llvm-for-llvmta/lib/Analysis/DDG.cpp

324 lines
11 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- DDG.cpp - Data Dependence Graph -------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The implementation for the data dependence graph.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DDG.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
static cl::opt<bool> SimplifyDDG(
"ddg-simplify", cl::init(true), cl::Hidden, cl::ZeroOrMore,
cl::desc(
"Simplify DDG by merging nodes that have less interesting edges."));
static cl::opt<bool>
CreatePiBlocks("ddg-pi-blocks", cl::init(true), cl::Hidden, cl::ZeroOrMore,
cl::desc("Create pi-block nodes."));
#define DEBUG_TYPE "ddg"
template class llvm::DGEdge<DDGNode, DDGEdge>;
template class llvm::DGNode<DDGNode, DDGEdge>;
template class llvm::DirectedGraph<DDGNode, DDGEdge>;
//===--------------------------------------------------------------------===//
// DDGNode implementation
//===--------------------------------------------------------------------===//
DDGNode::~DDGNode() {}
bool DDGNode::collectInstructions(
llvm::function_ref<bool(Instruction *)> const &Pred,
InstructionListType &IList) const {
assert(IList.empty() && "Expected the IList to be empty on entry.");
if (isa<SimpleDDGNode>(this)) {
for (Instruction *I : cast<const SimpleDDGNode>(this)->getInstructions())
if (Pred(I))
IList.push_back(I);
} else if (isa<PiBlockDDGNode>(this)) {
for (const DDGNode *PN : cast<const PiBlockDDGNode>(this)->getNodes()) {
assert(!isa<PiBlockDDGNode>(PN) && "Nested PiBlocks are not supported.");
SmallVector<Instruction *, 8> TmpIList;
PN->collectInstructions(Pred, TmpIList);
llvm::append_range(IList, TmpIList);
}
} else
llvm_unreachable("unimplemented type of node");
return !IList.empty();
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGNode::NodeKind K) {
const char *Out;
switch (K) {
case DDGNode::NodeKind::SingleInstruction:
Out = "single-instruction";
break;
case DDGNode::NodeKind::MultiInstruction:
Out = "multi-instruction";
break;
case DDGNode::NodeKind::PiBlock:
Out = "pi-block";
break;
case DDGNode::NodeKind::Root:
Out = "root";
break;
case DDGNode::NodeKind::Unknown:
Out = "?? (error)";
break;
}
OS << Out;
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGNode &N) {
OS << "Node Address:" << &N << ":" << N.getKind() << "\n";
if (isa<SimpleDDGNode>(N)) {
OS << " Instructions:\n";
for (const Instruction *I : cast<const SimpleDDGNode>(N).getInstructions())
OS.indent(2) << *I << "\n";
} else if (isa<PiBlockDDGNode>(&N)) {
OS << "--- start of nodes in pi-block ---\n";
auto &Nodes = cast<const PiBlockDDGNode>(&N)->getNodes();
unsigned Count = 0;
for (const DDGNode *N : Nodes)
OS << *N << (++Count == Nodes.size() ? "" : "\n");
OS << "--- end of nodes in pi-block ---\n";
} else if (!isa<RootDDGNode>(N))
llvm_unreachable("unimplemented type of node");
OS << (N.getEdges().empty() ? " Edges:none!\n" : " Edges:\n");
for (auto &E : N.getEdges())
OS.indent(2) << *E;
return OS;
}
//===--------------------------------------------------------------------===//
// SimpleDDGNode implementation
//===--------------------------------------------------------------------===//
SimpleDDGNode::SimpleDDGNode(Instruction &I)
: DDGNode(NodeKind::SingleInstruction), InstList() {
assert(InstList.empty() && "Expected empty list.");
InstList.push_back(&I);
}
SimpleDDGNode::SimpleDDGNode(const SimpleDDGNode &N)
: DDGNode(N), InstList(N.InstList) {
assert(((getKind() == NodeKind::SingleInstruction && InstList.size() == 1) ||
(getKind() == NodeKind::MultiInstruction && InstList.size() > 1)) &&
"constructing from invalid simple node.");
}
SimpleDDGNode::SimpleDDGNode(SimpleDDGNode &&N)
: DDGNode(std::move(N)), InstList(std::move(N.InstList)) {
assert(((getKind() == NodeKind::SingleInstruction && InstList.size() == 1) ||
(getKind() == NodeKind::MultiInstruction && InstList.size() > 1)) &&
"constructing from invalid simple node.");
}
SimpleDDGNode::~SimpleDDGNode() { InstList.clear(); }
//===--------------------------------------------------------------------===//
// PiBlockDDGNode implementation
//===--------------------------------------------------------------------===//
PiBlockDDGNode::PiBlockDDGNode(const PiNodeList &List)
: DDGNode(NodeKind::PiBlock), NodeList(List) {
assert(!NodeList.empty() && "pi-block node constructed with an empty list.");
}
PiBlockDDGNode::PiBlockDDGNode(const PiBlockDDGNode &N)
: DDGNode(N), NodeList(N.NodeList) {
assert(getKind() == NodeKind::PiBlock && !NodeList.empty() &&
"constructing from invalid pi-block node.");
}
PiBlockDDGNode::PiBlockDDGNode(PiBlockDDGNode &&N)
: DDGNode(std::move(N)), NodeList(std::move(N.NodeList)) {
assert(getKind() == NodeKind::PiBlock && !NodeList.empty() &&
"constructing from invalid pi-block node.");
}
PiBlockDDGNode::~PiBlockDDGNode() { NodeList.clear(); }
//===--------------------------------------------------------------------===//
// DDGEdge implementation
//===--------------------------------------------------------------------===//
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGEdge::EdgeKind K) {
const char *Out;
switch (K) {
case DDGEdge::EdgeKind::RegisterDefUse:
Out = "def-use";
break;
case DDGEdge::EdgeKind::MemoryDependence:
Out = "memory";
break;
case DDGEdge::EdgeKind::Rooted:
Out = "rooted";
break;
case DDGEdge::EdgeKind::Unknown:
Out = "?? (error)";
break;
}
OS << Out;
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DDGEdge &E) {
OS << "[" << E.getKind() << "] to " << &E.getTargetNode() << "\n";
return OS;
}
//===--------------------------------------------------------------------===//
// DataDependenceGraph implementation
//===--------------------------------------------------------------------===//
using BasicBlockListType = SmallVector<BasicBlock *, 8>;
DataDependenceGraph::DataDependenceGraph(Function &F, DependenceInfo &D)
: DependenceGraphInfo(F.getName().str(), D) {
// Put the basic blocks in program order for correct dependence
// directions.
