llvm-for-llvmta/lib/CodeGen/GlobalISel/MachineIRBuilder.cpp

1224 lines
48 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- llvm/CodeGen/GlobalISel/MachineIRBuilder.cpp - MIBuilder--*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the MachineIRBuidler class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfo.h"
using namespace llvm;
void MachineIRBuilder::setMF(MachineFunction &MF) {
State.MF = &MF;
State.MBB = nullptr;
State.MRI = &MF.getRegInfo();
State.TII = MF.getSubtarget().getInstrInfo();
State.DL = DebugLoc();
State.II = MachineBasicBlock::iterator();
State.Observer = nullptr;
}
//------------------------------------------------------------------------------
// Build instruction variants.
//------------------------------------------------------------------------------
MachineInstrBuilder MachineIRBuilder::buildInstrNoInsert(unsigned Opcode) {
MachineInstrBuilder MIB = BuildMI(getMF(), getDL(), getTII().get(Opcode));
return MIB;
}
MachineInstrBuilder MachineIRBuilder::insertInstr(MachineInstrBuilder MIB) {
getMBB().insert(getInsertPt(), MIB);
recordInsertion(MIB);
return MIB;
}
MachineInstrBuilder
MachineIRBuilder::buildDirectDbgValue(Register Reg, const MDNode *Variable,
const MDNode *Expr) {
assert(isa<DILocalVariable>(Variable) && "not a variable");
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
assert(
cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
"Expected inlined-at fields to agree");
return insertInstr(BuildMI(getMF(), getDL(),
getTII().get(TargetOpcode::DBG_VALUE),
/*IsIndirect*/ false, Reg, Variable, Expr));
}
MachineInstrBuilder
MachineIRBuilder::buildIndirectDbgValue(Register Reg, const MDNode *Variable,
const MDNode *Expr) {
assert(isa<DILocalVariable>(Variable) && "not a variable");
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
assert(
cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
"Expected inlined-at fields to agree");
return insertInstr(BuildMI(getMF(), getDL(),
getTII().get(TargetOpcode::DBG_VALUE),
/*IsIndirect*/ true, Reg, Variable, Expr));
}
MachineInstrBuilder MachineIRBuilder::buildFIDbgValue(int FI,
const MDNode *Variable,
const MDNode *Expr) {
assert(isa<DILocalVariable>(Variable) && "not a variable");
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
assert(
cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
"Expected inlined-at fields to agree");
return buildInstr(TargetOpcode::DBG_VALUE)
.addFrameIndex(FI)
.addImm(0)
.addMetadata(Variable)
.addMetadata(Expr);
}
MachineInstrBuilder MachineIRBuilder::buildConstDbgValue(const Constant &C,
const MDNode *Variable,
const MDNode *Expr) {
assert(isa<DILocalVariable>(Variable) && "not a variable");
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
assert(
cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(getDL()) &&
"Expected inlined-at fields to agree");
auto MIB = buildInstrNoInsert(TargetOpcode::DBG_VALUE);
if (auto *CI = dyn_cast<ConstantInt>(&C)) {
if (CI->getBitWidth() > 64)
MIB.addCImm(CI);
else
MIB.addImm(CI->getZExtValue());
} else if (auto *CFP = dyn_cast<ConstantFP>(&C)) {
MIB.addFPImm(CFP);
} else {
// Insert $noreg if we didn't find a usable constant and had to drop it.
MIB.addReg(Register());
}
MIB.addImm(0).addMetadata(Variable).addMetadata(Expr);
return insertInstr(MIB);
}
MachineInstrBuilder MachineIRBuilder::buildDbgLabel(const MDNode *Label) {
assert(isa<DILabel>(Label) && "not a label");
assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(State.DL) &&
"Expected inlined-at fields to agree");
auto MIB = buildInstr(TargetOpcode::DBG_LABEL);
return MIB.addMetadata(Label);
}
MachineInstrBuilder MachineIRBuilder::buildDynStackAlloc(const DstOp &Res,
const SrcOp &Size,
Align Alignment) {
assert(Res.getLLTTy(*getMRI()).isPointer() && "expected ptr dst type");
auto MIB = buildInstr(TargetOpcode::G_DYN_STACKALLOC);
Res.addDefToMIB(*getMRI(), MIB);
Size.addSrcToMIB(MIB);
MIB.addImm(Alignment.value());
return MIB;
}
MachineInstrBuilder MachineIRBuilder::buildFrameIndex(const DstOp &Res,
int Idx) {
assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
auto MIB = buildInstr(TargetOpcode::G_FRAME_INDEX);
Res.addDefToMIB(*getMRI(), MIB);
MIB.addFrameIndex(Idx);
return MIB;
}
MachineInstrBuilder MachineIRBuilder::buildGlobalValue(const DstOp &Res,
const GlobalValue *GV) {
assert(Res.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
assert(Res.getLLTTy(*getMRI()).getAddressSpace() ==
GV->getType()->getAddressSpace() &&
"address space mismatch");
auto MIB = buildInstr(TargetOpcode::G_GLOBAL_VALUE);
Res.addDefToMIB(*getMRI(), MIB);
MIB.addGlobalAddress(GV);
return MIB;
}
MachineInstrBuilder MachineIRBuilder::buildJumpTable(const LLT PtrTy,
unsigned JTI) {
return buildInstr(TargetOpcode::G_JUMP_TABLE, {PtrTy}, {})
.addJumpTableIndex(JTI);
}
void MachineIRBuilder::validateUnaryOp(const LLT Res, const LLT Op0) {
assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
assert((Res == Op0) && "type mismatch");
}
void MachineIRBuilder::validateBinaryOp(const LLT Res, const LLT Op0,
const LLT Op1) {
assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
assert((Res == Op0 && Res == Op1) && "type mismatch");
}
void MachineIRBuilder::validateShiftOp(const LLT Res, const LLT Op0,
const LLT Op1) {
assert((Res.isScalar() || Res.isVector()) && "invalid operand type");
assert((Res == Op0) && "type mismatch");
}
MachineInstrBuilder MachineIRBuilder::buildPtrAdd(const DstOp &Res,
const SrcOp &Op0,
const SrcOp &Op1) {
assert(Res.getLLTTy(*getMRI()).getScalarType().isPointer() &&
