llvm-for-llvmta/lib/IR/LLVMContextImpl.h

1522 lines
55 KiB
C
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- LLVMContextImpl.h - The LLVMContextImpl opaque class -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#define LLVM_LIB_IR_LLVMCONTEXTIMPL_H
#include "AttributeImpl.h"
#include "ConstantsContext.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/TrackingMDRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/YAMLTraits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class StringRef;
class Type;
class Value;
class ValueHandleBase;
using DenseMapAPIntKeyInfo = DenseMapInfo<APInt>;
struct DenseMapAPFloatKeyInfo {
static inline APFloat getEmptyKey() { return APFloat(APFloat::Bogus(), 1); }
static inline APFloat getTombstoneKey() { return APFloat(APFloat::Bogus(), 2); }
static unsigned getHashValue(const APFloat &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const APFloat &LHS, const APFloat &RHS) {
return LHS.bitwiseIsEqual(RHS);
}
};
struct AnonStructTypeKeyInfo {
struct KeyTy {
ArrayRef<Type*> ETypes;
bool isPacked;
KeyTy(const ArrayRef<Type*>& E, bool P) :
ETypes(E), isPacked(P) {}
KeyTy(const StructType *ST)
: ETypes(ST->elements()), isPacked(ST->isPacked()) {}
bool operator==(const KeyTy& that) const {
if (isPacked != that.isPacked)
return false;
if (ETypes != that.ETypes)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline StructType* getEmptyKey() {
return DenseMapInfo<StructType*>::getEmptyKey();
}
static inline StructType* getTombstoneKey() {
return DenseMapInfo<StructType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(),
Key.ETypes.end()),
Key.isPacked);
}
static unsigned getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
static bool isEqual(const KeyTy& LHS, const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const StructType *LHS, const StructType *RHS) {
return LHS == RHS;
}
};
struct FunctionTypeKeyInfo {
struct KeyTy {
const Type *ReturnType;
ArrayRef<Type*> Params;
bool isVarArg;
KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) :
ReturnType(R), Params(P), isVarArg(V) {}
KeyTy(const FunctionType *FT)
: ReturnType(FT->getReturnType()), Params(FT->params()),
isVarArg(FT->isVarArg()) {}
bool operator==(const KeyTy& that) const {
if (ReturnType != that.ReturnType)
return false;
if (isVarArg != that.isVarArg)
return false;
if (Params != that.Params)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline FunctionType* getEmptyKey() {
return DenseMapInfo<FunctionType*>::getEmptyKey();
}
static inline FunctionType* getTombstoneKey() {
return DenseMapInfo<FunctionType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
return hash_combine(Key.ReturnType,
hash_combine_range(Key.Params.begin(),
Key.Params.end()),
Key.isVarArg);
}
static unsigned getHashValue(const FunctionType *FT) {
return getHashValue(KeyTy(FT));
}
static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
return LHS == RHS;
}
};
/// Structure for hashing arbitrary MDNode operands.
class MDNodeOpsKey {
ArrayRef<Metadata *> RawOps;
ArrayRef<MDOperand> Ops;
unsigned Hash;
protected:
MDNodeOpsKey(ArrayRef<Metadata *> Ops)
: RawOps(Ops), Hash(calculateHash(Ops)) {}
template <class NodeTy>
MDNodeOpsKey(const NodeTy *N, unsigned Offset = 0)
: Ops(N->op_begin() + Offset, N->op_end()), Hash(N->getHash()) {}
template <class NodeTy>
bool compareOps(const NodeTy *RHS, unsigned Offset = 0) const {
if (getHash() != RHS->getHash())
return false;
assert((RawOps.empty() || Ops.empty()) && "Two sets of operands?");
return RawOps.empty() ? compareOps(Ops, RHS, Offset)
: compareOps(RawOps, RHS, Offset);
}
static unsigned calculateHash(MDNode *N, unsigned Offset = 0);
private:
template <class T>
static bool compareOps(ArrayRef<T> Ops, const MDNode *RHS, unsigned Offset) {
if (Ops.size() != RHS->getNumOperands() - Offset)
return false;
return std::equal(Ops.begin(), Ops.end(), RHS->op_begin() + Offset);
}
static unsigned calculateHash(ArrayRef<Metadata *> Ops);
public:
unsigned getHash() const { return Hash; }
};
template <class NodeTy> struct MDNodeKeyImpl;
/// Configuration point for MDNodeInfo::isEqual().
