llvm-for-llvmta/lib/CodeGen/GlobalISel/CombinerHelper.cpp

3580 lines
127 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "gi-combiner"
using namespace llvm;
using namespace MIPatternMatch;
// Option to allow testing of the combiner while no targets know about indexed
// addressing.
static cl::opt<bool>
ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
cl::desc("Force all indexed operations to be "
"legal for the GlobalISel combiner"));
CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
MachineIRBuilder &B, GISelKnownBits *KB,
MachineDominatorTree *MDT,
const LegalizerInfo *LI)
: Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
KB(KB), MDT(MDT), LI(LI) {
(void)this->KB;
}
const TargetLowering &CombinerHelper::getTargetLowering() const {
return *Builder.getMF().getSubtarget().getTargetLowering();
}
/// \returns The little endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 0
static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
assert(I < ByteWidth && "I must be in [0, ByteWidth)");
return I;
}
/// \returns The big endian in-memory byte position of byte \p I in a
/// \p ByteWidth bytes wide type.
///
/// E.g. Given a 4-byte type x, x[0] -> byte 3
static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
assert(I < ByteWidth && "I must be in [0, ByteWidth)");
return ByteWidth - I - 1;
}
/// Given a map from byte offsets in memory to indices in a load/store,
/// determine if that map corresponds to a little or big endian byte pattern.
///
/// \param MemOffset2Idx maps memory offsets to address offsets.
/// \param LowestIdx is the lowest index in \p MemOffset2Idx.
///
/// \returns true if the map corresponds to a big endian byte pattern, false
/// if it corresponds to a little endian byte pattern, and None otherwise.
///
/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
/// are as follows:
///
/// AddrOffset Little endian Big endian
/// 0 0 3
/// 1 1 2
/// 2 2 1
/// 3 3 0
static Optional<bool>
isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
int64_t LowestIdx) {
// Need at least two byte positions to decide on endianness.
unsigned Width = MemOffset2Idx.size();
if (Width < 2)
return None;
bool BigEndian = true, LittleEndian = true;
for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
if (MemOffsetAndIdx == MemOffset2Idx.end())
return None;
const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
assert(Idx >= 0 && "Expected non-negative byte offset?");
LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
if (!BigEndian && !LittleEndian)
return None;
}
assert((BigEndian != LittleEndian) &&
"Pattern cannot be both big and little endian!");
return BigEndian;
}
bool CombinerHelper::isLegalOrBeforeLegalizer(
const LegalityQuery &Query) const {
return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
}
void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
Register ToReg) const {
Observer.changingAllUsesOfReg(MRI, FromReg);
if (MRI.constrainRegAttrs(ToReg, FromReg))
MRI.replaceRegWith(FromReg, ToReg);
else
Builder.buildCopy(ToReg, FromReg);
Observer.finishedChangingAllUsesOfReg();
}
void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
MachineOperand &FromRegOp,
Register ToReg) const {
assert(FromRegOp.getParent() && "Expected an operand in an MI");
Observer.changingInstr(*FromRegOp.getParent());
FromRegOp.setReg(ToReg);
Observer.changedInstr(*FromRegOp.getParent());
}
bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
if (matchCombineCopy(MI)) {
applyCombineCopy(MI);
return true;
}
return false;
}
bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
if (MI.getOpcode() != TargetOpcode::COPY)
return false;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
return canReplaceReg(DstReg, SrcReg, MRI);
}
void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, SrcReg);
}
bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
bool IsUndef = false;
SmallVector<Register, 4> Ops;
if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
applyCombineConcatVectors(MI, IsUndef, Ops);
return true;
}
return false;
}
bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
SmallVectorImpl<Register> &Ops) {
assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
"Invalid instruction");
IsUndef = true;
MachineInstr *Undef = nullptr;
// Walk over all the operands of concat vectors and check if they are
// build_vector themselves or undef.
// Then collect their operands in Ops.
for (const MachineOperand &MO : MI.uses()) {
Register Reg = MO.getReg();
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Operand not defined");
switch (Def->getOpcode()) {
case TargetOpcode::G_BUILD_VECTOR:
IsUndef = false;
// Remember the operands of the build_vector to fold
// them into the yet-to-build flattened concat vectors.
for (const MachineOperand &BuildVecMO : Def->uses())
Ops.push_back(BuildVecMO.getReg());
break;
case TargetOpcode::G_IMPLICIT_DEF: {
LLT OpType = MRI.getType(Reg);
// Keep one undef value for all the undef operands.
if (!Undef) {
Builder.setInsertPt(*MI.getParent(), MI);
Undef = Builder.buildUndef(OpType.getScalarType());
}
assert(MRI.getType(Undef->getOperand(0).getReg()) ==
OpType.getScalarType() &&
"All undefs should have the same type");
// Break the undef vector in as many scalar elements as needed
// for the flattening.
for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
EltIdx != EltEnd; ++EltIdx)
Ops.push_back(Undef->getOperand(0).getReg());
break;
}
default:
return false;
}
}
return true;
}
void CombinerHelper::applyCombineConcatVectors(
MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
// We determined that the concat_vectors can be flatten.
// Generate the flattened build_vector.
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
// Note: IsUndef is sort of redundant. We could have determine it by
// checking that at all Ops are undef. Alternatively, we could have
// generate a build_vector of undefs and rely on another combine to
// clean that up. For now, given we already gather this information
// in tryCombineConcatVectors, just save compile time and issue the
// right thing.
if (IsUndef)
Builder.buildUndef(NewDstReg);
else
Builder.buildBuildVector(NewDstReg, Ops);
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, NewDstReg);
}
bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
SmallVector<Register, 4> Ops;
if (matchCombineShuffleVector(MI, Ops)) {
applyCombineShuffleVector(MI, Ops);
return true;
}
return false;
}
bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
SmallVectorImpl<Register> &Ops) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
"Invalid instruction kind");
LLT DstType = MRI.getType(MI.getOperand(0).getReg());
Register Src1 = MI.getOperand(1).getReg();
LLT SrcType = MRI.getType(Src1);
// As bizarre as it may look, shuffle vector can actually produce
// scalar! This is because at the IR level a <1 x ty> shuffle
// vector is perfectly valid.
unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
// If the resulting vector is smaller than the size of the source
// vectors being concatenated, we won't be able to replace the
// shuffle vector into a concat_vectors.
//
// Note: We may still be able to produce a concat_vectors fed by
// extract_vector_elt and so on. It is less clear that would
// be better though, so don't bother for now.
//
// If the destination is a scalar, the size of the sources doesn't
// matter. we will lower the shuffle to a plain copy. This will
// work only if the source and destination have the same size. But
// that's covered by the next condition.
//
// TODO: If the size between the source and destination don't match
// we could still emit an extract vector element in that case.
if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
return false;
// Check that the shuffle mask can be broken evenly between the
// different sources.
if (DstNumElts % SrcNumElts != 0)
return false;
// Mask length is a multiple of the source vector length.
// Check if the shuffle is some kind of concatenation of the input
// vectors.
unsigned NumConcat = DstNumElts / SrcNumElts;
SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
for (unsigned i = 0; i != DstNumElts; ++i) {
int Idx = Mask[i];
// Undef value.
if (Idx < 0)
continue;
// Ensure the indices in each SrcType sized piece are sequential and that
// the same source is used for the whole piece.
if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
(ConcatSrcs[i / SrcNumElts] >= 0 &&
ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
return false;
// Remember which source this index came from.
ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
}
// The shuffle is concatenating multiple vectors together.
// Collect the different operands for that.
Register UndefReg;
Register Src2 = MI.getOperand(2).getReg();
for (auto Src : ConcatSrcs) {
if (Src < 0) {
if (!UndefReg) {
Builder.setInsertPt(*MI.getParent(), MI);
UndefReg = Builder.buildUndef(SrcType).getReg(0);
}
Ops.push_back(UndefReg);
} else if (Src == 0)
Ops.push_back(Src1);
else
Ops.push_back(Src2);
}
return true;
}
void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
const ArrayRef<Register> Ops) {
Register DstReg = MI.getOperand(0).getReg();
Builder.setInsertPt(*MI.getParent(), MI);
Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
if (Ops.size() == 1)
Builder.buildCopy(NewDstReg, Ops[0]);
else
Builder.buildMerge(NewDstReg, Ops);
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, NewDstReg);
}
namespace {
/// Select a preference between two uses. CurrentUse is the current preference
/// while *ForCandidate is attributes of the candidate under consideration.
PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
const LLT TyForCandidate,
unsigned OpcodeForCandidate,
MachineInstr *MIForCandidate) {
if (!CurrentUse.Ty.isValid()) {
if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
return CurrentUse;
}
// We permit the extend to hoist through basic blocks but this is only
// sensible if the target has extending loads. If you end up lowering back
// into a load and extend during the legalizer then the end result is
// hoisting the extend up to the load.
// Prefer defined extensions to undefined extensions as these are more
// likely to reduce the number of instructions.
if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
return CurrentUse;
else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
OpcodeForCandidate != TargetOpcode::G_ANYEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
// Prefer sign extensions to zero extensions as sign-extensions tend to be
// more expensive.
if (CurrentUse.Ty == TyForCandidate) {
if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
OpcodeForCandidate == TargetOpcode::G_ZEXT)
return CurrentUse;
else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
OpcodeForCandidate == TargetOpcode::G_SEXT)
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
}
// This is potentially target specific. We've chosen the largest type
// because G_TRUNC is usually free. One potential catch with this is that
// some targets have a reduced number of larger registers than smaller
// registers and this choice potentially increases the live-range for the
// larger value.
if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
}
return CurrentUse;
}
/// Find a suitable place to insert some instructions and insert them. This
/// function accounts for special cases like inserting before a PHI node.
/// The current strategy for inserting before PHI's is to duplicate the
/// instructions for each predecessor. However, while that's ok for G_TRUNC
/// on most targets since it generally requires no code, other targets/cases may
/// want to try harder to find a dominating block.
static void InsertInsnsWithoutSideEffectsBeforeUse(
MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
MachineOperand &UseMO)>
Inserter) {
MachineInstr &UseMI = *UseMO.getParent();
MachineBasicBlock *InsertBB = UseMI.getParent();
// If the use is a PHI then we want the predecessor block instead.
if (UseMI.isPHI()) {
MachineOperand *PredBB = std::next(&UseMO);
InsertBB = PredBB->getMBB();
}
// If the block is the same block as the def then we want to insert just after
// the def instead of at the start of the block.
if (InsertBB == DefMI.getParent()) {
MachineBasicBlock::iterator InsertPt = &DefMI;
Inserter(InsertBB, std::next(InsertPt), UseMO);
return;
}
// Otherwise we want the start of the BB
Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
}
} // end anonymous namespace
bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
PreferredTuple Preferred;
if (matchCombineExtendingLoads(MI, Preferred)) {
applyCombineExtendingLoads(MI, Preferred);
return true;
}
return false;
}
bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
PreferredTuple &Preferred) {
// We match the loads and follow the uses to the extend instead of matching
// the extends and following the def to the load. This is because the load
// must remain in the same position for correctness (unless we also add code
// to find a safe place to sink it) whereas the extend is freely movable.