Res.getLLTTy(*getMRI()) == Op0.getLLTTy(*getMRI()) && "type mismatch");
assert(Op1.getLLTTy(*getMRI()).getScalarType().isScalar() && "invalid offset type");
return buildInstr(TargetOpcode::G_PTR_ADD, {Res}, {Op0, Op1});
}
Optional<MachineInstrBuilder>
MachineIRBuilder::materializePtrAdd(Register &Res, Register Op0,
const LLT ValueTy, uint64_t Value) {
assert(Res == 0 && "Res is a result argument");
assert(ValueTy.isScalar() && "invalid offset type");
if (Value == 0) {
Res = Op0;
return None;
}
Res = getMRI()->createGenericVirtualRegister(getMRI()->getType(Op0));
auto Cst = buildConstant(ValueTy, Value);
return buildPtrAdd(Res, Op0, Cst.getReg(0));
}
MachineInstrBuilder MachineIRBuilder::buildMaskLowPtrBits(const DstOp &Res,
const SrcOp &Op0,
uint32_t NumBits) {
LLT PtrTy = Res.getLLTTy(*getMRI());
LLT MaskTy = LLT::scalar(PtrTy.getSizeInBits());
Register MaskReg = getMRI()->createGenericVirtualRegister(MaskTy);
buildConstant(MaskReg, maskTrailingZeros<uint64_t>(NumBits));
return buildPtrMask(Res, Op0, MaskReg);
}
MachineInstrBuilder MachineIRBuilder::buildBr(MachineBasicBlock &Dest) {
return buildInstr(TargetOpcode::G_BR).addMBB(&Dest);
}
MachineInstrBuilder MachineIRBuilder::buildBrIndirect(Register Tgt) {
assert(getMRI()->getType(Tgt).isPointer() && "invalid branch destination");
return buildInstr(TargetOpcode::G_BRINDIRECT).addUse(Tgt);
}
MachineInstrBuilder MachineIRBuilder::buildBrJT(Register TablePtr,
unsigned JTI,
Register IndexReg) {
assert(getMRI()->getType(TablePtr).isPointer() &&
"Table reg must be a pointer");
return buildInstr(TargetOpcode::G_BRJT)
.addUse(TablePtr)
.addJumpTableIndex(JTI)
.addUse(IndexReg);
}
MachineInstrBuilder MachineIRBuilder::buildCopy(const DstOp &Res,
const SrcOp &Op) {
return buildInstr(TargetOpcode::COPY, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res,
const ConstantInt &Val) {
LLT Ty = Res.getLLTTy(*getMRI());
LLT EltTy = Ty.getScalarType();
assert(EltTy.getScalarSizeInBits() == Val.getBitWidth() &&
"creating constant with the wrong size");
if (Ty.isVector()) {
auto Const = buildInstr(TargetOpcode::G_CONSTANT)
.addDef(getMRI()->createGenericVirtualRegister(EltTy))
.addCImm(&Val);
return buildSplatVector(Res, Const);
}
auto Const = buildInstr(TargetOpcode::G_CONSTANT);
Const->setDebugLoc(DebugLoc());
Res.addDefToMIB(*getMRI(), Const);
Const.addCImm(&Val);
return Const;
}
MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res,
int64_t Val) {
auto IntN = IntegerType::get(getMF().getFunction().getContext(),
Res.getLLTTy(*getMRI()).getScalarSizeInBits());
ConstantInt *CI = ConstantInt::get(IntN, Val, true);
return buildConstant(Res, *CI);
}
MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res,
const ConstantFP &Val) {
LLT Ty = Res.getLLTTy(*getMRI());
LLT EltTy = Ty.getScalarType();
assert(APFloat::getSizeInBits(Val.getValueAPF().getSemantics())
== EltTy.getSizeInBits() &&
"creating fconstant with the wrong size");
assert(!Ty.isPointer() && "invalid operand type");
if (Ty.isVector()) {
auto Const = buildInstr(TargetOpcode::G_FCONSTANT)
.addDef(getMRI()->createGenericVirtualRegister(EltTy))
.addFPImm(&Val);
return buildSplatVector(Res, Const);
}
auto Const = buildInstr(TargetOpcode::G_FCONSTANT);
Const->setDebugLoc(DebugLoc());
Res.addDefToMIB(*getMRI(), Const);
Const.addFPImm(&Val);
return Const;
}
MachineInstrBuilder MachineIRBuilder::buildConstant(const DstOp &Res,
const APInt &Val) {
ConstantInt *CI = ConstantInt::get(getMF().getFunction().getContext(), Val);
return buildConstant(Res, *CI);
}
MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res,
double Val) {
LLT DstTy = Res.getLLTTy(*getMRI());
auto &Ctx = getMF().getFunction().getContext();
auto *CFP =
ConstantFP::get(Ctx, getAPFloatFromSize(Val, DstTy.getScalarSizeInBits()));
return buildFConstant(Res, *CFP);
}
MachineInstrBuilder MachineIRBuilder::buildFConstant(const DstOp &Res,
const APFloat &Val) {
auto &Ctx = getMF().getFunction().getContext();
auto *CFP = ConstantFP::get(Ctx, Val);
return buildFConstant(Res, *CFP);
}
MachineInstrBuilder MachineIRBuilder::buildBrCond(const SrcOp &Tst,
MachineBasicBlock &Dest) {
assert(Tst.getLLTTy(*getMRI()).isScalar() && "invalid operand type");
auto MIB = buildInstr(TargetOpcode::G_BRCOND);
Tst.addSrcToMIB(MIB);
MIB.addMBB(&Dest);
return MIB;
}
MachineInstrBuilder
MachineIRBuilder::buildLoad(const DstOp &Dst, const SrcOp &Addr,
MachinePointerInfo PtrInfo, Align Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
MMOFlags |= MachineMemOperand::MOLoad;
assert((MMOFlags & MachineMemOperand::MOStore) == 0);
uint64_t Size = MemoryLocation::getSizeOrUnknown(
TypeSize::Fixed(Dst.getLLTTy(*getMRI()).getSizeInBytes()));
MachineMemOperand *MMO =
getMF().getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
return buildLoad(Dst, Addr, *MMO);
}
MachineInstrBuilder MachineIRBuilder::buildLoadInstr(unsigned Opcode,
const DstOp &Res,
const SrcOp &Addr,
MachineMemOperand &MMO) {
assert(Res.getLLTTy(*getMRI()).isValid() && "invalid operand type");
assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
auto MIB = buildInstr(Opcode);
Res.addDefToMIB(*getMRI(), MIB);
Addr.addSrcToMIB(MIB);
MIB.addMemOperand(&MMO);
return MIB;
}
MachineInstrBuilder MachineIRBuilder::buildLoadFromOffset(
const DstOp &Dst, const SrcOp &BasePtr,
MachineMemOperand &BaseMMO, int64_t Offset) {
LLT LoadTy = Dst.getLLTTy(*getMRI());
MachineMemOperand *OffsetMMO =
getMF().getMachineMemOperand(&BaseMMO, Offset, LoadTy.getSizeInBytes());
if (Offset == 0) // This may be a size or type changing load.