template <class NodeTy> struct MDNodeSubsetEqualImpl {
using KeyTy = MDNodeKeyImpl<NodeTy>;
static bool isSubsetEqual(const KeyTy &LHS, const NodeTy *RHS) {
return false;
}
static bool isSubsetEqual(const NodeTy *LHS, const NodeTy *RHS) {
return false;
}
};
/// DenseMapInfo for MDTuple.
///
/// Note that we don't need the is-function-local bit, since that's implicit in
/// the operands.
template <> struct MDNodeKeyImpl<MDTuple> : MDNodeOpsKey {
MDNodeKeyImpl(ArrayRef<Metadata *> Ops) : MDNodeOpsKey(Ops) {}
MDNodeKeyImpl(const MDTuple *N) : MDNodeOpsKey(N) {}
bool isKeyOf(const MDTuple *RHS) const { return compareOps(RHS); }
unsigned getHashValue() const { return getHash(); }
static unsigned calculateHash(MDTuple *N) {
return MDNodeOpsKey::calculateHash(N);
}
};
/// DenseMapInfo for DILocation.
template <> struct MDNodeKeyImpl<DILocation> {
unsigned Line;
unsigned Column;
Metadata *Scope;
Metadata *InlinedAt;
bool ImplicitCode;
MDNodeKeyImpl(unsigned Line, unsigned Column, Metadata *Scope,
Metadata *InlinedAt, bool ImplicitCode)
: Line(Line), Column(Column), Scope(Scope), InlinedAt(InlinedAt),
ImplicitCode(ImplicitCode) {}
MDNodeKeyImpl(const DILocation *L)
: Line(L->getLine()), Column(L->getColumn()), Scope(L->getRawScope()),
InlinedAt(L->getRawInlinedAt()), ImplicitCode(L->isImplicitCode()) {}
bool isKeyOf(const DILocation *RHS) const {
return Line == RHS->getLine() && Column == RHS->getColumn() &&
Scope == RHS->getRawScope() && InlinedAt == RHS->getRawInlinedAt() &&
ImplicitCode == RHS->isImplicitCode();
}
unsigned getHashValue() const {
return hash_combine(Line, Column, Scope, InlinedAt, ImplicitCode);
}
};
/// DenseMapInfo for GenericDINode.
template <> struct MDNodeKeyImpl<GenericDINode> : MDNodeOpsKey {
unsigned Tag;
MDString *Header;
MDNodeKeyImpl(unsigned Tag, MDString *Header, ArrayRef<Metadata *> DwarfOps)
: MDNodeOpsKey(DwarfOps), Tag(Tag), Header(Header) {}
MDNodeKeyImpl(const GenericDINode *N)
: MDNodeOpsKey(N, 1), Tag(N->getTag()), Header(N->getRawHeader()) {}
bool isKeyOf(const GenericDINode *RHS) const {
return Tag == RHS->getTag() && Header == RHS->getRawHeader() &&
compareOps(RHS, 1);
}
unsigned getHashValue() const { return hash_combine(getHash(), Tag, Header); }
static unsigned calculateHash(GenericDINode *N) {
return MDNodeOpsKey::calculateHash(N, 1);
}
};
template <> struct MDNodeKeyImpl<DISubrange> {
Metadata *CountNode;
Metadata *LowerBound;
Metadata *UpperBound;
Metadata *Stride;
MDNodeKeyImpl(Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound,
Metadata *Stride)
: CountNode(CountNode), LowerBound(LowerBound), UpperBound(UpperBound),
Stride(Stride) {}
MDNodeKeyImpl(const DISubrange *N)
: CountNode(N->getRawCountNode()), LowerBound(N->getRawLowerBound()),
UpperBound(N->getRawUpperBound()), Stride(N->getRawStride()) {}
bool isKeyOf(const DISubrange *RHS) const {
auto BoundsEqual = [=](Metadata *Node1, Metadata *Node2) -> bool {
if (Node1 == Node2)
return true;
ConstantAsMetadata *MD1 = dyn_cast_or_null<ConstantAsMetadata>(Node1);
ConstantAsMetadata *MD2 = dyn_cast_or_null<ConstantAsMetadata>(Node2);
if (MD1 && MD2) {
ConstantInt *CV1 = cast<ConstantInt>(MD1->getValue());
ConstantInt *CV2 = cast<ConstantInt>(MD2->getValue());
if (CV1->getSExtValue() == CV2->getSExtValue())
return true;