// It also prevents us from duplicating the load for the volatile case or just
// for performance.
if (MI.getOpcode() != TargetOpcode::G_LOAD &&
MI.getOpcode() != TargetOpcode::G_SEXTLOAD &&
MI.getOpcode() != TargetOpcode::G_ZEXTLOAD)
return false;
auto &LoadValue = MI.getOperand(0);
assert(LoadValue.isReg() && "Result wasn't a register?");
LLT LoadValueTy = MRI.getType(LoadValue.getReg());
if (!LoadValueTy.isScalar())
return false;
// Most architectures are going to legalize <s8 loads into at least a 1 byte
// load, and the MMOs can only describe memory accesses in multiples of bytes.
// If we try to perform extload combining on those, we can end up with
// %a(s8) = extload %ptr (load 1 byte from %ptr)
// ... which is an illegal extload instruction.
if (LoadValueTy.getSizeInBits() < 8)
return false;
// For non power-of-2 types, they will very likely be legalized into multiple
// loads. Don't bother trying to match them into extending loads.
if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
return false;
// Find the preferred type aside from the any-extends (unless it's the only
// one) and non-extending ops. We'll emit an extending load to that type and
// and emit a variant of (extend (trunc X)) for the others according to the
// relative type sizes. At the same time, pick an extend to use based on the
// extend involved in the chosen type.
unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD
? TargetOpcode::G_ANYEXT
: MI.getOpcode() == TargetOpcode::G_SEXTLOAD
? TargetOpcode::G_SEXT
: TargetOpcode::G_ZEXT;
Preferred = {LLT(), PreferredOpcode, nullptr};
for (auto &UseMI : MRI.use_nodbg_instructions(LoadValue.getReg())) {
if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
(UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
// Check for legality.
if (LI) {
LegalityQuery::MemDesc MMDesc;
const auto &MMO = **MI.memoperands_begin();
MMDesc.SizeInBits = MMO.getSizeInBits();
MMDesc.AlignInBits = MMO.getAlign().value() * 8;
MMDesc.Ordering = MMO.getOrdering();
LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
if (LI->getAction({MI.getOpcode(), {UseTy, SrcTy}, {MMDesc}}).Action !=
LegalizeActions::Legal)
continue;
}
Preferred = ChoosePreferredUse(Preferred,
MRI.getType(UseMI.getOperand(0).getReg()),
UseMI.getOpcode(), &UseMI);
}
}
// There were no extends
if (!Preferred.MI)
return false;
// It should be impossible to chose an extend without selecting a different
// type since by definition the result of an extend is larger.
assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
return true;
}
void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
PreferredTuple &Preferred) {
// Rewrite the load to the chosen extending load.
Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
// Inserter to insert a truncate back to the original type at a given point
// with some basic CSE to limit truncate duplication to one per BB.
DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
MachineBasicBlock::iterator InsertBefore,
MachineOperand &UseMO) {
MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
if (PreviouslyEmitted) {
Observer.changingInstr(*UseMO.getParent());
UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
Observer.changedInstr(*UseMO.getParent());
return;
}
Builder.setInsertPt(*InsertIntoBB, InsertBefore);
Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
EmittedInsns[InsertIntoBB] = NewMI;
replaceRegOpWith(MRI, UseMO, NewDstReg);
};
Observer.changingInstr(MI);
MI.setDesc(
Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
? TargetOpcode::G_SEXTLOAD
: Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
? TargetOpcode::G_ZEXTLOAD
: TargetOpcode::G_LOAD));
// Rewrite all the uses to fix up the types.
auto &LoadValue = MI.getOperand(0);
SmallVector<MachineOperand *, 4> Uses;
for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
Uses.push_back(&UseMO);
for (auto *UseMO : Uses) {
MachineInstr *UseMI = UseMO->getParent();
// If the extend is compatible with the preferred extend then we should fix
// up the type and extend so that it uses the preferred use.
if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
Register UseDstReg = UseMI->getOperand(0).getReg();
MachineOperand &UseSrcMO = UseMI->getOperand(1);
const LLT UseDstTy = MRI.getType(UseDstReg);
if (UseDstReg != ChosenDstReg) {
if (Preferred.Ty == UseDstTy) {
// If the use has the same type as the preferred use, then merge
// the vregs and erase the extend. For example:
// %1:_(s8) = G_LOAD ...
// %2:_(s32) = G_SEXT %1(s8)
// %3:_(s32) = G_ANYEXT %1(s8)
// ... = ... %3(s32)
// rewrites to:
// %2:_(s32) = G_SEXTLOAD ...
// ... = ... %2(s32)
replaceRegWith(MRI, UseDstReg, ChosenDstReg);
Observer.erasingInstr(*UseMO->getParent());
UseMO->getParent()->eraseFromParent();
} else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
// If the preferred size is smaller, then keep the extend but extend
// from the result of the extending load. For example:
// %1:_(s8) = G_LOAD ...
// %2:_(s32) = G_SEXT %1(s8)
// %3:_(s64) = G_ANYEXT %1(s8)
// ... = ... %3(s64)
/// rewrites to:
// %2:_(s32) = G_SEXTLOAD ...
// %3:_(s64) = G_ANYEXT %2:_(s32)
// ... = ... %3(s64)
replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
} else {
// If the preferred size is large, then insert a truncate. For
// example:
// %1:_(s8) = G_LOAD ...
// %2:_(s64) = G_SEXT %1(s8)
// %3:_(s32) = G_ZEXT %1(s8)
// ... = ... %3(s32)
/// rewrites to:
// %2:_(s64) = G_SEXTLOAD ...
// %4:_(s8) = G_TRUNC %2:_(s32)
// %3:_(s64) = G_ZEXT %2:_(s8)
// ... = ... %3(s64)
InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
InsertTruncAt);
}
continue;
}
// The use is (one of) the uses of the preferred use we chose earlier.
// We're going to update the load to def this value later so just erase
// the old extend.
Observer.erasingInstr(*UseMO->getParent());
UseMO->getParent()->eraseFromParent();
continue;
}
// The use isn't an extend. Truncate back to the type we originally loaded.
// This is free on many targets.
InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
}
MI.getOperand(0).setReg(ChosenDstReg);
Observer.changedInstr(MI);
}
bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
const MachineInstr &UseMI) {
assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
"shouldn't consider debug uses");
assert(DefMI.getParent() == UseMI.getParent());
if (&DefMI == &UseMI)
return false;
const MachineBasicBlock &MBB = *DefMI.getParent();
auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
return &MI == &DefMI || &MI == &UseMI;
});
if (DefOrUse == MBB.end())
llvm_unreachable("Block must contain both DefMI and UseMI!");
return &*DefOrUse == &DefMI;
}
bool CombinerHelper::dominates(const MachineInstr &DefMI,
const MachineInstr &UseMI) {
assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
"shouldn't consider debug uses");
if (MDT)
return MDT->dominates(&DefMI, &UseMI);
else if (DefMI.getParent() != UseMI.getParent())
return false;
return isPredecessor(DefMI, UseMI);
}
bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register SrcReg = MI.getOperand(1).getReg();
Register LoadUser = SrcReg;
if (MRI.getType(SrcReg).isVector())
return false;
Register TruncSrc;
if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
LoadUser = TruncSrc;
uint64_t SizeInBits = MI.getOperand(2).getImm();
// If the source is a G_SEXTLOAD from the same bit width, then we don't
// need any extend at all, just a truncate.
if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) {
const auto &MMO = **LoadMI->memoperands_begin();
// If truncating more than the original extended value, abort.
if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits())
return false;
if (MMO.getSizeInBits() == SizeInBits)
return true;
}
return false;
}
bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Builder.setInstrAndDebugLoc(MI);
Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchSextInRegOfLoad(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
// Only supports scalars for now.
if (MRI.getType(MI.getOperand(0).getReg()).isVector())
return false;
Register SrcReg = MI.getOperand(1).getReg();
MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()))
return false;
// If the sign extend extends from a narrower width than the load's width,
// then we can narrow the load width when we combine to a G_SEXTLOAD.
auto &MMO = **LoadDef->memoperands_begin();
// Don't do this for non-simple loads.
if (MMO.isAtomic() || MMO.isVolatile())
return false;
// Avoid widening the load at all.
unsigned NewSizeBits =
std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits());
// Don't generate G_SEXTLOADs with a < 1 byte width.
if (NewSizeBits < 8)
return false;
// Don't bother creating a non-power-2 sextload, it will likely be broken up
// anyway for most targets.
if (!isPowerOf2_32(NewSizeBits))
return false;
MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits);
return true;
}
bool CombinerHelper::applySextInRegOfLoad(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
Register LoadReg;
unsigned ScalarSizeBits;
std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
auto *LoadDef = MRI.getVRegDef(LoadReg);
assert(LoadDef && "Expected a load reg");
// If we have the following:
// %ld = G_LOAD %ptr, (load 2)
// %ext = G_SEXT_INREG %ld, 8
// ==>
// %ld = G_SEXTLOAD %ptr (load 1)
auto &MMO = **LoadDef->memoperands_begin();
Builder.setInstrAndDebugLoc(MI);
auto &MF = Builder.getMF();
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
LoadDef->getOperand(1).getReg(), *NewMMO);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
Register &Base, Register &Offset) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
#ifndef NDEBUG
unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif
Base = MI.getOperand(1).getReg();
MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
return false;
LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
// FIXME: The following use traversal needs a bail out for patholigical cases.
for (auto &Use : MRI.use_nodbg_instructions(Base)) {
if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
continue;
Offset = Use.getOperand(2).getReg();
if (!ForceLegalIndexing &&
!TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: "
<< Use);
continue;
}
// Make sure the offset calculation is before the potentially indexed op.
// FIXME: we really care about dependency here. The offset calculation might
// be movable.
MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
if (!OffsetDef || !dominates(*OffsetDef, MI)) {
LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: "
<< Use);
continue;
}
// FIXME: check whether all uses of Base are load/store with foldable
// addressing modes. If so, using the normal addr-modes is better than
// forming an indexed one.
bool MemOpDominatesAddrUses = true;
for (auto &PtrAddUse :
MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
if (!dominates(MI, PtrAddUse)) {
MemOpDominatesAddrUses = false;
break;
}
}
if (!MemOpDominatesAddrUses) {
LLVM_DEBUG(
dbgs() << " Ignoring candidate as memop does not dominate uses: "
<< Use);
continue;
}
LLVM_DEBUG(dbgs() << " Found match: " << Use);
Addr = Use.getOperand(0).getReg();
return true;
}
return false;
}
bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
Register &Base, Register &Offset) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
#ifndef NDEBUG
unsigned Opcode = MI.getOpcode();
assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
#endif
Addr = MI.getOperand(1).getReg();
MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
return false;
Base = AddrDef->getOperand(1).getReg();
Offset = AddrDef->getOperand(2).getReg();
LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
if (!ForceLegalIndexing &&
!TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
LLVM_DEBUG(dbgs() << " Skipping, not legal for target");
return false;
}
MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway.");
return false;
}
if (MI.getOpcode() == TargetOpcode::G_STORE) {
// Would require a copy.
if (Base == MI.getOperand(0).getReg()) {
LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway.");
return false;
}
// We're expecting one use of Addr in MI, but it could also be the
// value stored, which isn't actually dominated by the instruction.
if (MI.getOperand(0).getReg() == Addr) {
LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses");
return false;
}
}
// FIXME: check whether all uses of the base pointer are constant PtrAdds.
// That might allow us to end base's liveness here by adjusting the constant.
for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
if (!dominates(MI, UseMI)) {
LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses.");
return false;
}
}
return true;
}
bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
IndexedLoadStoreMatchInfo MatchInfo;
if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
applyCombineIndexedLoadStore(MI, MatchInfo);
return true;
}
return false;
}
bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
unsigned Opcode = MI.getOpcode();
if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
return false;
// For now, no targets actually support these opcodes so don't waste time
// running these unless we're forced to for testing.
if (!ForceLegalIndexing)
return false;
MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
MatchInfo.Offset);
if (!MatchInfo.IsPre &&
!findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
MatchInfo.Offset))
return false;
return true;
}
void CombinerHelper::applyCombineIndexedLoadStore(
MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
MachineIRBuilder MIRBuilder(MI);
unsigned Opcode = MI.getOpcode();
bool IsStore = Opcode == TargetOpcode::G_STORE;
unsigned NewOpcode;
switch (Opcode) {
case TargetOpcode::G_LOAD:
NewOpcode = TargetOpcode::G_INDEXED_LOAD;
break;
case TargetOpcode::G_SEXTLOAD:
NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
break;
case TargetOpcode::G_ZEXTLOAD:
NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
break;
case TargetOpcode::G_STORE:
NewOpcode = TargetOpcode::G_INDEXED_STORE;
break;
default:
llvm_unreachable("Unknown load/store opcode");
}
auto MIB = MIRBuilder.buildInstr(NewOpcode);
if (IsStore) {
MIB.addDef(MatchInfo.Addr);
MIB.addUse(MI.getOperand(0).getReg());
} else {
MIB.addDef(MI.getOperand(0).getReg());
MIB.addDef(MatchInfo.Addr);
}
MIB.addUse(MatchInfo.Base);
MIB.addUse(MatchInfo.Offset);
MIB.addImm(MatchInfo.IsPre);
MI.eraseFromParent();
AddrDef.eraseFromParent();
LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
}
bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) {
if (MI.getOpcode() != TargetOpcode::G_BR)
return false;
// Try to match the following:
// bb1:
// G_BRCOND %c1, %bb2
// G_BR %bb3
// bb2:
// ...
// bb3:
// The above pattern does not have a fall through to the successor bb2, always
// resulting in a branch no matter which path is taken. Here we try to find
// and replace that pattern with conditional branch to bb3 and otherwise
// fallthrough to bb2. This is generally better for branch predictors.
MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::iterator BrIt(MI);
if (BrIt == MBB->begin())
return false;
assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
MachineInstr *BrCond = &*std::prev(BrIt);
if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
return false;
// Check that the next block is the conditional branch target. Also make sure
// that it isn't the same as the G_BR's target (otherwise, this will loop.)
MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
return BrCondTarget != MI.getOperand(0).getMBB() &&
MBB->isLayoutSuccessor(BrCondTarget);
}
void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) {
MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
MachineBasicBlock::iterator BrIt(MI);
MachineInstr *BrCond = &*std::prev(BrIt);
Builder.setInstrAndDebugLoc(*BrCond);
LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
// FIXME: Does int/fp matter for this? If so, we might need to restrict
// this to i1 only since we might not know for sure what kind of
// compare generated the condition value.
auto True = Builder.buildConstant(
Ty, getICmpTrueVal(getTargetLowering(), false, false));
auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
auto *FallthroughBB = BrCond->getOperand(1).getMBB();
Observer.changingInstr(MI);
MI.getOperand(0).setMBB(FallthroughBB);
Observer.changedInstr(MI);
// Change the conditional branch to use the inverted condition and
// new target block.
Observer.changingInstr(*BrCond);
BrCond->getOperand(0).setReg(Xor.getReg(0));
BrCond->getOperand(1).setMBB(BrTarget);
Observer.changedInstr(*BrCond);
}
static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
// On Darwin, -Os means optimize for size without hurting performance, so
// only really optimize for size when -Oz (MinSize) is used.
if (MF.getTarget().getTargetTriple().isOSDarwin())
return MF.getFunction().hasMinSize();
return MF.getFunction().hasOptSize();
}
// Returns a list of types to use for memory op lowering in MemOps. A partial
// port of findOptimalMemOpLowering in TargetLowering.
static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
unsigned Limit, const MemOp &Op,
unsigned DstAS, unsigned SrcAS,
const AttributeList &FuncAttributes,
const TargetLowering &TLI) {
if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
return false;
LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
if (Ty == LLT()) {
// Use the largest scalar type whose alignment constraints are satisfied.
// We only need to check DstAlign here as SrcAlign is always greater or
// equal to DstAlign (or zero).
Ty = LLT::scalar(64);
if (Op.isFixedDstAlign())
while (Op.getDstAlign() < Ty.getSizeInBytes() &&
!TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
Ty = LLT::scalar(Ty.getSizeInBytes());
assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
// FIXME: check for the largest legal type we can load/store to.
}
unsigned NumMemOps = 0;
uint64_t Size = Op.size();
while (Size) {
unsigned TySize = Ty.getSizeInBytes();
while (TySize > Size) {
// For now, only use non-vector load / store's for the left-over pieces.
LLT NewTy = Ty;
// FIXME: check for mem op safety and legality of the types. Not all of
// SDAGisms map cleanly to GISel concepts.
if (NewTy.isVector())
NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
unsigned NewTySize = NewTy.getSizeInBytes();
assert(NewTySize > 0 && "Could not find appropriate type");
// If the new LLT cannot cover all of the remaining bits, then consider
// issuing a (or a pair of) unaligned and overlapping load / store.
bool Fast;
// Need to get a VT equivalent for allowMisalignedMemoryAccesses().
MVT VT = getMVTForLLT(Ty);
if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
TLI.allowsMisalignedMemoryAccesses(
VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
MachineMemOperand::MONone, &Fast) &&
Fast)
TySize = Size;
else {
Ty = NewTy;
TySize = NewTySize;
}
}
if (++NumMemOps > Limit)
return false;
MemOps.push_back(Ty);
Size -= TySize;
}
return true;
}
static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
if (Ty.isVector())
return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
Ty.getNumElements());
return IntegerType::get(C, Ty.getSizeInBits());
}
// Get a vectorized representation of the memset value operand, GISel edition.
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
MachineRegisterInfo &MRI = *MIB.getMRI();
unsigned NumBits = Ty.getScalarSizeInBits();
auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
if (!Ty.isVector() && ValVRegAndVal) {
APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
APInt SplatVal = APInt::getSplat(NumBits, Scalar);
return MIB.buildConstant(Ty, SplatVal).getReg(0);
}
// Extend the byte value to the larger type, and then multiply by a magic
// value 0x010101... in order to replicate it across every byte.
// Unless it's zero, in which case just emit a larger G_CONSTANT 0.
if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
return MIB.buildConstant(Ty, 0).getReg(0);
}
LLT ExtType = Ty.getScalarType();
auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
if (NumBits > 8) {
APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
auto MagicMI = MIB.buildConstant(ExtType, Magic);
Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
}
// For vector types create a G_BUILD_VECTOR.
if (Ty.isVector())
Val = MIB.buildSplatVector(Ty, Val).getReg(0);
return Val;
}
bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
Register Val, unsigned KnownLen,
Align Alignment, bool IsVolatile) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
auto &DL = MF.getDataLayout();
LLVMContext &C = MF.getFunction().getContext();
assert(KnownLen != 0 && "Have a zero length memset length!");
bool DstAlignCanChange = false;
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
DstAlignCanChange = true;
unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
std::vector<LLT> MemOps;
const auto &DstMMO = **MI.memoperands_begin();
MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
if (!findGISelOptimalMemOpLowering(MemOps, Limit,
MemOp::Set(KnownLen, DstAlignCanChange,
Alignment,
/*IsZeroMemset=*/IsZeroVal,
/*IsVolatile=*/IsVolatile),
DstPtrInfo.getAddrSpace(), ~0u,
MF.getFunction().getAttributes(), TLI))
return false;
if (DstAlignCanChange) {
// Get an estimate of the type from the LLT.
Type *IRTy = getTypeForLLT(MemOps[0], C);
Align NewAlign = DL.getABITypeAlign(IRTy);
if (NewAlign > Alignment) {
Alignment = NewAlign;
unsigned FI = FIDef->getOperand(1).getIndex();
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlign(FI) < Alignment)
MFI.setObjectAlignment(FI, Alignment);
}
}
MachineIRBuilder MIB(MI);
// Find the largest store and generate the bit pattern for it.
LLT LargestTy = MemOps[0];
for (unsigned i = 1; i < MemOps.size(); i++)
if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
LargestTy = MemOps[i];
// The memset stored value is always defined as an s8, so in order to make it
// work with larger store types we need to repeat the bit pattern across the
// wider type.
Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
if (!MemSetValue)
return false;
// Generate the stores. For each store type in the list, we generate the
// matching store of that type to the destination address.
LLT PtrTy = MRI.getType(Dst);
unsigned DstOff = 0;
unsigned Size = KnownLen;
for (unsigned I = 0; I < MemOps.size(); I++) {
LLT Ty = MemOps[I];
unsigned TySize = Ty.getSizeInBytes();
if (TySize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(I == MemOps.size() - 1 && I != 0);
DstOff -= TySize - Size;
}
// If this store is smaller than the largest store see whether we can get
// the smaller value for free with a truncate.
Register Value = MemSetValue;
if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
MVT VT = getMVTForLLT(Ty);
MVT LargestVT = getMVTForLLT(LargestTy);
if (!LargestTy.isVector() && !Ty.isVector() &&
TLI.isTruncateFree(LargestVT, VT))
Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
else
Value = getMemsetValue(Val, Ty, MIB);
if (!Value)
return false;
}
auto *StoreMMO =
MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes());
Register Ptr = Dst;
if (DstOff != 0) {
auto Offset =
MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
}
MIB.buildStore(Value, Ptr, *StoreMMO);
DstOff += Ty.getSizeInBytes();
Size -= TySize;
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
Register Src, unsigned KnownLen,
Align DstAlign, Align SrcAlign,
bool IsVolatile) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
auto &DL = MF.getDataLayout();
LLVMContext &C = MF.getFunction().getContext();
assert(KnownLen != 0 && "Have a zero length memcpy length!");
bool DstAlignCanChange = false;
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
Align Alignment = commonAlignment(DstAlign, SrcAlign);
MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
DstAlignCanChange = true;
// FIXME: infer better src pointer alignment like SelectionDAG does here.
// FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
// if the memcpy is in a tail call position.
unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize);
std::vector<LLT> MemOps;
const auto &DstMMO = **MI.memoperands_begin();
const auto &SrcMMO = **std::next(MI.memoperands_begin());
MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
if (!findGISelOptimalMemOpLowering(
MemOps, Limit,
MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
IsVolatile),
DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
MF.getFunction().getAttributes(), TLI))
return false;
if (DstAlignCanChange) {
// Get an estimate of the type from the LLT.
Type *IRTy = getTypeForLLT(MemOps[0], C);
Align NewAlign = DL.getABITypeAlign(IRTy);
// Don't promote to an alignment that would require dynamic stack
// realignment.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->needsStackRealignment(MF))
while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
NewAlign = NewAlign / 2;
if (NewAlign > Alignment) {
Alignment = NewAlign;
unsigned FI = FIDef->getOperand(1).getIndex();
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlign(FI) < Alignment)
MFI.setObjectAlignment(FI, Alignment);
}
}
LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
MachineIRBuilder MIB(MI);
// Now we need to emit a pair of load and stores for each of the types we've
// collected. I.e. for each type, generate a load from the source pointer of
// that type width, and then generate a corresponding store to the dest buffer
// of that value loaded. This can result in a sequence of loads and stores
// mixed types, depending on what the target specifies as good types to use.
unsigned CurrOffset = 0;
LLT PtrTy = MRI.getType(Src);
unsigned Size = KnownLen;
for (auto CopyTy : MemOps) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
if (CopyTy.getSizeInBytes() > Size)
CurrOffset -= CopyTy.getSizeInBytes() - Size;
// Construct MMOs for the accesses.
auto *LoadMMO =
MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
auto *StoreMMO =
MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
// Create the load.
Register LoadPtr = Src;
Register Offset;
if (CurrOffset != 0) {
Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
.getReg(0);
LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
}
auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
// Create the store.
Register StorePtr =
CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
MIB.buildStore(LdVal, StorePtr, *StoreMMO);
CurrOffset += CopyTy.getSizeInBytes();
Size -= CopyTy.getSizeInBytes();
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
Register Src, unsigned KnownLen,
Align DstAlign, Align SrcAlign,
bool IsVolatile) {
auto &MF = *MI.getParent()->getParent();
const auto &TLI = *MF.getSubtarget().getTargetLowering();
auto &DL = MF.getDataLayout();
LLVMContext &C = MF.getFunction().getContext();
assert(KnownLen != 0 && "Have a zero length memmove length!");
bool DstAlignCanChange = false;
MachineFrameInfo &MFI = MF.getFrameInfo();
bool OptSize = shouldLowerMemFuncForSize(MF);
Align Alignment = commonAlignment(DstAlign, SrcAlign);
MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
DstAlignCanChange = true;
unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
std::vector<LLT> MemOps;
const auto &DstMMO = **MI.memoperands_begin();
const auto &SrcMMO = **std::next(MI.memoperands_begin());
MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
// FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
// to a bug in it's findOptimalMemOpLowering implementation. For now do the
// same thing here.
if (!findGISelOptimalMemOpLowering(
MemOps, Limit,
MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
/*IsVolatile*/ true),
DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
MF.getFunction().getAttributes(), TLI))
return false;
if (DstAlignCanChange) {
// Get an estimate of the type from the LLT.
Type *IRTy = getTypeForLLT(MemOps[0], C);
Align NewAlign = DL.getABITypeAlign(IRTy);
// Don't promote to an alignment that would require dynamic stack
// realignment.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TRI->needsStackRealignment(MF))
while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
NewAlign = NewAlign / 2;
if (NewAlign > Alignment) {
Alignment = NewAlign;
unsigned FI = FIDef->getOperand(1).getIndex();
// Give the stack frame object a larger alignment if needed.
if (MFI.getObjectAlign(FI) < Alignment)
MFI.setObjectAlignment(FI, Alignment);
}
}
LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
MachineIRBuilder MIB(MI);
// Memmove requires that we perform the loads first before issuing the stores.
// Apart from that, this loop is pretty much doing the same thing as the
// memcpy codegen function.
unsigned CurrOffset = 0;
LLT PtrTy = MRI.getType(Src);
SmallVector<Register, 16> LoadVals;
for (auto CopyTy : MemOps) {
// Construct MMO for the load.
auto *LoadMMO =
MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
// Create the load.
Register LoadPtr = Src;
if (CurrOffset != 0) {
auto Offset =
MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
}
LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
CurrOffset += CopyTy.getSizeInBytes();
}
CurrOffset = 0;
for (unsigned I = 0; I < MemOps.size(); ++I) {
LLT CopyTy = MemOps[I];
// Now store the values loaded.
auto *StoreMMO =
MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
Register StorePtr = Dst;
if (CurrOffset != 0) {
auto Offset =
MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
}
MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
CurrOffset += CopyTy.getSizeInBytes();
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
const unsigned Opc = MI.getOpcode();
// This combine is fairly complex so it's not written with a separate
// matcher function.
assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction");
auto MMOIt = MI.memoperands_begin();
const MachineMemOperand *MemOp = *MMOIt;
bool IsVolatile = MemOp->isVolatile();
// Don't try to optimize volatile.
if (IsVolatile)
return false;
Align DstAlign = MemOp->getBaseAlign();
Align SrcAlign;
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
Register Len = MI.getOperand(2).getReg();
if (Opc != TargetOpcode::G_MEMSET) {
assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
MemOp = *(++MMOIt);
SrcAlign = MemOp->getBaseAlign();
}
// See if this is a constant length copy
auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
if (!LenVRegAndVal)
return false; // Leave it to the legalizer to lower it to a libcall.
unsigned KnownLen = LenVRegAndVal->Value.getZExtValue();
if (KnownLen == 0) {
MI.eraseFromParent();
return true;
}
if (MaxLen && KnownLen > MaxLen)
return false;
if (Opc == TargetOpcode::G_MEMCPY)
return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
if (Opc == TargetOpcode::G_MEMMOVE)
return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
if (Opc == TargetOpcode::G_MEMSET)
return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
return false;
}
static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
const Register Op,
const MachineRegisterInfo &MRI) {
const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
if (!MaybeCst)
return None;
APFloat V = MaybeCst->getValueAPF();
switch (Opcode) {
default:
llvm_unreachable("Unexpected opcode!");
case TargetOpcode::G_FNEG: {
V.changeSign();
return V;
}
case TargetOpcode::G_FABS: {
V.clearSign();
return V;
}
case TargetOpcode::G_FPTRUNC:
break;
case TargetOpcode::G_FSQRT: {
bool Unused;
V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
V = APFloat(sqrt(V.convertToDouble()));
break;
}
case TargetOpcode::G_FLOG2: {
bool Unused;
V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
V = APFloat(log2(V.convertToDouble()));
break;
}
}
// Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
// `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
// and `G_FLOG2` reach here.
bool Unused;
V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
return V;
}
bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
Optional<APFloat> &Cst) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
return Cst.hasValue();
}
bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
Optional<APFloat> &Cst) {
assert(Cst.hasValue() && "Optional is unexpectedly empty!");
Builder.setInstrAndDebugLoc(MI);
MachineFunction &MF = Builder.getMF();
auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
Register DstReg = MI.getOperand(0).getReg();
Builder.buildFConstant(DstReg, *FPVal);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
PtrAddChain &MatchInfo) {
// We're trying to match the following pattern:
// %t1 = G_PTR_ADD %base, G_CONSTANT imm1
// %root = G_PTR_ADD %t1, G_CONSTANT imm2
// -->
// %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
Register Add2 = MI.getOperand(1).getReg();
Register Imm1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
if (!MaybeImmVal)
return false;
MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2);
if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
return false;
Register Base = Add2Def->getOperand(1).getReg();
Register Imm2 = Add2Def->getOperand(2).getReg();
auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
if (!MaybeImm2Val)
return false;
// Pass the combined immediate to the apply function.
MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue();
MatchInfo.Base = Base;
return true;
}
bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
PtrAddChain &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
MachineIRBuilder MIB(MI);
LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(MatchInfo.Base);
MI.getOperand(2).setReg(NewOffset.getReg(0));
Observer.changedInstr(MI);
return true;
}
bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
RegisterImmPair &MatchInfo) {
// We're trying to match the following pattern with any of
// G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
// %t1 = SHIFT %base, G_CONSTANT imm1
// %root = SHIFT %t1, G_CONSTANT imm2
// -->
// %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
Opcode == TargetOpcode::G_USHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
Register Shl2 = MI.getOperand(1).getReg();
Register Imm1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
if (!MaybeImmVal)
return false;
MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
if (Shl2Def->getOpcode() != Opcode)
return false;
Register Base = Shl2Def->getOperand(1).getReg();
Register Imm2 = Shl2Def->getOperand(2).getReg();
auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
if (!MaybeImm2Val)
return false;
// Pass the combined immediate to the apply function.
MatchInfo.Imm =
(MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
MatchInfo.Reg = Base;
// There is no simple replacement for a saturating unsigned left shift that
// exceeds the scalar size.
if (Opcode == TargetOpcode::G_USHLSAT &&
MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
return false;
return true;
}
bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
RegisterImmPair &MatchInfo) {
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
Opcode == TargetOpcode::G_USHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
Builder.setInstrAndDebugLoc(MI);
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
auto Imm = MatchInfo.Imm;
if (Imm >= ScalarSizeInBits) {
// Any logical shift that exceeds scalar size will produce zero.
if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
Builder.buildConstant(MI.getOperand(0), 0);
MI.eraseFromParent();
return true;
}
// Arithmetic shift and saturating signed left shift have no effect beyond
// scalar size.
Imm = ScalarSizeInBits - 1;
}
LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
Observer.changingInstr(MI);
MI.getOperand(1).setReg(MatchInfo.Reg);
MI.getOperand(2).setReg(NewImm);
Observer.changedInstr(MI);
return true;
}
bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
ShiftOfShiftedLogic &MatchInfo) {
// We're trying to match the following pattern with any of
// G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
// with any of G_AND/G_OR/G_XOR logic instructions.
