask, it
/// must remain valid for the lifetime of the operand.
///
/// A RegMask operand represents a set of non-clobbered physical registers
/// on an instruction that clobbers many registers, typically a call. The
/// bit mask has a bit set for each physreg that is preserved by this
/// instruction, as described in the documentation for
/// TargetRegisterInfo::getCallPreservedMask().
///
/// Any physreg with a 0 bit in the mask is clobbered by the instruction.
///
static MachineOperand CreateRegMask(const uint32_t *Mask) {
assert(Mask && "Missing register mask");
MachineOperand Op(MachineOperand::MO_RegisterMask);
Op.Contents.RegMask = Mask;
return Op;
}
static MachineOperand CreateRegLiveOut(const uint32_t *Mask) {
assert(Mask && "Missing live-out register mask");
MachineOperand Op(MachineOperand::MO_RegisterLiveOut);
Op.Contents.RegMask = Mask;
return Op;
}
static MachineOperand CreateMetadata(const MDNode *Meta) {
MachineOperand Op(MachineOperand::MO_Metadata);
Op.Contents.MD = Meta;
return Op;
}
static MachineOperand CreateMCSymbol(MCSymbol *Sym,
unsigned TargetFlags = 0) {
MachineOperand Op(MachineOperand::MO_MCSymbol);
Op.Contents.Sym = Sym;
Op.setOffset(0);
Op.setTargetFlags(TargetFlags);
return Op;
}
static MachineOperand CreateCFIIndex(unsigned CFIIndex) {
MachineOperand Op(MachineOperand::MO_CFIIndex);
Op.Contents.CFIIndex = CFIIndex;
return Op;
}
static MachineOperand CreateIntrinsicID(Intrinsic::ID ID) {
MachineOperand Op(MachineOperand::MO_IntrinsicID);
Op.Contents.IntrinsicID = ID;
return Op;
}
static MachineOperand CreatePredicate(unsigned Pred) {
MachineOperand Op(MachineOperand::MO_Predicate);
Op.Contents.Pred = Pred;
return Op;
}
static MachineOperand CreateShuffleMask(ArrayRef<int> Mask) {
MachineOperand Op(MachineOperand::MO_ShuffleMask);
Op.Contents.ShuffleMask = Mask;
return Op;
}
friend class MachineInstr;
friend class MachineRegisterInfo;
private:
// If this operand is currently a register operand, and if this is in a
// function, deregister the operand from the register's use/def list.
void removeRegFromUses();
/// Artificial kinds for DenseMap usage.
enum : unsigned char {
MO_Empty = MO_Last + 1,
MO_Tombstone,
};
friend struct DenseMapInfo<MachineOperand>;
//===--------------------------------------------------------------------===//
// Methods for handling register use/def lists.
//===--------------------------------------------------------------------===//
/// isOnRegUseList - Return true if this operand is on a register use/def
/// list or false if not. This can only be called for register operands
/// that are part of a machine instruction.
bool isOnRegUseList() const {
assert(isReg() && "Can only add reg operand to use lists");
return Contents.Reg.Prev != nullptr;
}
};
template <> struct DenseMapInfo<MachineOperand> {
static MachineOperand getEmptyKey() {
return MachineOperand(static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Empty));
}
static MachineOperand getTombstoneKey() {
return MachineOperand(static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Tombstone));
}
static unsigned getHashValue(const MachineOperand &MO) {
return hash_value(MO);
}
static bool isEqual(const MachineOperand &LHS, const MachineOperand &RHS) {
if (LHS.getType() == static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Empty) ||
LHS.getType() == static_cast<MachineOperand::MachineOperandType>(
MachineOperand::MO_Tombstone))
return LHS.getType() == RHS.getType();
return LHS.isIdenticalTo(RHS);
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const MachineOperand &MO) {
MO.print(OS);
return OS;
}
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const MachineOperand &MO);
} // namespace llvm
#endif