llvm-for-llvmta/include/llvm/XRay/Graph.h

494 lines
17 KiB
C
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- Graph.h - XRay Graph Class ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A Graph Datatype for XRay.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_XRAY_GRAPH_T_H
#define LLVM_XRAY_GRAPH_T_H
#include <initializer_list>
#include <stdint.h>
#include <type_traits>
#include <utility>
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Error.h"
namespace llvm {
namespace xray {
/// A Graph object represents a Directed Graph and is used in XRay to compute
/// and store function call graphs and associated statistical information.
///
/// The graph takes in four template parameters, these are:
/// - VertexAttribute, this is a structure which is stored for each vertex.
/// Must be DefaultConstructible, CopyConstructible, CopyAssignable and
/// Destructible.
/// - EdgeAttribute, this is a structure which is stored for each edge
/// Must be DefaultConstructible, CopyConstructible, CopyAssignable and
/// Destructible.
/// - EdgeAttribute, this is a structure which is stored for each variable
/// - VI, this is a type over which DenseMapInfo is defined and is the type
/// used look up strings, available as VertexIdentifier.
/// - If the built in DenseMapInfo is not defined, provide a specialization
/// class type here.
///
/// Graph is CopyConstructible, CopyAssignable, MoveConstructible and
/// MoveAssignable but is not EqualityComparible or LessThanComparible.
///
/// Usage Example Graph with weighted edges and vertices:
/// Graph<int, int, int> G;
///
/// G[1] = 0;
/// G[2] = 2;
/// G[{1,2}] = 1;
/// G[{2,1}] = -1;
/// for(const auto &v : G.vertices()){
/// // Do something with the vertices in the graph;
/// }
/// for(const auto &e : G.edges()){
/// // Do something with the edges in the graph;
/// }
///
/// Usage Example with StrRef keys.
/// Graph<int, double, StrRef> StrG;
/// char va[] = "Vertex A";
/// char vaa[] = "Vertex A";
/// char vb[] = "Vertex B"; // Vertices are referenced by String Refs.
/// G[va] = 0;
/// G[vb] = 1;
/// G[{va, vb}] = 1.0;
/// cout() << G[vaa] << " " << G[{vaa, vb}]; //prints "0 1.0".
///
template <typename VertexAttribute, typename EdgeAttribute,
typename VI = int32_t>
class Graph {
public:
/// These objects are used to name edges and vertices in the graph.
typedef VI VertexIdentifier;
typedef std::pair<VI, VI> EdgeIdentifier;
/// This type is the value_type of all iterators which range over vertices,
/// Determined by the Vertices DenseMap
using VertexValueType =
detail::DenseMapPair<VertexIdentifier, VertexAttribute>;
/// This type is the value_type of all iterators which range over edges,
/// Determined by the Edges DenseMap.
using EdgeValueType = detail::DenseMapPair<EdgeIdentifier, EdgeAttribute>;
using size_type = std::size_t;
private:
/// The type used for storing the EdgeAttribute for each edge in the graph
using EdgeMapT = DenseMap<EdgeIdentifier, EdgeAttribute>;
/// The type used for storing the VertexAttribute for each vertex in
/// the graph.
using VertexMapT = DenseMap<VertexIdentifier, VertexAttribute>;
/// The type used for storing the edges entering a vertex. Indexed by
/// the VertexIdentifier of the start of the edge. Only used to determine
/// where the incoming edges are, the EdgeIdentifiers are stored in an
/// InnerEdgeMapT.
using NeighborSetT = DenseSet<VertexIdentifier>;
/// The type storing the InnerInvGraphT corresponding to each vertex in
/// the graph (When a vertex has an incoming edge incident to it)
using NeighborLookupT = DenseMap<VertexIdentifier, NeighborSetT>;
private:
/// Stores the map from the start and end vertex of an edge to it's
/// EdgeAttribute
EdgeMapT Edges;
/// Stores the map from VertexIdentifier to VertexAttribute
VertexMapT Vertices;
/// Allows fast lookup for the incoming edge set of any given vertex.
NeighborLookupT InNeighbors;
/// Allows fast lookup for the outgoing edge set of any given vertex.
NeighborLookupT OutNeighbors;
/// An Iterator adapter using an InnerInvGraphT::iterator as a base iterator,
/// and storing the VertexIdentifier the iterator range comes from. The
/// dereference operator is then performed using a pointer to the graph's edge
/// set.
template <bool IsConst, bool IsOut,
typename BaseIt = typename NeighborSetT::const_iterator,
typename T =
std::conditional_t<IsConst, const EdgeValueType, EdgeValueType>>
class NeighborEdgeIteratorT
: public iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T> {
using InternalEdgeMapT =
std::conditional_t<IsConst, const EdgeMapT, EdgeMapT>;
friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>;
friend class NeighborEdgeIteratorT<true, IsOut, BaseIt,
const EdgeValueType>;
InternalEdgeMapT *MP;
VertexIdentifier SI;
public:
template <bool IsConstDest,
typename = std::enable_if<IsConstDest && !IsConst>>
operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>() const {
return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>(this->I, MP, SI);
}
NeighborEdgeIteratorT() = default;
NeighborEdgeIteratorT(BaseIt _I, InternalEdgeMapT *_MP,
VertexIdentifier _SI)
: iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T>(_I),
MP(_MP), SI(_SI) {}
T &operator*() const {
if (!IsOut)
return *(MP->find({*(this->I), SI}));
else
return *(MP->find({SI, *(this->I)}));
}
};
public:
/// A const iterator type for iterating through the set of edges entering a
/// vertex.