// %t1 = SHIFT %X, G_CONSTANT C0
// %t2 = LOGIC %t1, %Y
// %root = SHIFT %t2, G_CONSTANT C1
// -->
// %t3 = SHIFT %X, G_CONSTANT (C0+C1)
// %t4 = SHIFT %Y, G_CONSTANT C1
// %root = LOGIC %t3, %t4
unsigned ShiftOpcode = MI.getOpcode();
assert((ShiftOpcode == TargetOpcode::G_SHL ||
ShiftOpcode == TargetOpcode::G_ASHR ||
ShiftOpcode == TargetOpcode::G_LSHR ||
ShiftOpcode == TargetOpcode::G_USHLSAT ||
ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
// Match a one-use bitwise logic op.
Register LogicDest = MI.getOperand(1).getReg();
if (!MRI.hasOneNonDBGUse(LogicDest))
return false;
MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
unsigned LogicOpcode = LogicMI->getOpcode();
if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
LogicOpcode != TargetOpcode::G_XOR)
return false;
// Find a matching one-use shift by constant.
const Register C1 = MI.getOperand(2).getReg();
auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
if (!MaybeImmVal)
return false;
const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
// Shift should match previous one and should be a one-use.
if (MI->getOpcode() != ShiftOpcode ||
!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
return false;
// Must be a constant.
auto MaybeImmVal =
getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.getSExtValue();
return true;
};
// Logic ops are commutative, so check each operand for a match.
Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
uint64_t C0Val;
if (matchFirstShift(LogicMIOp1, C0Val)) {
MatchInfo.LogicNonShiftReg = LogicMIReg2;
MatchInfo.Shift2 = LogicMIOp1;
} else if (matchFirstShift(LogicMIOp2, C0Val)) {
MatchInfo.LogicNonShiftReg = LogicMIReg1;
MatchInfo.Shift2 = LogicMIOp2;
} else
return false;
MatchInfo.ValSum = C0Val + C1Val;
// The fold is not valid if the sum of the shift values exceeds bitwidth.
if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
return false;
MatchInfo.Logic = LogicMI;
return true;
}
bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
ShiftOfShiftedLogic &MatchInfo) {
unsigned Opcode = MI.getOpcode();
assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
Opcode == TargetOpcode::G_SSHLSAT) &&
"Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
LLT DestType = MRI.getType(MI.getOperand(0).getReg());
Builder.setInstrAndDebugLoc(MI);
Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
Register Shift1 =
Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
Register Shift2Const = MI.getOperand(2).getReg();
Register Shift2 = Builder
.buildInstr(Opcode, {DestType},
{MatchInfo.LogicNonShiftReg, Shift2Const})
.getReg(0);
Register Dest = MI.getOperand(0).getReg();
Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
// These were one use so it's safe to remove them.
MatchInfo.Shift2->eraseFromParent();
MatchInfo.Logic->eraseFromParent();
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
unsigned &ShiftVal) {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
auto MaybeImmVal =
getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.exactLogBase2();
return (static_cast<int32_t>(ShiftVal) != -1);
}
bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
unsigned &ShiftVal) {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
MachineIRBuilder MIB(MI);
LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
Observer.changingInstr(MI);
MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
MI.getOperand(2).setReg(ShiftCst.getReg(0));
Observer.changedInstr(MI);
return true;
}
// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
RegisterImmPair &MatchData) {
assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
Register LHS = MI.getOperand(1).getReg();
Register ExtSrc;
if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
!mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
!mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
return false;
// TODO: Should handle vector splat.
Register RHS = MI.getOperand(2).getReg();
auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
if (!MaybeShiftAmtVal)
return false;
if (LI) {
LLT SrcTy = MRI.getType(ExtSrc);
// We only really care about the legality with the shifted value. We can
// pick any type the constant shift amount, so ask the target what to
// use. Otherwise we would have to guess and hope it is reported as legal.
LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
return false;
}
int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
MatchData.Reg = ExtSrc;
MatchData.Imm = ShiftAmt;
unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
return MinLeadingZeros >= ShiftAmt;
}
bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
const RegisterImmPair &MatchData) {
Register ExtSrcReg = MatchData.Reg;
int64_t ShiftAmtVal = MatchData.Imm;
LLT ExtSrcTy = MRI.getType(ExtSrcReg);
Builder.setInstrAndDebugLoc(MI);
auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
auto NarrowShift =
Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
Builder.buildZExt(MI.getOperand(0), NarrowShift);
MI.eraseFromParent();
return true;
}
static Register peekThroughBitcast(Register Reg,
const MachineRegisterInfo &MRI) {
while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
;
return Reg;
}
bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register SrcReg =
peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI);
MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES &&
SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS)
return false;
// Check the source type of the merge.
LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg());
LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
if (SrcMergeTy != Dst0Ty && !SameSize)
return false;
// They are the same now (modulo a bitcast).
// We can collect all the src registers.
for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx;
++Idx)
Operands.push_back(SrcInstr->getOperand(Idx).getReg());
return true;
}
bool CombinerHelper::applyCombineUnmergeMergeToPlainValues(
MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
assert((MI.getNumOperands() - 1 == Operands.size()) &&
"Not enough operands to replace all defs");
unsigned NumElems = MI.getNumOperands() - 1;
LLT SrcTy = MRI.getType(Operands[0]);
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
bool CanReuseInputDirectly = DstTy == SrcTy;
Builder.setInstrAndDebugLoc(MI);
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
Register SrcReg = Operands[Idx];
if (CanReuseInputDirectly)
replaceRegWith(MRI, DstReg, SrcReg);
else
Builder.buildCast(DstReg, SrcReg);
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
SmallVectorImpl<APInt> &Csts) {
unsigned SrcIdx = MI.getNumOperands() - 1;
Register SrcReg = MI.getOperand(SrcIdx).getReg();
MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
return false;
// Break down the big constant in smaller ones.
const MachineOperand &CstVal = SrcInstr->getOperand(1);
APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
? CstVal.getCImm()->getValue()
: CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
unsigned ShiftAmt = Dst0Ty.getSizeInBits();
// Unmerge a constant.
for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
Csts.emplace_back(Val.trunc(ShiftAmt));
Val = Val.lshr(ShiftAmt);
}
return true;
}
bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
SmallVectorImpl<APInt> &Csts) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
assert((MI.getNumOperands() - 1 == Csts.size()) &&
"Not enough operands to replace all defs");
unsigned NumElems = MI.getNumOperands() - 1;
Builder.setInstrAndDebugLoc(MI);
for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
Register DstReg = MI.getOperand(Idx).getReg();
Builder.buildConstant(DstReg, Csts[Idx]);
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
// Check that all the lanes are dead except the first one.
for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
return false;
}
return true;
}
bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
Builder.setInstrAndDebugLoc(MI);
Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
// Truncating a vector is going to truncate every single lane,
// whereas we want the full lowbits.
// Do the operation on a scalar instead.
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
SrcReg =
Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
Register Dst0Reg = MI.getOperand(0).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
if (Dst0Ty.isVector()) {
auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
Builder.buildCast(Dst0Reg, MIB);
} else
Builder.buildTrunc(Dst0Reg, SrcReg);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register Dst0Reg = MI.getOperand(0).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
// G_ZEXT on vector applies to each lane, so it will
// affect all destinations. Therefore we won't be able
// to simplify the unmerge to just the first definition.
if (Dst0Ty.isVector())
return false;
Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector())
return false;
Register ZExtSrcReg;
if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
return false;
// Finally we can replace the first definition with
// a zext of the source if the definition is big enough to hold
// all of ZExtSrc bits.
LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
}
bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
"Expected an unmerge");
Register Dst0Reg = MI.getOperand(0).getReg();
MachineInstr *ZExtInstr =
MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
"Expecting a G_ZEXT");
Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
LLT Dst0Ty = MRI.getType(Dst0Reg);
LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
Builder.setInstrAndDebugLoc(MI);
if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
Builder.buildZExt(Dst0Reg, ZExtSrcReg);
} else {
assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
"ZExt src doesn't fit in destination");
replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
}
Register ZeroReg;
for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
if (!ZeroReg)
ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
unsigned TargetShiftSize,
unsigned &ShiftVal) {
assert((MI.getOpcode() == TargetOpcode::G_SHL ||
MI.getOpcode() == TargetOpcode::G_LSHR ||
MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
if (Ty.isVector()) // TODO:
return false;
// Don't narrow further than the requested size.
unsigned Size = Ty.getSizeInBits();
if (Size <= TargetShiftSize)
return false;
auto MaybeImmVal =
getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
if (!MaybeImmVal)
return false;
ShiftVal = MaybeImmVal->Value.getSExtValue();
return ShiftVal >= Size / 2 && ShiftVal < Size;
}
bool CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
const unsigned &ShiftVal) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(SrcReg);
unsigned Size = Ty.getSizeInBits();
unsigned HalfSize = Size / 2;
assert(ShiftVal >= HalfSize);
LLT HalfTy = LLT::scalar(HalfSize);
Builder.setInstr(MI);
auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
unsigned NarrowShiftAmt = ShiftVal - HalfSize;
if (MI.getOpcode() == TargetOpcode::G_LSHR) {
Register Narrowed = Unmerge.getReg(1);
// dst = G_LSHR s64:x, C for C >= 32
// =>
// lo, hi = G_UNMERGE_VALUES x
// dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
if (NarrowShiftAmt != 0) {
Narrowed = Builder.buildLShr(HalfTy, Narrowed,
Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
}
auto Zero = Builder.buildConstant(HalfTy, 0);
Builder.buildMerge(DstReg, { Narrowed, Zero });
} else if (MI.getOpcode() == TargetOpcode::G_SHL) {
Register Narrowed = Unmerge.getReg(0);
// dst = G_SHL s64:x, C for C >= 32
// =>
// lo, hi = G_UNMERGE_VALUES x
// dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
if (NarrowShiftAmt != 0) {
Narrowed = Builder.buildShl(HalfTy, Narrowed,
Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
}
auto Zero = Builder.buildConstant(HalfTy, 0);
Builder.buildMerge(DstReg, { Zero, Narrowed });
} else {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
auto Hi = Builder.buildAShr(
HalfTy, Unmerge.getReg(1),
Builder.buildConstant(HalfTy, HalfSize - 1));
if (ShiftVal == HalfSize) {
// (G_ASHR i64:x, 32) ->
// G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
} else if (ShiftVal == Size - 1) {
// Don't need a second shift.
// (G_ASHR i64:x, 63) ->
// %narrowed = (G_ASHR hi_32(x), 31)
// G_MERGE_VALUES %narrowed, %narrowed
Builder.buildMerge(DstReg, { Hi, Hi });
} else {
auto Lo = Builder.buildAShr(
HalfTy, Unmerge.getReg(1),
Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
// (G_ASHR i64:x, C) ->, for C >= 32
// G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
Builder.buildMerge(DstReg, { Lo, Hi });
}
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
unsigned TargetShiftAmount) {
unsigned ShiftAmt;
if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
applyCombineShiftToUnmerge(MI, ShiftAmt);
return true;
}
return false;
}
bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI,
m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
}
bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
Register DstReg = MI.getOperand(0).getReg();
Builder.setInstr(MI);
Builder.buildCopy(DstReg, Reg);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
}
bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
Register DstReg = MI.getOperand(0).getReg();
Builder.setInstr(MI);
Builder.buildZExtOrTrunc(DstReg, Reg);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineAddP2IToPtrAdd(
MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
assert(MI.getOpcode() == TargetOpcode::G_ADD);
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
LLT IntTy = MRI.getType(LHS);
// G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
// instruction.