return buildLoad(Dst, BasePtr, *OffsetMMO);
LLT PtrTy = BasePtr.getLLTTy(*getMRI());
LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
auto ConstOffset = buildConstant(OffsetTy, Offset);
auto Ptr = buildPtrAdd(PtrTy, BasePtr, ConstOffset);
return buildLoad(Dst, Ptr, *OffsetMMO);
}
MachineInstrBuilder MachineIRBuilder::buildStore(const SrcOp &Val,
const SrcOp &Addr,
MachineMemOperand &MMO) {
assert(Val.getLLTTy(*getMRI()).isValid() && "invalid operand type");
assert(Addr.getLLTTy(*getMRI()).isPointer() && "invalid operand type");
auto MIB = buildInstr(TargetOpcode::G_STORE);
Val.addSrcToMIB(MIB);
Addr.addSrcToMIB(MIB);
MIB.addMemOperand(&MMO);
return MIB;
}
MachineInstrBuilder
MachineIRBuilder::buildStore(const SrcOp &Val, const SrcOp &Addr,
MachinePointerInfo PtrInfo, Align Alignment,
MachineMemOperand::Flags MMOFlags,
const AAMDNodes &AAInfo) {
MMOFlags |= MachineMemOperand::MOStore;
assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
uint64_t Size = MemoryLocation::getSizeOrUnknown(
TypeSize::Fixed(Val.getLLTTy(*getMRI()).getSizeInBytes()));
MachineMemOperand *MMO =
getMF().getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
return buildStore(Val, Addr, *MMO);
}
MachineInstrBuilder MachineIRBuilder::buildAnyExt(const DstOp &Res,
const SrcOp &Op) {
return buildInstr(TargetOpcode::G_ANYEXT, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildSExt(const DstOp &Res,
const SrcOp &Op) {
return buildInstr(TargetOpcode::G_SEXT, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildZExt(const DstOp &Res,
const SrcOp &Op) {
return buildInstr(TargetOpcode::G_ZEXT, Res, Op);
}
unsigned MachineIRBuilder::getBoolExtOp(bool IsVec, bool IsFP) const {
const auto *TLI = getMF().getSubtarget().getTargetLowering();
switch (TLI->getBooleanContents(IsVec, IsFP)) {
case TargetLoweringBase::ZeroOrNegativeOneBooleanContent:
return TargetOpcode::G_SEXT;
case TargetLoweringBase::ZeroOrOneBooleanContent:
return TargetOpcode::G_ZEXT;
default:
return TargetOpcode::G_ANYEXT;
}
}
MachineInstrBuilder MachineIRBuilder::buildBoolExt(const DstOp &Res,
const SrcOp &Op,
bool IsFP) {
unsigned ExtOp = getBoolExtOp(getMRI()->getType(Op.getReg()).isVector(), IsFP);
return buildInstr(ExtOp, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildExtOrTrunc(unsigned ExtOpc,
const DstOp &Res,
const SrcOp &Op) {
assert((TargetOpcode::G_ANYEXT == ExtOpc || TargetOpcode::G_ZEXT == ExtOpc ||
TargetOpcode::G_SEXT == ExtOpc) &&
"Expecting Extending Opc");
assert(Res.getLLTTy(*getMRI()).isScalar() ||
Res.getLLTTy(*getMRI()).isVector());
assert(Res.getLLTTy(*getMRI()).isScalar() ==
Op.getLLTTy(*getMRI()).isScalar());
unsigned Opcode = TargetOpcode::COPY;
if (Res.getLLTTy(*getMRI()).getSizeInBits() >
Op.getLLTTy(*getMRI()).getSizeInBits())
Opcode = ExtOpc;
else if (Res.getLLTTy(*getMRI()).getSizeInBits() <
Op.getLLTTy(*getMRI()).getSizeInBits())
Opcode = TargetOpcode::G_TRUNC;
else
assert(Res.getLLTTy(*getMRI()) == Op.getLLTTy(*getMRI()));
return buildInstr(Opcode, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildSExtOrTrunc(const DstOp &Res,
const SrcOp &Op) {
return buildExtOrTrunc(TargetOpcode::G_SEXT, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildZExtOrTrunc(const DstOp &Res,
const SrcOp &Op) {
return buildExtOrTrunc(TargetOpcode::G_ZEXT, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildAnyExtOrTrunc(const DstOp &Res,
const SrcOp &Op) {
return buildExtOrTrunc(TargetOpcode::G_ANYEXT, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildCast(const DstOp &Dst,
const SrcOp &Src) {
LLT SrcTy = Src.getLLTTy(*getMRI());
LLT DstTy = Dst.getLLTTy(*getMRI());
if (SrcTy == DstTy)
return buildCopy(Dst, Src);
unsigned Opcode;
if (SrcTy.isPointer() && DstTy.isScalar())
Opcode = TargetOpcode::G_PTRTOINT;
else if (DstTy.isPointer() && SrcTy.isScalar())
Opcode = TargetOpcode::G_INTTOPTR;