///
/// Has a const EdgeValueType as its value_type
using ConstInEdgeIterator = NeighborEdgeIteratorT<true, false>;
/// An iterator type for iterating through the set of edges leaving a vertex.
///
/// Has an EdgeValueType as its value_type
using InEdgeIterator = NeighborEdgeIteratorT<false, false>;
/// A const iterator type for iterating through the set of edges entering a
/// vertex.
///
/// Has a const EdgeValueType as its value_type
using ConstOutEdgeIterator = NeighborEdgeIteratorT<true, true>;
/// An iterator type for iterating through the set of edges leaving a vertex.
///
/// Has an EdgeValueType as its value_type
using OutEdgeIterator = NeighborEdgeIteratorT<false, true>;
/// A class for ranging over the incoming edges incident to a vertex.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst, bool isOut> class InOutEdgeView {
public:
using iterator = NeighborEdgeIteratorT<isConst, isOut>;
using const_iterator = NeighborEdgeIteratorT<true, isOut>;
using GraphT = std::conditional_t<isConst, const Graph, Graph>;
using InternalEdgeMapT =
std::conditional_t<isConst, const EdgeMapT, EdgeMapT>;
private:
InternalEdgeMapT &M;
const VertexIdentifier A;
const NeighborLookupT &NL;
public:
iterator begin() {
auto It = NL.find(A);
if (It == NL.end())
return iterator();
return iterator(It->second.begin(), &M, A);
}
const_iterator cbegin() const {
auto It = NL.find(A);
if (It == NL.end())
return const_iterator();
return const_iterator(It->second.begin(), &M, A);
}
const_iterator begin() const { return cbegin(); }
iterator end() {
auto It = NL.find(A);
if (It == NL.end())
return iterator();
return iterator(It->second.end(), &M, A);
}
const_iterator cend() const {
auto It = NL.find(A);
if (It == NL.end())
return const_iterator();
return const_iterator(It->second.end(), &M, A);
}
const_iterator end() const { return cend(); }
size_type size() const {
auto I = NL.find(A);
if (I == NL.end())
return 0;
else
return I->second.size();
}
bool empty() const { return NL.count(A) == 0; };
InOutEdgeView(GraphT &G, VertexIdentifier A)
: M(G.Edges), A(A), NL(isOut ? G.OutNeighbors : G.InNeighbors) {}
};
/// A const iterator type for iterating through the whole vertex set of the
/// graph.
///
/// Has a const VertexValueType as its value_type
using ConstVertexIterator = typename VertexMapT::const_iterator;
/// An iterator type for iterating through the whole vertex set of the graph.
///
/// Has a VertexValueType as its value_type
using VertexIterator = typename VertexMapT::iterator;
/// A class for ranging over the vertices in the graph.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class VertexView {
public:
using iterator =
std::conditional_t<isConst, ConstVertexIterator, VertexIterator>;
using const_iterator = ConstVertexIterator;
using GraphT = std::conditional_t<isConst, const Graph, Graph>;
private:
GraphT &G;
public:
iterator begin() { return G.Vertices.begin(); }
iterator end() { return G.Vertices.end(); }
const_iterator cbegin() const { return G.Vertices.cbegin(); }
const_iterator cend() const { return G.Vertices.cend(); }
const_iterator begin() const { return G.Vertices.begin(); }
const_iterator end() const { return G.Vertices.end(); }
size_type size() const { return G.Vertices.size(); }
bool empty() const { return G.Vertices.empty(); }
VertexView(GraphT &_G) : G(_G) {}
};
/// A const iterator for iterating through the entire edge set of the graph.
///
/// Has a const EdgeValueType as its value_type
using ConstEdgeIterator = typename EdgeMapT::const_iterator;
/// An iterator for iterating through the entire edge set of the graph.
///
/// Has an EdgeValueType as its value_type
using EdgeIterator = typename EdgeMapT::iterator;
/// A class for ranging over all the edges in the graph.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class EdgeView {
public:
using iterator =
std::conditional_t<isConst, ConstEdgeIterator, EdgeIterator>;
using const_iterator = ConstEdgeIterator;
using GraphT = std::conditional_t<isConst, const Graph, Graph>;
private:
GraphT &G;
public:
iterator begin() { return G.Edges.begin(); }
iterator end() { return G.Edges.end(); }
const_iterator cbegin() const { return G.Edges.cbegin(); }
const_iterator cend() const { return G.Edges.cend(); }
const_iterator begin() const { return G.Edges.begin(); }
const_iterator end() const { return G.Edges.end(); }
size_type size() const { return G.Edges.size(); }
bool empty() const { return G.Edges.empty(); }
EdgeView(GraphT &_G) : G(_G) {}
};
public:
// TODO: implement constructor to enable Graph Initialisation.\
// Something like:
// Graph<int, int, int> G(
// {1, 2, 3, 4, 5},
// {{1, 2}, {2, 3}, {3, 4}});
/// Empty the Graph
void clear() {
Edges.clear();
Vertices.clear();
InNeighbors.clear();
OutNeighbors.clear();
}
/// Returns a view object allowing iteration over the vertices of the graph.