PtrReg.second = false;
for (Register SrcReg : {LHS, RHS}) {
if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
// Don't handle cases where the integer is implicitly converted to the
// pointer width.
LLT PtrTy = MRI.getType(PtrReg.first);
if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
return true;
}
PtrReg.second = true;
}
return false;
}
bool CombinerHelper::applyCombineAddP2IToPtrAdd(
MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
Register Dst = MI.getOperand(0).getReg();
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
const bool DoCommute = PtrReg.second;
if (DoCommute)
std::swap(LHS, RHS);
LHS = PtrReg.first;
LLT PtrTy = MRI.getType(LHS);
Builder.setInstrAndDebugLoc(MI);
auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
Builder.buildPtrToInt(Dst, PtrAdd);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
int64_t &NewCst) {
assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
int64_t Cst;
if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
NewCst = Cst + *RHSCst;
return true;
}
}
return false;
}
bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
int64_t &NewCst) {
assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
Register Dst = MI.getOperand(0).getReg();
Builder.setInstrAndDebugLoc(MI);
Builder.buildConstant(Dst, NewCst);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
return mi_match(SrcReg, MRI,
m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
}
bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
Register DstReg = MI.getOperand(0).getReg();
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, Reg);
return true;
}
bool CombinerHelper::matchCombineExtOfExt(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
MI.getOpcode() == TargetOpcode::G_SEXT ||
MI.getOpcode() == TargetOpcode::G_ZEXT) &&
"Expected a G_[ASZ]EXT");
Register SrcReg = MI.getOperand(1).getReg();
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
// Match exts with the same opcode, anyext([sz]ext) and sext(zext).
unsigned Opc = MI.getOpcode();
unsigned SrcOpc = SrcMI->getOpcode();
if (Opc == SrcOpc ||
(Opc == TargetOpcode::G_ANYEXT &&
(SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
(Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
return true;
}
return false;
}
bool CombinerHelper::applyCombineExtOfExt(
MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
MI.getOpcode() == TargetOpcode::G_SEXT ||
MI.getOpcode() == TargetOpcode::G_ZEXT) &&
"Expected a G_[ASZ]EXT");
Register Reg = std::get<0>(MatchInfo);
unsigned SrcExtOp = std::get<1>(MatchInfo);
// Combine exts with the same opcode.
if (MI.getOpcode() == SrcExtOp) {
Observer.changingInstr(MI);
MI.getOperand(1).setReg(Reg);
Observer.changedInstr(MI);
return true;
}
// Combine:
// - anyext([sz]ext x) to [sz]ext x
// - sext(zext x) to zext x
if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
(MI.getOpcode() == TargetOpcode::G_SEXT &&
SrcExtOp == TargetOpcode::G_ZEXT)) {
Register DstReg = MI.getOperand(0).getReg();
Builder.setInstrAndDebugLoc(MI);
Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
MI.eraseFromParent();
return true;
}
return false;
}
bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Builder.setInstrAndDebugLoc(MI);
Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
MI.getFlags());
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
Register SrcReg = MI.getOperand(1).getReg();
return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
}
bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
Src = MI.getOperand(1).getReg();
Register AbsSrc;
return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
}
bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
Register Dst = MI.getOperand(0).getReg();
MI.eraseFromParent();
replaceRegWith(MRI, Dst, Src);
return true;
}
bool CombinerHelper::matchCombineTruncOfExt(
MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register SrcReg = MI.getOperand(1).getReg();
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
unsigned SrcOpc = SrcMI->getOpcode();
if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
SrcOpc == TargetOpcode::G_ZEXT) {
MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
return true;
}
return false;
}
bool CombinerHelper::applyCombineTruncOfExt(
MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register SrcReg = MatchInfo.first;
unsigned SrcExtOp = MatchInfo.second;
Register DstReg = MI.getOperand(0).getReg();
LLT SrcTy = MRI.getType(SrcReg);
LLT DstTy = MRI.getType(DstReg);
if (SrcTy == DstTy) {
MI.eraseFromParent();
replaceRegWith(MRI, DstReg, SrcReg);
return true;
}
Builder.setInstrAndDebugLoc(MI);
if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
else
Builder.buildTrunc(DstReg, SrcReg);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchCombineTruncOfShl(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
Register ShiftSrc;
Register ShiftAmt;
if (MRI.hasOneNonDBGUse(SrcReg) &&
mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
isLegalOrBeforeLegalizer(
{TargetOpcode::G_SHL,
{DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
KnownBits Known = KB->getKnownBits(ShiftAmt);
unsigned Size = DstTy.getSizeInBits();
if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
return true;
}
}
return false;
}
bool CombinerHelper::applyCombineTruncOfShl(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(DstReg);
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
Register ShiftSrc = MatchInfo.first;
Register ShiftAmt = MatchInfo.second;
Builder.setInstrAndDebugLoc(MI);
auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
return MO.isReg() &&
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
});
}
bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
return !MO.isReg() ||
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
});
}
bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
return all_of(Mask, [](int Elt) { return Elt < 0; });
}
bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_STORE);
return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
MRI);
}
bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
MRI);
}
bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
if (auto MaybeCstCmp =
getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
return true;
}
return false;
}
bool CombinerHelper::eraseInst(MachineInstr &MI) {
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
const MachineOperand &MOP2) {
if (!MOP1.isReg() || !MOP2.isReg())
return false;
MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI);
if (!I1)
return false;
MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI);
if (!I2)
return false;
// Handle a case like this:
//
// %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
//
// Even though %0 and %1 are produced by the same instruction they are not
// the same values.
if (I1 == I2)
return MOP1.getReg() == MOP2.getReg();
// If we have an instruction which loads or stores, we can't guarantee that
// it is identical.
//
// For example, we may have
//
// %x1 = G_LOAD %addr (load N from @somewhere)
// ...
// call @foo
// ...
// %x2 = G_LOAD %addr (load N from @somewhere)
// ...
// %or = G_OR %x1, %x2
//
// It's possible that @foo will modify whatever lives at the address we're
// loading from. To be safe, let's just assume that all loads and stores
// are different (unless we have something which is guaranteed to not
// change.)
if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
return false;
// Check for physical registers on the instructions first to avoid cases
// like this:
//
// %a = COPY $physreg
// ...
// SOMETHING implicit-def $physreg
// ...
// %b = COPY $physreg
//
// These copies are not equivalent.
if (any_of(I1->uses(), [](const MachineOperand &MO) {
return MO.isReg() && MO.getReg().isPhysical();
})) {
// Check if we have a case like this:
//
// %a = COPY $physreg
// %b = COPY %a
//
// In this case, I1 and I2 will both be equal to %a = COPY $physreg.
// From that, we know that they must have the same value, since they must
// have come from the same COPY.
return I1->isIdenticalTo(*I2);
}
// We don't have any physical registers, so we don't necessarily need the
// same vreg defs.
//
// On the off-chance that there's some target instruction feeding into the
// instruction, let's use produceSameValue instead of isIdenticalTo.
return Builder.getTII().produceSameValue(*I1, *I2, &MRI);
}
bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
if (!MOP.isReg())
return false;
// MIPatternMatch doesn't let us look through G_ZEXT etc.
auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
return ValAndVReg && ValAndVReg->Value == C;
}
bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
unsigned OpIdx) {
assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
Register OldReg = MI.getOperand(0).getReg();
Register Replacement = MI.getOperand(OpIdx).getReg();
assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
MI.eraseFromParent();
replaceRegWith(MRI, OldReg, Replacement);
return true;
}
bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
Register Replacement) {
assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
Register OldReg = MI.getOperand(0).getReg();
assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
MI.eraseFromParent();
replaceRegWith(MRI, OldReg, Replacement);
return true;
}
bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_SELECT);
// Match (cond ? x : x)
return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
MRI);
}
bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
MRI);
}
bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
return matchConstantOp(MI.getOperand(OpIdx), 0) &&
canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
MRI);
}
bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
return MO.isReg() &&
getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
}
bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
unsigned OpIdx) {
MachineOperand &MO = MI.getOperand(OpIdx);
return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
}
bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildFConstant(MI.getOperand(0), C);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildConstant(MI.getOperand(0), C);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
assert(MI.getNumDefs() == 1 && "Expected only one def?");
Builder.setInstr(MI);
Builder.buildUndef(MI.getOperand(0));
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchSimplifyAddToSub(
MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
Register &NewLHS = std::get<0>(MatchInfo);
Register &NewRHS = std::get<1>(MatchInfo);
// Helper lambda to check for opportunities for
// ((0-A) + B) -> B - A
// (A + (0-B)) -> A - B
auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
return false;
NewLHS = MaybeNewLHS;
return true;
};
return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
}
bool CombinerHelper::matchCombineInsertVecElts(
MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
"Invalid opcode");
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
unsigned NumElts = DstTy.getNumElements();
// If this MI is part of a sequence of insert_vec_elts, then
// don't do the combine in the middle of the sequence.
if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
TargetOpcode::G_INSERT_VECTOR_ELT)
return false;
MachineInstr *CurrInst = &MI;
MachineInstr *TmpInst;
int64_t IntImm;
Register TmpReg;
MatchInfo.resize(NumElts);
while (mi_match(
CurrInst->getOperand(0).getReg(), MRI,
m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
if (IntImm >= NumElts)
return false;
if (!MatchInfo[IntImm])
MatchInfo[IntImm] = TmpReg;
CurrInst = TmpInst;
}
// Variable index.
if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
return false;
if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
if (!MatchInfo[I - 1].isValid())
MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
}
return true;
}
// If we didn't end in a G_IMPLICIT_DEF, bail out.
return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
}
bool CombinerHelper::applyCombineInsertVecElts(
MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
Builder.setInstr(MI);
Register UndefReg;
auto GetUndef = [&]() {
if (UndefReg)
return UndefReg;
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
return UndefReg;
};
for (unsigned I = 0; I < MatchInfo.size(); ++I) {
if (!MatchInfo[I])
MatchInfo[I] = GetUndef();
}
Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::applySimplifyAddToSub(
MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
Builder.setInstr(MI);
Register SubLHS, SubRHS;
std::tie(SubLHS, SubRHS) = MatchInfo;
Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
// Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
//
// Creates the new hand + logic instruction (but does not insert them.)