else {
assert(!SrcTy.isPointer() && !DstTy.isPointer() && "n G_ADDRCAST yet");
Opcode = TargetOpcode::G_BITCAST;
}
return buildInstr(Opcode, Dst, Src);
}
MachineInstrBuilder MachineIRBuilder::buildExtract(const DstOp &Dst,
const SrcOp &Src,
uint64_t Index) {
LLT SrcTy = Src.getLLTTy(*getMRI());
LLT DstTy = Dst.getLLTTy(*getMRI());
#ifndef NDEBUG
assert(SrcTy.isValid() && "invalid operand type");
assert(DstTy.isValid() && "invalid operand type");
assert(Index + DstTy.getSizeInBits() <= SrcTy.getSizeInBits() &&
"extracting off end of register");
#endif
if (DstTy.getSizeInBits() == SrcTy.getSizeInBits()) {
assert(Index == 0 && "insertion past the end of a register");
return buildCast(Dst, Src);
}
auto Extract = buildInstr(TargetOpcode::G_EXTRACT);
Dst.addDefToMIB(*getMRI(), Extract);
Src.addSrcToMIB(Extract);
Extract.addImm(Index);
return Extract;
}
void MachineIRBuilder::buildSequence(Register Res, ArrayRef<Register> Ops,
ArrayRef<uint64_t> Indices) {
#ifndef NDEBUG
assert(Ops.size() == Indices.size() && "incompatible args");
assert(!Ops.empty() && "invalid trivial sequence");
assert(llvm::is_sorted(Indices) &&
"sequence offsets must be in ascending order");
assert(getMRI()->getType(Res).isValid() && "invalid operand type");
for (auto Op : Ops)
assert(getMRI()->getType(Op).isValid() && "invalid operand type");
#endif
LLT ResTy = getMRI()->getType(Res);
LLT OpTy = getMRI()->getType(Ops[0]);
unsigned OpSize = OpTy.getSizeInBits();
bool MaybeMerge = true;
for (unsigned i = 0; i < Ops.size(); ++i) {
if (getMRI()->getType(Ops[i]) != OpTy || Indices[i] != i * OpSize) {
MaybeMerge = false;
break;
}
}
if (MaybeMerge && Ops.size() * OpSize == ResTy.getSizeInBits()) {
buildMerge(Res, Ops);
return;
}
Register ResIn = getMRI()->createGenericVirtualRegister(ResTy);
buildUndef(ResIn);
for (unsigned i = 0; i < Ops.size(); ++i) {
Register ResOut = i + 1 == Ops.size()
? Res
: getMRI()->createGenericVirtualRegister(ResTy);
buildInsert(ResOut, ResIn, Ops[i], Indices[i]);
ResIn = ResOut;
}
}
MachineInstrBuilder MachineIRBuilder::buildUndef(const DstOp &Res) {
return buildInstr(TargetOpcode::G_IMPLICIT_DEF, {Res}, {});
}
MachineInstrBuilder MachineIRBuilder::buildMerge(const DstOp &Res,
ArrayRef<Register> Ops) {
// Unfortunately to convert from ArrayRef<LLT> to ArrayRef<SrcOp>,
// we need some temporary storage for the DstOp objects. Here we use a
// sufficiently large SmallVector to not go through the heap.
SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
assert(TmpVec.size() > 1);
return buildInstr(TargetOpcode::G_MERGE_VALUES, Res, TmpVec);
}
MachineInstrBuilder
MachineIRBuilder::buildMerge(const DstOp &Res,
std::initializer_list<SrcOp> Ops) {
assert(Ops.size() > 1);
return buildInstr(TargetOpcode::G_MERGE_VALUES, Res, Ops);
}
MachineInstrBuilder MachineIRBuilder::buildUnmerge(ArrayRef<LLT> Res,
const SrcOp &Op) {
// Unfortunately to convert from ArrayRef<LLT> to ArrayRef<DstOp>,
// we need some temporary storage for the DstOp objects. Here we use a
// sufficiently large SmallVector to not go through the heap.
SmallVector<DstOp, 8> TmpVec(Res.begin(), Res.end());
assert(TmpVec.size() > 1);
return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
}
MachineInstrBuilder MachineIRBuilder::buildUnmerge(LLT Res,
const SrcOp &Op) {
unsigned NumReg = Op.getLLTTy(*getMRI()).getSizeInBits() / Res.getSizeInBits();
SmallVector<Register, 8> TmpVec;
for (unsigned I = 0; I != NumReg; ++I)
TmpVec.push_back(getMRI()->createGenericVirtualRegister(Res));
return buildUnmerge(TmpVec, Op);
}
MachineInstrBuilder MachineIRBuilder::buildUnmerge(ArrayRef<Register> Res,
const SrcOp &Op) {
// Unfortunately to convert from ArrayRef<Register> to ArrayRef<DstOp>,
// we need some temporary storage for the DstOp objects. Here we use a
// sufficiently large SmallVector to not go through the heap.