}
return false;
};
return BoundsEqual(CountNode, RHS->getRawCountNode()) &&
BoundsEqual(LowerBound, RHS->getRawLowerBound()) &&
BoundsEqual(UpperBound, RHS->getRawUpperBound()) &&
BoundsEqual(Stride, RHS->getRawStride());
}
unsigned getHashValue() const {
if (CountNode)
if (auto *MD = dyn_cast<ConstantAsMetadata>(CountNode))
return hash_combine(cast<ConstantInt>(MD->getValue())->getSExtValue(),
LowerBound, UpperBound, Stride);
return hash_combine(CountNode, LowerBound, UpperBound, Stride);
}
};
template <> struct MDNodeKeyImpl<DIGenericSubrange> {
Metadata *CountNode;
Metadata *LowerBound;
Metadata *UpperBound;
Metadata *Stride;
MDNodeKeyImpl(Metadata *CountNode, Metadata *LowerBound, Metadata *UpperBound,
Metadata *Stride)
: CountNode(CountNode), LowerBound(LowerBound), UpperBound(UpperBound),
Stride(Stride) {}
MDNodeKeyImpl(const DIGenericSubrange *N)
: CountNode(N->getRawCountNode()), LowerBound(N->getRawLowerBound()),
UpperBound(N->getRawUpperBound()), Stride(N->getRawStride()) {}
bool isKeyOf(const DIGenericSubrange *RHS) const {
return (CountNode == RHS->getRawCountNode()) &&
(LowerBound == RHS->getRawLowerBound()) &&
(UpperBound == RHS->getRawUpperBound()) &&
(Stride == RHS->getRawStride());
}
unsigned getHashValue() const {
auto *MD = dyn_cast_or_null<ConstantAsMetadata>(CountNode);
if (CountNode && MD)
return hash_combine(cast<ConstantInt>(MD->getValue())->getSExtValue(),
LowerBound, UpperBound, Stride);
return hash_combine(CountNode, LowerBound, UpperBound, Stride);
}
};
template <> struct MDNodeKeyImpl<DIEnumerator> {
APInt Value;
MDString *Name;
bool IsUnsigned;
MDNodeKeyImpl(APInt Value, bool IsUnsigned, MDString *Name)
: Value(Value), Name(Name), IsUnsigned(IsUnsigned) {}
MDNodeKeyImpl(int64_t Value, bool IsUnsigned, MDString *Name)
: Value(APInt(64, Value, !IsUnsigned)), Name(Name),
IsUnsigned(IsUnsigned) {}
MDNodeKeyImpl(const DIEnumerator *N)
: Value(N->getValue()), Name(N->getRawName()),
IsUnsigned(N->isUnsigned()) {}
bool isKeyOf(const DIEnumerator *RHS) const {
return APInt::isSameValue(Value, RHS->getValue()) &&
IsUnsigned == RHS->isUnsigned() && Name == RHS->getRawName();
}
unsigned getHashValue() const { return hash_combine(Value, Name); }
};
template <> struct MDNodeKeyImpl<DIBasicType> {
unsigned Tag;
MDString *Name;
uint64_t SizeInBits;
uint32_t AlignInBits;
unsigned Encoding;
unsigned Flags;
MDNodeKeyImpl(unsigned Tag, MDString *Name, uint64_t SizeInBits,
uint32_t AlignInBits, unsigned Encoding, unsigned Flags)
: Tag(Tag), Name(Name), SizeInBits(SizeInBits), AlignInBits(AlignInBits),
Encoding(Encoding), Flags(Flags) {}
MDNodeKeyImpl(const DIBasicType *N)
: Tag(N->getTag()), Name(N->getRawName()), SizeInBits(N->getSizeInBits()),
AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()), Flags(N->getFlags()) {}
bool isKeyOf(const DIBasicType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
Encoding == RHS->getEncoding() &&
Flags == RHS->getFlags();
}
unsigned getHashValue() const {
return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding);
}
};
template <> struct MDNodeKeyImpl<DIStringType> {
unsigned Tag;
MDString *Name;
Metadata *StringLength;
Metadata *StringLengthExp;
uint64_t SizeInBits;
uint32_t AlignInBits;
unsigned Encoding;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *StringLength,