//
// On success, MatchInfo is populated with the new instructions. These are
// inserted in applyHoistLogicOpWithSameOpcodeHands.
unsigned LogicOpcode = MI.getOpcode();
assert(LogicOpcode == TargetOpcode::G_AND ||
LogicOpcode == TargetOpcode::G_OR ||
LogicOpcode == TargetOpcode::G_XOR);
MachineIRBuilder MIB(MI);
Register Dst = MI.getOperand(0).getReg();
Register LHSReg = MI.getOperand(1).getReg();
Register RHSReg = MI.getOperand(2).getReg();
// Don't recompute anything.
if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
return false;
// Make sure we have (hand x, ...), (hand y, ...)
MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
if (!LeftHandInst || !RightHandInst)
return false;
unsigned HandOpcode = LeftHandInst->getOpcode();
if (HandOpcode != RightHandInst->getOpcode())
return false;
if (!LeftHandInst->getOperand(1).isReg() ||
!RightHandInst->getOperand(1).isReg())
return false;
// Make sure the types match up, and if we're doing this post-legalization,
// we end up with legal types.
Register X = LeftHandInst->getOperand(1).getReg();
Register Y = RightHandInst->getOperand(1).getReg();
LLT XTy = MRI.getType(X);
LLT YTy = MRI.getType(Y);
if (XTy != YTy)
return false;
if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
return false;
// Optional extra source register.
Register ExtraHandOpSrcReg;
switch (HandOpcode) {
default:
return false;
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT: {
// Match: logic (ext X), (ext Y) --> ext (logic X, Y)
break;
}
case TargetOpcode::G_AND:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_SHL: {
// Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
MachineOperand &ZOp = LeftHandInst->getOperand(2);
if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
return false;
ExtraHandOpSrcReg = ZOp.getReg();
break;
}
}
// Record the steps to build the new instructions.
//
// Steps to build (logic x, y)
auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
OperandBuildSteps LogicBuildSteps = {
[=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
// Steps to build hand (logic x, y), ...z
OperandBuildSteps HandBuildSteps = {
[=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
if (ExtraHandOpSrcReg.isValid())
HandBuildSteps.push_back(
[=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
return true;
}
bool CombinerHelper::applyBuildInstructionSteps(
MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
assert(MatchInfo.InstrsToBuild.size() &&
"Expected at least one instr to build?");
Builder.setInstr(MI);
for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
assert(InstrToBuild.Opcode && "Expected a valid opcode?");
assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
for (auto &OperandFn : InstrToBuild.OperandFns)
OperandFn(Instr);
}
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchAshrShlToSextInreg(
MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
int64_t ShlCst, AshrCst;
Register Src;
// FIXME: detect splat constant vectors.
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
return false;
if (ShlCst != AshrCst)
return false;
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
return false;
MatchInfo = std::make_tuple(Src, ShlCst);
return true;
}
bool CombinerHelper::applyAshShlToSextInreg(
MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_ASHR);
Register Src;
int64_t ShiftAmt;
std::tie(Src, ShiftAmt) = MatchInfo;
unsigned Size = MRI.getType(Src).getScalarSizeInBits();
Builder.setInstrAndDebugLoc(MI);
Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
Register &Replacement) {
// Given
//
// %y:_(sN) = G_SOMETHING
// %x:_(sN) = G_SOMETHING
// %res:_(sN) = G_AND %x, %y
//
// Eliminate the G_AND when it is known that x & y == x or x & y == y.
//
// Patterns like this can appear as a result of legalization. E.g.
//
// %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
// %one:_(s32) = G_CONSTANT i32 1
// %and:_(s32) = G_AND %cmp, %one
//
// In this case, G_ICMP only produces a single bit, so x & 1 == x.
assert(MI.getOpcode() == TargetOpcode::G_AND);
if (!KB)
return false;
Register AndDst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(AndDst);
// FIXME: This should be removed once GISelKnownBits supports vectors.
if (DstTy.isVector())
return false;
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownBits LHSBits = KB->getKnownBits(LHS);
KnownBits RHSBits = KB->getKnownBits(RHS);
// Check that x & Mask == x.
// x & 1 == x, always
// x & 0 == x, only if x is also 0
// Meaning Mask has no effect if every bit is either one in Mask or zero in x.
//
// Check if we can replace AndDst with the LHS of the G_AND
if (canReplaceReg(AndDst, LHS, MRI) &&
(LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
Replacement = LHS;
return true;
}
// Check if we can replace AndDst with the RHS of the G_AND
if (canReplaceReg(AndDst, RHS, MRI) &&
(LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
Replacement = RHS;
return true;
}
return false;
}
bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
// Given
//
// %y:_(sN) = G_SOMETHING
// %x:_(sN) = G_SOMETHING
// %res:_(sN) = G_OR %x, %y
//
// Eliminate the G_OR when it is known that x | y == x or x | y == y.
assert(MI.getOpcode() == TargetOpcode::G_OR);
if (!KB)
return false;
Register OrDst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(OrDst);
// FIXME: This should be removed once GISelKnownBits supports vectors.
if (DstTy.isVector())
return false;
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownBits LHSBits = KB->getKnownBits(LHS);
KnownBits RHSBits = KB->getKnownBits(RHS);
// Check that x | Mask == x.
// x | 0 == x, always
// x | 1 == x, only if x is also 1
// Meaning Mask has no effect if every bit is either zero in Mask or one in x.
//
// Check if we can replace OrDst with the LHS of the G_OR
if (canReplaceReg(OrDst, LHS, MRI) &&
(LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
Replacement = LHS;
return true;
}
// Check if we can replace OrDst with the RHS of the G_OR
if (canReplaceReg(OrDst, RHS, MRI) &&
(LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
Replacement = RHS;
return true;
}
return false;
}
bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
// If the input is already sign extended, just drop the extension.
Register Src = MI.getOperand(1).getReg();
unsigned ExtBits = MI.getOperand(2).getImm();
unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
}
static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
int64_t Cst, bool IsVector, bool IsFP) {
// For i1, Cst will always be -1 regardless of boolean contents.
return (ScalarSizeBits == 1 && Cst == -1) ||
isConstTrueVal(TLI, Cst, IsVector, IsFP);
}
bool CombinerHelper::matchNotCmp(MachineInstr &MI,
SmallVectorImpl<Register> &RegsToNegate) {
assert(MI.getOpcode() == TargetOpcode::G_XOR);
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
Register XorSrc;
Register CstReg;
// We match xor(src, true) here.
if (!mi_match(MI.getOperand(0).getReg(), MRI,
m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
return false;
if (!MRI.hasOneNonDBGUse(XorSrc))
return false;
// Check that XorSrc is the root of a tree of comparisons combined with ANDs
// and ORs. The suffix of RegsToNegate starting from index I is used a work
// list of tree nodes to visit.
RegsToNegate.push_back(XorSrc);
// Remember whether the comparisons are all integer or all floating point.
bool IsInt = false;
bool IsFP = false;
for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
Register Reg = RegsToNegate[I];
if (!MRI.hasOneNonDBGUse(Reg))
return false;
MachineInstr *Def = MRI.getVRegDef(Reg);
switch (Def->getOpcode()) {
default:
// Don't match if the tree contains anything other than ANDs, ORs and
// comparisons.
return false;
case TargetOpcode::G_ICMP:
if (IsFP)
return false;
IsInt = true;
// When we apply the combine we will invert the predicate.
break;
case TargetOpcode::G_FCMP:
if (IsInt)
return false;
IsFP = true;
// When we apply the combine we will invert the predicate.
break;
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
// Implement De Morgan's laws:
// ~(x & y) -> ~x | ~y
// ~(x | y) -> ~x & ~y
// When we apply the combine we will change the opcode and recursively
// negate the operands.
RegsToNegate.push_back(Def->getOperand(1).getReg());
RegsToNegate.push_back(Def->getOperand(2).getReg());
break;
}
}
// Now we know whether the comparisons are integer or floating point, check
// the constant in the xor.
int64_t Cst;
if (Ty.isVector()) {
MachineInstr *CstDef = MRI.getVRegDef(CstReg);
auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
if (!MaybeCst)
return false;
if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
return false;
} else {
if (!mi_match(CstReg, MRI, m_ICst(Cst)))
return false;
if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
return false;
}
return true;
}
bool CombinerHelper::applyNotCmp(MachineInstr &MI,
SmallVectorImpl<Register> &RegsToNegate) {
for (Register Reg : RegsToNegate) {
MachineInstr *Def = MRI.getVRegDef(Reg);
Observer.changingInstr(*Def);
// For each comparison, invert the opcode. For each AND and OR, change the
// opcode.
switch (Def->getOpcode()) {
default:
llvm_unreachable("Unexpected opcode");
case TargetOpcode::G_ICMP:
case TargetOpcode::G_FCMP: {
MachineOperand &PredOp = Def->getOperand(1);
CmpInst::Predicate NewP = CmpInst::getInversePredicate(
(CmpInst::Predicate)PredOp.getPredicate());
PredOp.setPredicate(NewP);
break;
}
case TargetOpcode::G_AND:
Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
break;
case TargetOpcode::G_OR:
Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
break;
}
Observer.changedInstr(*Def);
}
replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
MI.eraseFromParent();
return true;
}
bool CombinerHelper::matchXorOfAndWithSameReg(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
// Match (xor (and x, y), y) (or any of its commuted cases)
assert(MI.getOpcode() == TargetOpcode::G_XOR);
Register &X = MatchInfo.first;
Register &Y = MatchInfo.second;
Register AndReg = MI.getOperand(1).getReg();
Register SharedReg = MI.getOperand(2).getReg();
// Find a G_AND on either side of the G_XOR.
// Look for one of
//
// (xor (and x, y), SharedReg)
// (xor SharedReg, (and x, y))
if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
std::swap(AndReg, SharedReg);
if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
return false;
}
// Only do this if we'll eliminate the G_AND.
if (!MRI.hasOneNonDBGUse(AndReg))
return false;
// We can combine if SharedReg is the same as either the LHS or RHS of the
// G_AND.
if (Y != SharedReg)
std::swap(X, Y);
return Y == SharedReg;
}
bool CombinerHelper::applyXorOfAndWithSameReg(
MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
// Fold (xor (and x, y), y) -> (and (not x), y)
Builder.setInstrAndDebugLoc(MI);
Register X, Y;
std::tie(X, Y) = MatchInfo;
auto Not = Builder.buildNot(MRI.getType(X), X);
Observer.changingInstr(MI);
MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
MI.getOperand(1).setReg(Not->getOperand(0).getReg());
MI.getOperand(2).setReg(Y);
Observer.changedInstr(MI);
return true;
}
bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(DstReg);
const DataLayout &DL = Builder.getMF().getDataLayout();
if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
return false;
if (Ty.isPointer()) {
auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI);
return ConstVal && *ConstVal == 0;
}
assert(Ty.isVector() && "Expecting a vector type");
const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg());
return isBuildVectorAllZeros(*VecMI, MRI);
}
bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
Builder.setInstrAndDebugLoc(MI);
Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2));
MI.eraseFromParent();
return true;
}
/// The second source operand is known to be a power of 2.
bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Pow2Src1 = MI.getOperand(2).getReg();
LLT Ty = MRI.getType(DstReg);
Builder.setInstrAndDebugLoc(MI);
// Fold (urem x, pow2) -> (and x, pow2-1)
auto NegOne = Builder.buildConstant(Ty, -1);
auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
Builder.buildAnd(DstReg, Src0, Add);
MI.eraseFromParent();
return true;
}
Optional<SmallVector<Register, 8>>
CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
// We want to detect if Root is part of a tree which represents a bunch
// of loads being merged into a larger load. We'll try to recognize patterns
// like, for example:
//
// Reg Reg
// \ /
// OR_1 Reg
// \ /
// OR_2
// \ Reg
// .. /
// Root
//
// Reg Reg Reg Reg
// \ / \ /
// OR_1 OR_2
// \ /
// \ /
// ...