SmallVector<DstOp, 8> TmpVec(Res.begin(), Res.end());
assert(TmpVec.size() > 1);
return buildInstr(TargetOpcode::G_UNMERGE_VALUES, TmpVec, Op);
}
MachineInstrBuilder MachineIRBuilder::buildBuildVector(const DstOp &Res,
ArrayRef<Register> Ops) {
// Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
// we need some temporary storage for the DstOp objects. Here we use a
// sufficiently large SmallVector to not go through the heap.
SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
}
MachineInstrBuilder MachineIRBuilder::buildSplatVector(const DstOp &Res,
const SrcOp &Src) {
SmallVector<SrcOp, 8> TmpVec(Res.getLLTTy(*getMRI()).getNumElements(), Src);
return buildInstr(TargetOpcode::G_BUILD_VECTOR, Res, TmpVec);
}
MachineInstrBuilder
MachineIRBuilder::buildBuildVectorTrunc(const DstOp &Res,
ArrayRef<Register> Ops) {
// Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
// we need some temporary storage for the DstOp objects. Here we use a
// sufficiently large SmallVector to not go through the heap.
SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
return buildInstr(TargetOpcode::G_BUILD_VECTOR_TRUNC, Res, TmpVec);
}
MachineInstrBuilder MachineIRBuilder::buildShuffleSplat(const DstOp &Res,
const SrcOp &Src) {
LLT DstTy = Res.getLLTTy(*getMRI());
assert(Src.getLLTTy(*getMRI()) == DstTy.getElementType() &&
"Expected Src to match Dst elt ty");
auto UndefVec = buildUndef(DstTy);
auto Zero = buildConstant(LLT::scalar(64), 0);
auto InsElt = buildInsertVectorElement(DstTy, UndefVec, Src, Zero);
SmallVector<int, 16> ZeroMask(DstTy.getNumElements());
return buildShuffleVector(DstTy, InsElt, UndefVec, ZeroMask);
}
MachineInstrBuilder MachineIRBuilder::buildShuffleVector(const DstOp &Res,
const SrcOp &Src1,
const SrcOp &Src2,
ArrayRef<int> Mask) {
LLT DstTy = Res.getLLTTy(*getMRI());
LLT Src1Ty = Src1.getLLTTy(*getMRI());
LLT Src2Ty = Src2.getLLTTy(*getMRI());
assert(Src1Ty.getNumElements() + Src2Ty.getNumElements() >= Mask.size());
assert(DstTy.getElementType() == Src1Ty.getElementType() &&
DstTy.getElementType() == Src2Ty.getElementType());
(void)Src1Ty;
(void)Src2Ty;
ArrayRef<int> MaskAlloc = getMF().allocateShuffleMask(Mask);
return buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {DstTy}, {Src1, Src2})
.addShuffleMask(MaskAlloc);
}
MachineInstrBuilder
MachineIRBuilder::buildConcatVectors(const DstOp &Res, ArrayRef<Register> Ops) {
// Unfortunately to convert from ArrayRef<Register> to ArrayRef<SrcOp>,
// we need some temporary storage for the DstOp objects. Here we use a
// sufficiently large SmallVector to not go through the heap.
SmallVector<SrcOp, 8> TmpVec(Ops.begin(), Ops.end());
return buildInstr(TargetOpcode::G_CONCAT_VECTORS, Res, TmpVec);
}
MachineInstrBuilder MachineIRBuilder::buildInsert(const DstOp &Res,
const SrcOp &Src,
const SrcOp &Op,
unsigned Index) {
assert(Index + Op.getLLTTy(*getMRI()).getSizeInBits() <=
Res.getLLTTy(*getMRI()).getSizeInBits() &&
"insertion past the end of a register");
if (Res.getLLTTy(*getMRI()).getSizeInBits() ==
Op.getLLTTy(*getMRI()).getSizeInBits()) {
return buildCast(Res, Op);
}
return buildInstr(TargetOpcode::G_INSERT, Res, {Src, Op, uint64_t(Index)});
}
MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID,
ArrayRef<Register> ResultRegs,
bool HasSideEffects) {
auto MIB =
buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
: TargetOpcode::G_INTRINSIC);
for (unsigned ResultReg : ResultRegs)
MIB.addDef(ResultReg);
MIB.addIntrinsicID(ID);
return MIB;
}
MachineInstrBuilder MachineIRBuilder::buildIntrinsic(Intrinsic::ID ID,
ArrayRef<DstOp> Results,
bool HasSideEffects) {
auto MIB =
buildInstr(HasSideEffects ? TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS
: TargetOpcode::G_INTRINSIC);
for (DstOp Result : Results)
Result.addDefToMIB(*getMRI(), MIB);
MIB.addIntrinsicID(ID);
return MIB;
}
MachineInstrBuilder MachineIRBuilder::buildTrunc(const DstOp &Res,
const SrcOp &Op) {
return buildInstr(TargetOpcode::G_TRUNC, Res, Op);
}
MachineInstrBuilder MachineIRBuilder::buildFPTrunc(const DstOp &Res,
const SrcOp &Op,
Optional<unsigned> Flags) {
return buildInstr(TargetOpcode::G_FPTRUNC, Res, Op, Flags);
}
MachineInstrBuilder MachineIRBuilder::buildICmp(CmpInst::Predicate Pred,
const DstOp &Res,
const SrcOp &Op0,
const SrcOp &Op1) {
return buildInstr(TargetOpcode::G_ICMP, Res, {Pred, Op0, Op1});
}
MachineInstrBuilder MachineIRBuilder::buildFCmp(CmpInst::Predicate Pred,
const DstOp &Res,
const SrcOp &Op0,
const SrcOp &Op1,
Optional<unsigned> Flags) {
return buildInstr(TargetOpcode::G_FCMP, Res, {Pred, Op0, Op1}, Flags);
}
MachineInstrBuilder MachineIRBuilder::buildSelect(const DstOp &Res,
const SrcOp &Tst,
const SrcOp &Op0,
const SrcOp &Op1,
Optional<unsigned> Flags) {
return buildInstr(TargetOpcode::G_SELECT, {Res}, {Tst, Op0, Op1}, Flags);
}
MachineInstrBuilder
MachineIRBuilder::buildInsertVectorElement(const DstOp &Res, const SrcOp &Val,
const SrcOp &Elt, const SrcOp &Idx) {
return buildInstr(TargetOpcode::G_INSERT_VECTOR_ELT, Res, {Val, Elt, Idx});
}
MachineInstrBuilder
MachineIRBuilder::buildExtractVectorElement(const DstOp &Res, const SrcOp &Val,
const SrcOp &Idx) {
return buildInstr(TargetOpcode::G_EXTRACT_VECTOR_ELT, Res, {Val, Idx});
}
MachineInstrBuilder MachineIRBuilder::buildAtomicCmpXchgWithSuccess(
Register OldValRes, Register SuccessRes, Register Addr, Register CmpVal,
Register NewVal, MachineMemOperand &MMO) {
#ifndef NDEBUG
LLT OldValResTy = getMRI()->getType(OldValRes);
LLT SuccessResTy = getMRI()->getType(SuccessRes);
LLT AddrTy = getMRI()->getType(Addr);
LLT CmpValTy = getMRI()->getType(CmpVal);
LLT NewValTy = getMRI()->getType(NewVal);
assert(OldValResTy.isScalar() && "invalid operand type");
assert(SuccessResTy.isScalar() && "invalid operand type");
assert(AddrTy.isPointer() && "invalid operand type");