Metadata *StringLengthExp, uint64_t SizeInBits,
uint32_t AlignInBits, unsigned Encoding)
: Tag(Tag), Name(Name), StringLength(StringLength),
StringLengthExp(StringLengthExp), SizeInBits(SizeInBits),
AlignInBits(AlignInBits), Encoding(Encoding) {}
MDNodeKeyImpl(const DIStringType *N)
: Tag(N->getTag()), Name(N->getRawName()),
StringLength(N->getRawStringLength()),
StringLengthExp(N->getRawStringLengthExp()),
SizeInBits(N->getSizeInBits()), AlignInBits(N->getAlignInBits()),
Encoding(N->getEncoding()) {}
bool isKeyOf(const DIStringType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
Encoding == RHS->getEncoding();
}
unsigned getHashValue() const { return hash_combine(Tag, Name, Encoding); }
};
template <> struct MDNodeKeyImpl<DIDerivedType> {
unsigned Tag;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Scope;
Metadata *BaseType;
uint64_t SizeInBits;
uint64_t OffsetInBits;
uint32_t AlignInBits;
Optional<unsigned> DWARFAddressSpace;
unsigned Flags;
Metadata *ExtraData;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line,
Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits,
Optional<unsigned> DWARFAddressSpace, unsigned Flags,
Metadata *ExtraData)
: Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope),
BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits),
AlignInBits(AlignInBits), DWARFAddressSpace(DWARFAddressSpace),
Flags(Flags), ExtraData(ExtraData) {}
MDNodeKeyImpl(const DIDerivedType *N)
: Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Scope(N->getRawScope()),
BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()),
OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()),
DWARFAddressSpace(N->getDWARFAddressSpace()), Flags(N->getFlags()),
ExtraData(N->getRawExtraData()) {}
bool isKeyOf(const DIDerivedType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
OffsetInBits == RHS->getOffsetInBits() &&
DWARFAddressSpace == RHS->getDWARFAddressSpace() &&
Flags == RHS->getFlags() &&
ExtraData == RHS->getRawExtraData();
}
unsigned getHashValue() const {
// If this is a member inside an ODR type, only hash the type and the name.
// Otherwise the hash will be stronger than
// MDNodeSubsetEqualImpl::isODRMember().
if (Tag == dwarf::DW_TAG_member && Name)
if (auto *CT = dyn_cast_or_null<DICompositeType>(Scope))
if (CT->getRawIdentifier())
return hash_combine(Name, Scope);
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Tag, Name, File, Line, Scope, BaseType, Flags);
}
};
template <> struct MDNodeSubsetEqualImpl<DIDerivedType> {
using KeyTy = MDNodeKeyImpl<DIDerivedType>;
static bool isSubsetEqual(const KeyTy &LHS, const DIDerivedType *RHS) {
return isODRMember(LHS.Tag, LHS.Scope, LHS.Name, RHS);
}
static bool isSubsetEqual(const DIDerivedType *LHS, const DIDerivedType *RHS) {
return isODRMember(LHS->getTag(), LHS->getRawScope(), LHS->getRawName(),
RHS);
}
/// Subprograms compare equal if they declare the same function in an ODR
/// type.
static bool isODRMember(unsigned Tag, const Metadata *Scope,
const MDString *Name, const DIDerivedType *RHS) {
// Check whether the LHS is eligible.
if (Tag != dwarf::DW_TAG_member || !Name)
return false;
auto *CT = dyn_cast_or_null<DICompositeType>(Scope);
if (!CT || !CT->getRawIdentifier())
return false;
// Compare to the RHS.