// Root
//
// Each "Reg" may have been produced by a load + some arithmetic. This
// function will save each of them.
SmallVector<Register, 8> RegsToVisit;
SmallVector<const MachineInstr *, 7> Ors = {Root};
// In the "worst" case, we're dealing with a load for each byte. So, there
// are at most #bytes - 1 ORs.
const unsigned MaxIter =
MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
if (Ors.empty())
break;
const MachineInstr *Curr = Ors.pop_back_val();
Register OrLHS = Curr->getOperand(1).getReg();
Register OrRHS = Curr->getOperand(2).getReg();
// In the combine, we want to elimate the entire tree.
if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
return None;
// If it's a G_OR, save it and continue to walk. If it's not, then it's
// something that may be a load + arithmetic.
if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
Ors.push_back(Or);
else
RegsToVisit.push_back(OrLHS);
if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
Ors.push_back(Or);
else
RegsToVisit.push_back(OrRHS);
}
// We're going to try and merge each register into a wider power-of-2 type,
// so we ought to have an even number of registers.
if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
return None;
return RegsToVisit;
}
/// Helper function for findLoadOffsetsForLoadOrCombine.
///
/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
/// and then moving that value into a specific byte offset.
///
/// e.g. x[i] << 24
///
/// \returns The load instruction and the byte offset it is moved into.
static Optional<std::pair<MachineInstr *, int64_t>>
matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
const MachineRegisterInfo &MRI) {
assert(MRI.hasOneNonDBGUse(Reg) &&
"Expected Reg to only have one non-debug use?");
Register MaybeLoad;
int64_t Shift;
if (!mi_match(Reg, MRI,
m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
Shift = 0;
MaybeLoad = Reg;
}
if (Shift % MemSizeInBits != 0)
return None;
// TODO: Handle other types of loads.
auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI);
if (!Load)
return None;
const auto &MMO = **Load->memoperands_begin();
if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits)
return None;
return std::make_pair(Load, Shift / MemSizeInBits);
}
Optional<std::pair<MachineInstr *, int64_t>>
CombinerHelper::findLoadOffsetsForLoadOrCombine(
SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
// Each load found for the pattern. There should be one for each RegsToVisit.
SmallSetVector<const MachineInstr *, 8> Loads;
// The lowest index used in any load. (The lowest "i" for each x[i].)
int64_t LowestIdx = INT64_MAX;
// The load which uses the lowest index.
MachineInstr *LowestIdxLoad = nullptr;
// Keeps track of the load indices we see. We shouldn't see any indices twice.
SmallSet<int64_t, 8> SeenIdx;
// Ensure each load is in the same MBB.
// TODO: Support multiple MachineBasicBlocks.
MachineBasicBlock *MBB = nullptr;
const MachineMemOperand *MMO = nullptr;
// Earliest instruction-order load in the pattern.
MachineInstr *EarliestLoad = nullptr;
// Latest instruction-order load in the pattern.
MachineInstr *LatestLoad = nullptr;
// Base pointer which every load should share.
Register BasePtr;
// We want to find a load for each register. Each load should have some
// appropriate bit twiddling arithmetic. During this loop, we will also keep
// track of the load which uses the lowest index. Later, we will check if we
// can use its pointer in the final, combined load.
for (auto Reg : RegsToVisit) {
// Find the load, and find the position that it will end up in (e.g. a
// shifted) value.
auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
if (!LoadAndPos)
return None;
MachineInstr *Load;
int64_t DstPos;
std::tie(Load, DstPos) = *LoadAndPos;
// TODO: Handle multiple MachineBasicBlocks. Currently not handled because
// it is difficult to check for stores/calls/etc between loads.
MachineBasicBlock *LoadMBB = Load->getParent();
if (!MBB)
MBB = LoadMBB;
if (LoadMBB != MBB)
return None;
// Make sure that the MachineMemOperands of every seen load are compatible.
const MachineMemOperand *LoadMMO = *Load->memoperands_begin();
if (!MMO)
MMO = LoadMMO;
if (MMO->getAddrSpace() != LoadMMO->getAddrSpace())
return None;
// Find out what the base pointer and index for the load is.
Register LoadPtr;
int64_t Idx;
if (!mi_match(Load->getOperand(1).getReg(), MRI,
m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
LoadPtr = Load->getOperand(1).getReg();
Idx = 0;
}
// Don't combine things like a[i], a[i] -> a bigger load.
if (!SeenIdx.insert(Idx).second)
return None;
// Every load must share the same base pointer; don't combine things like:
//
// a[i], b[i + 1] -> a bigger load.
if (!BasePtr.isValid())
BasePtr = LoadPtr;
if (BasePtr != LoadPtr)
return None;
if (Idx < LowestIdx) {
LowestIdx = Idx;
LowestIdxLoad = Load;
}
// Keep track of the byte offset that this load ends up at. If we have seen
// the byte offset, then stop here. We do not want to combine:
//
// a[i] << 16, a[i + k] << 16 -> a bigger load.
if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
return None;
Loads.insert(Load);
// Keep track of the position of the earliest/latest loads in the pattern.
// We will check that there are no load fold barriers between them later
// on.
//
// FIXME: Is there a better way to check for load fold barriers?
if (!EarliestLoad || dominates(*Load, *EarliestLoad))
EarliestLoad = Load;
if (!LatestLoad || dominates(*LatestLoad, *Load))
LatestLoad = Load;
}
// We found a load for each register. Let's check if each load satisfies the
// pattern.
assert(Loads.size() == RegsToVisit.size() &&
"Expected to find a load for each register?");
assert(EarliestLoad != LatestLoad && EarliestLoad &&
LatestLoad && "Expected at least two loads?");
// Check if there are any stores, calls, etc. between any of the loads. If
// there are, then we can't safely perform the combine.
//
// MaxIter is chosen based off the (worst case) number of iterations it
// typically takes to succeed in the LLVM test suite plus some padding.
//
// FIXME: Is there a better way to check for load fold barriers?
const unsigned MaxIter = 20;
unsigned Iter = 0;
for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
LatestLoad->getIterator())) {
if (Loads.count(&MI))
continue;
if (MI.isLoadFoldBarrier())
return None;
if (Iter++ == MaxIter)
return None;
}
return std::make_pair(LowestIdxLoad, LowestIdx);
}
bool CombinerHelper::matchLoadOrCombine(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
assert(MI.getOpcode() == TargetOpcode::G_OR);
MachineFunction &MF = *MI.getMF();
// Assuming a little-endian target, transform:
// s8 *a = ...
// s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
// =>
// s32 val = *((i32)a)
//
// s8 *a = ...
// s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
// =>
// s32 val = BSWAP(*((s32)a))
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
if (Ty.isVector())
return false;
// We need to combine at least two loads into this type. Since the smallest
// possible load is into a byte, we need at least a 16-bit wide type.
const unsigned WideMemSizeInBits = Ty.getSizeInBits();
if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
return false;
// Match a collection of non-OR instructions in the pattern.
auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
if (!RegsToVisit)
return false;
// We have a collection of non-OR instructions. Figure out how wide each of
// the small loads should be based off of the number of potential loads we
// found.
const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
if (NarrowMemSizeInBits % 8 != 0)
return false;
// Check if each register feeding into each OR is a load from the same
// base pointer + some arithmetic.
//
// e.g. a[0], a[1] << 8, a[2] << 16, etc.
//
// Also verify that each of these ends up putting a[i] into the same memory
// offset as a load into a wide type would.
SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
MachineInstr *LowestIdxLoad;
int64_t LowestIdx;
auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
if (!MaybeLoadInfo)
return false;
std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo;
// We have a bunch of loads being OR'd together. Using the addresses + offsets
// we found before, check if this corresponds to a big or little endian byte
// pattern. If it does, then we can represent it using a load + possibly a
// BSWAP.
bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
if (!IsBigEndian.hasValue())
return false;
bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
return false;
// Make sure that the load from the lowest index produces offset 0 in the
// final value.
//
// This ensures that we won't combine something like this:
//
// load x[i] -> byte 2
// load x[i+1] -> byte 0 ---> wide_load x[i]
// load x[i+2] -> byte 1
const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
const unsigned ZeroByteOffset =
*IsBigEndian
? bigEndianByteAt(NumLoadsInTy, 0)
: littleEndianByteAt(NumLoadsInTy, 0);
auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
if (ZeroOffsetIdx == MemOffset2Idx.end() ||
ZeroOffsetIdx->second != LowestIdx)
return false;
// We wil reuse the pointer from the load which ends up at byte offset 0. It
// may not use index 0.
Register Ptr = LowestIdxLoad->getOperand(1).getReg();
const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin();
LegalityQuery::MemDesc MMDesc;
MMDesc.SizeInBits = WideMemSizeInBits;
MMDesc.AlignInBits = MMO.getAlign().value() * 8;
MMDesc.Ordering = MMO.getOrdering();
if (!isLegalOrBeforeLegalizer(
{TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
return false;
auto PtrInfo = MMO.getPointerInfo();
auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
// Load must be allowed and fast on the target.
LLVMContext &C = MF.getFunction().getContext();
auto &DL = MF.getDataLayout();
bool Fast = false;
if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
!Fast)
return false;
MatchInfo = [=](MachineIRBuilder &MIB) {
Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
MIB.buildLoad(LoadDst, Ptr, *NewMMO);
if (NeedsBSwap)
MIB.buildBSwap(Dst, LoadDst);
};
return true;
}
bool CombinerHelper::applyLoadOrCombine(
MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
Builder.setInstrAndDebugLoc(MI);
MatchInfo(Builder);
MI.eraseFromParent();
return true;
}
bool CombinerHelper::tryCombine(MachineInstr &MI) {
if (tryCombineCopy(MI))
return true;
if (tryCombineExtendingLoads(MI))
return true;
if (tryCombineIndexedLoadStore(MI))
return true;
return false;
}