assert(CmpValTy.isValid() && "invalid operand type");
assert(NewValTy.isValid() && "invalid operand type");
assert(OldValResTy == CmpValTy && "type mismatch");
assert(OldValResTy == NewValTy && "type mismatch");
#endif
return buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS)
.addDef(OldValRes)
.addDef(SuccessRes)
.addUse(Addr)
.addUse(CmpVal)
.addUse(NewVal)
.addMemOperand(&MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicCmpXchg(Register OldValRes, Register Addr,
Register CmpVal, Register NewVal,
MachineMemOperand &MMO) {
#ifndef NDEBUG
LLT OldValResTy = getMRI()->getType(OldValRes);
LLT AddrTy = getMRI()->getType(Addr);
LLT CmpValTy = getMRI()->getType(CmpVal);
LLT NewValTy = getMRI()->getType(NewVal);
assert(OldValResTy.isScalar() && "invalid operand type");
assert(AddrTy.isPointer() && "invalid operand type");
assert(CmpValTy.isValid() && "invalid operand type");
assert(NewValTy.isValid() && "invalid operand type");
assert(OldValResTy == CmpValTy && "type mismatch");
assert(OldValResTy == NewValTy && "type mismatch");
#endif
return buildInstr(TargetOpcode::G_ATOMIC_CMPXCHG)
.addDef(OldValRes)
.addUse(Addr)
.addUse(CmpVal)
.addUse(NewVal)
.addMemOperand(&MMO);
}
MachineInstrBuilder MachineIRBuilder::buildAtomicRMW(
unsigned Opcode, const DstOp &OldValRes,
const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO) {
#ifndef NDEBUG
LLT OldValResTy = OldValRes.getLLTTy(*getMRI());
LLT AddrTy = Addr.getLLTTy(*getMRI());
LLT ValTy = Val.getLLTTy(*getMRI());
assert(OldValResTy.isScalar() && "invalid operand type");
assert(AddrTy.isPointer() && "invalid operand type");
assert(ValTy.isValid() && "invalid operand type");
assert(OldValResTy == ValTy && "type mismatch");
assert(MMO.isAtomic() && "not atomic mem operand");
#endif
auto MIB = buildInstr(Opcode);
OldValRes.addDefToMIB(*getMRI(), MIB);
Addr.addSrcToMIB(MIB);
Val.addSrcToMIB(MIB);
MIB.addMemOperand(&MMO);
return MIB;
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWXchg(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XCHG, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWAdd(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_ADD, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWSub(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_SUB, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWAnd(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_AND, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWNand(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_NAND, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder MachineIRBuilder::buildAtomicRMWOr(Register OldValRes,
Register Addr,
Register Val,
MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_OR, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWXor(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_XOR, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWMax(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MAX, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWMin(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_MIN, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWUmax(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMAX, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWUmin(Register OldValRes, Register Addr,
Register Val, MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_UMIN, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWFAdd(
const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FADD, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildAtomicRMWFSub(const DstOp &OldValRes, const SrcOp &Addr, const SrcOp &Val,
MachineMemOperand &MMO) {
return buildAtomicRMW(TargetOpcode::G_ATOMICRMW_FSUB, OldValRes, Addr, Val,
MMO);
}
MachineInstrBuilder
MachineIRBuilder::buildFence(unsigned Ordering, unsigned Scope) {
return buildInstr(TargetOpcode::G_FENCE)
.addImm(Ordering)
.addImm(Scope);
}
MachineInstrBuilder
MachineIRBuilder::buildBlockAddress(Register Res, const BlockAddress *BA) {
#ifndef NDEBUG
assert(getMRI()->getType(Res).isPointer() && "invalid res type");
#endif
return buildInstr(TargetOpcode::G_BLOCK_ADDR).addDef(Res).addBlockAddress(BA);
}
void MachineIRBuilder::validateTruncExt(const LLT DstTy, const LLT SrcTy,
bool IsExtend) {
#ifndef NDEBUG
if (DstTy.isVector()) {
assert(SrcTy.isVector() && "mismatched cast between vector and non-vector");
assert(SrcTy.getNumElements() == DstTy.getNumElements() &&
"different number of elements in a trunc/ext");
} else
assert(DstTy.isScalar() && SrcTy.isScalar() && "invalid extend/trunc");
if (IsExtend)
assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() &&
"invalid narrowing extend");
else
assert(DstTy.getSizeInBits() < SrcTy.getSizeInBits() &&
"invalid widening trunc");
#endif
}
void MachineIRBuilder::validateSelectOp(const LLT ResTy, const LLT TstTy,
const LLT Op0Ty, const LLT Op1Ty) {
#ifndef NDEBUG
assert((ResTy.isScalar() || ResTy.isVector() || ResTy.isPointer()) &&
"invalid operand type");
assert((ResTy == Op0Ty && ResTy == Op1Ty) && "type mismatch");
if (ResTy.isScalar() || ResTy.isPointer())
assert(TstTy.isScalar() && "type mismatch");
else
assert((TstTy.isScalar() ||
(TstTy.isVector() &&
TstTy.getNumElements() == Op0Ty.getNumElements())) &&
"type mismatch");
#endif
}
MachineInstrBuilder MachineIRBuilder::buildInstr(unsigned Opc,
ArrayRef<DstOp> DstOps,
ArrayRef<SrcOp> SrcOps,
Optional<unsigned> Flags) {
switch (Opc) {
default:
break;
case TargetOpcode::G_SELECT: {
assert(DstOps.size() == 1 && "Invalid select");
assert(SrcOps.size() == 3 && "Invalid select");
validateSelectOp(
DstOps[0].getLLTTy(*getMRI()), SrcOps[0].getLLTTy(*getMRI()),
SrcOps[1].getLLTTy(*getMRI()), SrcOps[2].getLLTTy(*getMRI()));
break;
}
case TargetOpcode::G_FNEG:
case TargetOpcode::G_ABS:
// All these are unary ops.