/// also allows access to the size of the vertex set.
VertexView<false> vertices() { return VertexView<false>(*this); }
VertexView<true> vertices() const { return VertexView<true>(*this); }
/// Returns a view object allowing iteration over the edges of the graph.
/// also allows access to the size of the edge set.
EdgeView<false> edges() { return EdgeView<false>(*this); }
EdgeView<true> edges() const { return EdgeView<true>(*this); }
/// Returns a view object allowing iteration over the edges which start at
/// a vertex I.
InOutEdgeView<false, true> outEdges(const VertexIdentifier I) {
return InOutEdgeView<false, true>(*this, I);
}
InOutEdgeView<true, true> outEdges(const VertexIdentifier I) const {
return InOutEdgeView<true, true>(*this, I);
}
/// Returns a view object allowing iteration over the edges which point to
/// a vertex I.
InOutEdgeView<false, false> inEdges(const VertexIdentifier I) {
return InOutEdgeView<false, false>(*this, I);
}
InOutEdgeView<true, false> inEdges(const VertexIdentifier I) const {
return InOutEdgeView<true, false>(*this, I);
}
/// Looks up the vertex with identifier I, if it does not exist it default
/// constructs it.
VertexAttribute &operator[](const VertexIdentifier &I) {
return Vertices.FindAndConstruct(I).second;
}
/// Looks up the edge with identifier I, if it does not exist it default
/// constructs it, if it's endpoints do not exist it also default constructs
/// them.
EdgeAttribute &operator[](const EdgeIdentifier &I) {
auto &P = Edges.FindAndConstruct(I);
Vertices.FindAndConstruct(I.first);
Vertices.FindAndConstruct(I.second);
InNeighbors[I.second].insert(I.first);
OutNeighbors[I.first].insert(I.second);
return P.second;
}
/// Looks up a vertex with Identifier I, or an error if it does not exist.
Expected<VertexAttribute &> at(const VertexIdentifier &I) {
auto It = Vertices.find(I);
if (It == Vertices.end())
return make_error<StringError>(
"Vertex Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
Expected<const VertexAttribute &> at(const VertexIdentifier &I) const {
auto It = Vertices.find(I);
if (It == Vertices.end())
return make_error<StringError>(
"Vertex Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
/// Looks up an edge with Identifier I, or an error if it does not exist.
Expected<EdgeAttribute &> at(const EdgeIdentifier &I) {
auto It = Edges.find(I);
if (It == Edges.end())
return make_error<StringError>(
"Edge Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
Expected<const EdgeAttribute &> at(const EdgeIdentifier &I) const {
auto It = Edges.find(I);
if (It == Edges.end())
return make_error<StringError>(
"Edge Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
/// Looks for a vertex with identifier I, returns 1 if one exists, and
/// 0 otherwise
size_type count(const VertexIdentifier &I) const {
return Vertices.count(I);
}
/// Looks for an edge with Identifier I, returns 1 if one exists and 0
/// otherwise
size_type count(const EdgeIdentifier &I) const { return Edges.count(I); }
/// Inserts a vertex into the graph with Identifier Val.first, and
/// Attribute Val.second.
std::pair<VertexIterator, bool>
insert(const std::pair<VertexIdentifier, VertexAttribute> &Val) {
return Vertices.insert(Val);
}
std::pair<VertexIterator, bool>
insert(std::pair<VertexIdentifier, VertexAttribute> &&Val) {
return Vertices.insert(std::move(Val));
}
/// Inserts an edge into the graph with Identifier Val.first, and
/// Attribute Val.second. If the key is already in the map, it returns false
/// and doesn't update the value.
std::pair<EdgeIterator, bool>
insert(const std::pair<EdgeIdentifier, EdgeAttribute> &Val) {
const auto &p = Edges.insert(Val);
if (p.second) {
const auto &EI = Val.first;
Vertices.FindAndConstruct(EI.first);
Vertices.FindAndConstruct(EI.second);
InNeighbors[EI.second].insert(EI.first);
OutNeighbors[EI.first].insert(EI.second);
};
return p;
}
/// Inserts an edge into the graph with Identifier Val.first, and
/// Attribute Val.second. If the key is already in the map, it returns false
/// and doesn't update the value.
std::pair<EdgeIterator, bool>
insert(std::pair<EdgeIdentifier, EdgeAttribute> &&Val) {
auto EI = Val.first;
const auto &p = Edges.insert(std::move(Val));
if (p.second) {
Vertices.FindAndConstruct(EI.first);
Vertices.FindAndConstruct(EI.second);
InNeighbors[EI.second].insert(EI.first);
OutNeighbors[EI.first].insert(EI.second);
};
return p;
}
};
}
}
#endif