BasicBlockListType BBList;
for (auto &SCC : make_range(scc_begin(&F), scc_end(&F)))
append_range(BBList, SCC);
std::reverse(BBList.begin(), BBList.end());
DDGBuilder(*this, D, BBList).populate();
}
DataDependenceGraph::DataDependenceGraph(Loop &L, LoopInfo &LI,
DependenceInfo &D)
: DependenceGraphInfo(Twine(L.getHeader()->getParent()->getName() + "." +
L.getHeader()->getName())
.str(),
D) {
// Put the basic blocks in program order for correct dependence
// directions.
LoopBlocksDFS DFS(&L);
DFS.perform(&LI);
BasicBlockListType BBList;
append_range(BBList, make_range(DFS.beginRPO(), DFS.endRPO()));
DDGBuilder(*this, D, BBList).populate();
}
DataDependenceGraph::~DataDependenceGraph() {
for (auto *N : Nodes) {
for (auto *E : *N)
delete E;
delete N;
}
}
bool DataDependenceGraph::addNode(DDGNode &N) {
if (!DDGBase::addNode(N))
return false;
// In general, if the root node is already created and linked, it is not safe
// to add new nodes since they may be unreachable by the root. However,
// pi-block nodes need to be added after the root node is linked, and they are
// always reachable by the root, because they represent components that are
// already reachable by root.
auto *Pi = dyn_cast<PiBlockDDGNode>(&N);
assert((!Root || Pi) &&
"Root node is already added. No more nodes can be added.");
if (isa<RootDDGNode>(N))
Root = &N;
if (Pi)
for (DDGNode *NI : Pi->getNodes())
PiBlockMap.insert(std::make_pair(NI, Pi));
return true;
}
const PiBlockDDGNode *DataDependenceGraph::getPiBlock(const NodeType &N) const {
if (PiBlockMap.find(&N) == PiBlockMap.end())
return nullptr;
auto *Pi = PiBlockMap.find(&N)->second;
assert(PiBlockMap.find(Pi) == PiBlockMap.end() &&
"Nested pi-blocks detected.");
return Pi;
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const DataDependenceGraph &G) {
for (DDGNode *Node : G)
// Avoid printing nodes that are part of a pi-block twice. They will get
// printed when the pi-block is printed.
if (!G.getPiBlock(*Node))
OS << *Node << "\n";
OS << "\n";
return OS;
}
//===--------------------------------------------------------------------===//
// DDGBuilder implementation
//===--------------------------------------------------------------------===//
bool DDGBuilder::areNodesMergeable(const DDGNode &Src,
const DDGNode &Tgt) const {
// Only merge two nodes if they are both simple nodes and the consecutive
// instructions after merging belong to the same BB.
const auto *SimpleSrc = dyn_cast<const SimpleDDGNode>(&Src);
const auto *SimpleTgt = dyn_cast<const SimpleDDGNode>(&Tgt);
if (!SimpleSrc || !SimpleTgt)
return false;
return SimpleSrc->getLastInstruction()->getParent() ==
SimpleTgt->getFirstInstruction()->getParent();
}
void DDGBuilder::mergeNodes(DDGNode &A, DDGNode &B) {
DDGEdge &EdgeToFold = A.back();
assert(A.getEdges().size() == 1 && EdgeToFold.getTargetNode() == B &&
"Expected A to have a single edge to B.");
assert(isa<SimpleDDGNode>(&A) && isa<SimpleDDGNode>(&B) &&
"Expected simple nodes");
// Copy instructions from B to the end of A.
cast<SimpleDDGNode>(&A)->appendInstructions(*cast<SimpleDDGNode>(&B));
// Move to A any outgoing edges from B.
for (DDGEdge *BE : B)
Graph.connect(A, BE->getTargetNode(), *BE);
A.removeEdge(EdgeToFold);
destroyEdge(EdgeToFold);
Graph.removeNode(B);
destroyNode(B);
}
bool DDGBuilder::shouldSimplify() const { return SimplifyDDG; }
bool DDGBuilder::shouldCreatePiBlocks() const { return CreatePiBlocks; }
//===--------------------------------------------------------------------===//
// DDG Analysis Passes
//===--------------------------------------------------------------------===//
/// DDG as a loop pass.
DDGAnalysis::Result DDGAnalysis::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
Function *F = L.getHeader()->getParent();
DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
return std::make_unique<DataDependenceGraph>(L, AR.LI, DI);
}
AnalysisKey DDGAnalysis::Key;
PreservedAnalyses DDGAnalysisPrinterPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
OS << "'DDG' for loop '" << L.getHeader()->getName() << "':\n";
OS << *AM.getResult<DDGAnalysis>(L, AR);
return PreservedAnalyses::all();
}