assert(DstOps.size() == 1 && "Invalid Dst");
assert(SrcOps.size() == 1 && "Invalid Srcs");
validateUnaryOp(DstOps[0].getLLTTy(*getMRI()),
SrcOps[0].getLLTTy(*getMRI()));
break;
case TargetOpcode::G_ADD:
case TargetOpcode::G_AND:
case TargetOpcode::G_MUL:
case TargetOpcode::G_OR:
case TargetOpcode::G_SUB:
case TargetOpcode::G_XOR:
case TargetOpcode::G_UDIV:
case TargetOpcode::G_SDIV:
case TargetOpcode::G_UREM:
case TargetOpcode::G_SREM:
case TargetOpcode::G_SMIN:
case TargetOpcode::G_SMAX:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_UMAX:
case TargetOpcode::G_UADDSAT:
case TargetOpcode::G_SADDSAT:
case TargetOpcode::G_USUBSAT:
case TargetOpcode::G_SSUBSAT: {
// All these are binary ops.
assert(DstOps.size() == 1 && "Invalid Dst");
assert(SrcOps.size() == 2 && "Invalid Srcs");
validateBinaryOp(DstOps[0].getLLTTy(*getMRI()),
SrcOps[0].getLLTTy(*getMRI()),
SrcOps[1].getLLTTy(*getMRI()));
break;
}
case TargetOpcode::G_SHL:
case TargetOpcode::G_ASHR:
case TargetOpcode::G_LSHR:
case TargetOpcode::G_USHLSAT:
case TargetOpcode::G_SSHLSAT: {
assert(DstOps.size() == 1 && "Invalid Dst");
assert(SrcOps.size() == 2 && "Invalid Srcs");
validateShiftOp(DstOps[0].getLLTTy(*getMRI()),
SrcOps[0].getLLTTy(*getMRI()),
SrcOps[1].getLLTTy(*getMRI()));
break;
}
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
assert(DstOps.size() == 1 && "Invalid Dst");
assert(SrcOps.size() == 1 && "Invalid Srcs");
validateTruncExt(DstOps[0].getLLTTy(*getMRI()),
SrcOps[0].getLLTTy(*getMRI()), true);
break;
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_FPTRUNC: {
assert(DstOps.size() == 1 && "Invalid Dst");
assert(SrcOps.size() == 1 && "Invalid Srcs");
validateTruncExt(DstOps[0].getLLTTy(*getMRI()),
SrcOps[0].getLLTTy(*getMRI()), false);
break;
}
case TargetOpcode::G_BITCAST: {
assert(DstOps.size() == 1 && "Invalid Dst");
assert(SrcOps.size() == 1 && "Invalid Srcs");
assert(DstOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() && "invalid bitcast");
break;
}
case TargetOpcode::COPY:
assert(DstOps.size() == 1 && "Invalid Dst");
// If the caller wants to add a subreg source it has to be done separately
// so we may not have any SrcOps at this point yet.
break;
case TargetOpcode::G_FCMP:
case TargetOpcode::G_ICMP: {
assert(DstOps.size() == 1 && "Invalid Dst Operands");
assert(SrcOps.size() == 3 && "Invalid Src Operands");
// For F/ICMP, the first src operand is the predicate, followed by
// the two comparands.
assert(SrcOps[0].getSrcOpKind() == SrcOp::SrcType::Ty_Predicate &&
"Expecting predicate");
assert([&]() -> bool {
CmpInst::Predicate Pred = SrcOps[0].getPredicate();
return Opc == TargetOpcode::G_ICMP ? CmpInst::isIntPredicate(Pred)
: CmpInst::isFPPredicate(Pred);
}() && "Invalid predicate");
assert(SrcOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) &&
"Type mismatch");
assert([&]() -> bool {
LLT Op0Ty = SrcOps[1].getLLTTy(*getMRI());
LLT DstTy = DstOps[0].getLLTTy(*getMRI());
if (Op0Ty.isScalar() || Op0Ty.isPointer())
return DstTy.isScalar();
else
return DstTy.isVector() &&
DstTy.getNumElements() == Op0Ty.getNumElements();
}() && "Type Mismatch");
break;
}
case TargetOpcode::G_UNMERGE_VALUES: {
assert(!DstOps.empty() && "Invalid trivial sequence");
assert(SrcOps.size() == 1 && "Invalid src for Unmerge");
assert(llvm::all_of(DstOps,
[&, this](const DstOp &Op) {
return Op.getLLTTy(*getMRI()) ==
DstOps[0].getLLTTy(*getMRI());
}) &&
"type mismatch in output list");
assert(DstOps.size() * DstOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
"input operands do not cover output register");
break;
}
case TargetOpcode::G_MERGE_VALUES: {
assert(!SrcOps.empty() && "invalid trivial sequence");
assert(DstOps.size() == 1 && "Invalid Dst");
assert(llvm::all_of(SrcOps,
[&, this](const SrcOp &Op) {
return Op.getLLTTy(*getMRI()) ==
SrcOps[0].getLLTTy(*getMRI());
}) &&
"type mismatch in input list");
assert(SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
"input operands do not cover output register");
if (SrcOps.size() == 1)
return buildCast(DstOps[0], SrcOps[0]);
if (DstOps[0].getLLTTy(*getMRI()).isVector()) {
if (SrcOps[0].getLLTTy(*getMRI()).isVector())
return buildInstr(TargetOpcode::G_CONCAT_VECTORS, DstOps, SrcOps);
return buildInstr(TargetOpcode::G_BUILD_VECTOR, DstOps, SrcOps);
}
break;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
assert(DstOps.size() == 1 && "Invalid Dst size");
assert(SrcOps.size() == 2 && "Invalid Src size");
assert(SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type");
assert((DstOps[0].getLLTTy(*getMRI()).isScalar() ||
DstOps[0].getLLTTy(*getMRI()).isPointer()) &&
"Invalid operand type");
assert(SrcOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand type");
assert(SrcOps[0].getLLTTy(*getMRI()).getElementType() ==
DstOps[0].getLLTTy(*getMRI()) &&
"Type mismatch");
break;
}
case TargetOpcode::G_INSERT_VECTOR_ELT: {
assert(DstOps.size() == 1 && "Invalid dst size");
assert(SrcOps.size() == 3 && "Invalid src size");
assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
SrcOps[0].getLLTTy(*getMRI()).isVector() && "Invalid operand type");
assert(DstOps[0].getLLTTy(*getMRI()).getElementType() ==
SrcOps[1].getLLTTy(*getMRI()) &&
"Type mismatch");
assert(SrcOps[2].getLLTTy(*getMRI()).isScalar() && "Invalid index");
assert(DstOps[0].getLLTTy(*getMRI()).getNumElements() ==
SrcOps[0].getLLTTy(*getMRI()).getNumElements() &&
"Type mismatch");
break;
}
case TargetOpcode::G_BUILD_VECTOR: {
assert((!SrcOps.empty() || SrcOps.size() < 2) &&
"Must have at least 2 operands");
assert(DstOps.size() == 1 && "Invalid DstOps");
assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
"Res type must be a vector");
assert(llvm::all_of(SrcOps,
[&, this](const SrcOp &Op) {
return Op.getLLTTy(*getMRI()) ==
SrcOps[0].getLLTTy(*getMRI());
}) &&
"type mismatch in input list");
assert(SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
"input scalars do not exactly cover the output vector register");
break;
}
case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
assert((!SrcOps.empty() || SrcOps.size() < 2) &&
"Must have at least 2 operands");
assert(DstOps.size() == 1 && "Invalid DstOps");
assert(DstOps[0].getLLTTy(*getMRI()).isVector() &&
"Res type must be a vector");
assert(llvm::all_of(SrcOps,
[&, this](const SrcOp &Op) {
return Op.getLLTTy(*getMRI()) ==
SrcOps[0].getLLTTy(*getMRI());
}) &&
"type mismatch in input list");
if (SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
DstOps[0].getLLTTy(*getMRI()).getElementType().getSizeInBits())
return buildInstr(TargetOpcode::G_BUILD_VECTOR, DstOps, SrcOps);
break;
}
case TargetOpcode::G_CONCAT_VECTORS: {
assert(DstOps.size() == 1 && "Invalid DstOps");
assert((!SrcOps.empty() || SrcOps.size() < 2) &&
"Must have at least 2 operands");
assert(llvm::all_of(SrcOps,
[&, this](const SrcOp &Op) {
return (Op.getLLTTy(*getMRI()).isVector() &&
Op.getLLTTy(*getMRI()) ==
SrcOps[0].getLLTTy(*getMRI()));
}) &&
"type mismatch in input list");
assert(SrcOps.size() * SrcOps[0].getLLTTy(*getMRI()).getSizeInBits() ==
DstOps[0].getLLTTy(*getMRI()).getSizeInBits() &&
"input vectors do not exactly cover the output vector register");
break;
}
case TargetOpcode::G_UADDE: {
assert(DstOps.size() == 2 && "Invalid no of dst operands");
assert(SrcOps.size() == 3 && "Invalid no of src operands");
assert(DstOps[0].getLLTTy(*getMRI()).isScalar() && "Invalid operand");
assert((DstOps[0].getLLTTy(*getMRI()) == SrcOps[0].getLLTTy(*getMRI())) &&
(DstOps[0].getLLTTy(*getMRI()) == SrcOps[1].getLLTTy(*getMRI())) &&
"Invalid operand");
assert(DstOps[1].getLLTTy(*getMRI()).isScalar() && "Invalid operand");
assert(DstOps[1].getLLTTy(*getMRI()) == SrcOps[2].getLLTTy(*getMRI()) &&
"type mismatch");
break;
}
}
auto MIB = buildInstr(Opc);
for (const DstOp &Op : DstOps)
Op.addDefToMIB(*getMRI(), MIB);
for (const SrcOp &Op : SrcOps)
Op.addSrcToMIB(MIB);
if (Flags)
MIB->setFlags(*Flags);
return MIB;
}