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
Scope == RHS->getRawScope();
}
};
template <> struct MDNodeKeyImpl<DICompositeType> {
unsigned Tag;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Scope;
Metadata *BaseType;
uint64_t SizeInBits;
uint64_t OffsetInBits;
uint32_t AlignInBits;
unsigned Flags;
Metadata *Elements;
unsigned RuntimeLang;
Metadata *VTableHolder;
Metadata *TemplateParams;
MDString *Identifier;
Metadata *Discriminator;
Metadata *DataLocation;
Metadata *Associated;
Metadata *Allocated;
Metadata *Rank;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *File, unsigned Line,
Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits, unsigned Flags,
Metadata *Elements, unsigned RuntimeLang,
Metadata *VTableHolder, Metadata *TemplateParams,
MDString *Identifier, Metadata *Discriminator,
Metadata *DataLocation, Metadata *Associated,
Metadata *Allocated, Metadata *Rank)
: Tag(Tag), Name(Name), File(File), Line(Line), Scope(Scope),
BaseType(BaseType), SizeInBits(SizeInBits), OffsetInBits(OffsetInBits),
AlignInBits(AlignInBits), Flags(Flags), Elements(Elements),
RuntimeLang(RuntimeLang), VTableHolder(VTableHolder),
TemplateParams(TemplateParams), Identifier(Identifier),
Discriminator(Discriminator), DataLocation(DataLocation),
Associated(Associated), Allocated(Allocated), Rank(Rank) {}
MDNodeKeyImpl(const DICompositeType *N)
: Tag(N->getTag()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Scope(N->getRawScope()),
BaseType(N->getRawBaseType()), SizeInBits(N->getSizeInBits()),
OffsetInBits(N->getOffsetInBits()), AlignInBits(N->getAlignInBits()),
Flags(N->getFlags()), Elements(N->getRawElements()),
RuntimeLang(N->getRuntimeLang()), VTableHolder(N->getRawVTableHolder()),
TemplateParams(N->getRawTemplateParams()),
Identifier(N->getRawIdentifier()),
Discriminator(N->getRawDiscriminator()),
DataLocation(N->getRawDataLocation()),
Associated(N->getRawAssociated()), Allocated(N->getRawAllocated()),
Rank(N->getRawRank()) {}
bool isKeyOf(const DICompositeType *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Scope == RHS->getRawScope() && BaseType == RHS->getRawBaseType() &&
SizeInBits == RHS->getSizeInBits() &&
AlignInBits == RHS->getAlignInBits() &&
OffsetInBits == RHS->getOffsetInBits() && Flags == RHS->getFlags() &&
Elements == RHS->getRawElements() &&
RuntimeLang == RHS->getRuntimeLang() &&
VTableHolder == RHS->getRawVTableHolder() &&
TemplateParams == RHS->getRawTemplateParams() &&
Identifier == RHS->getRawIdentifier() &&
Discriminator == RHS->getRawDiscriminator() &&
DataLocation == RHS->getRawDataLocation() &&
Associated == RHS->getRawAssociated() &&
Allocated == RHS->getRawAllocated() && Rank == RHS->getRawRank();
}
unsigned getHashValue() const {
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Name, File, Line, BaseType, Scope, Elements,
TemplateParams);
}
};
template <> struct MDNodeKeyImpl<DISubroutineType> {
unsigned Flags;
uint8_t CC;
Metadata *TypeArray;
MDNodeKeyImpl(unsigned Flags, uint8_t CC, Metadata *TypeArray)
: Flags(Flags), CC(CC), TypeArray(TypeArray) {}
MDNodeKeyImpl(const DISubroutineType *N)
: Flags(N->getFlags()), CC(N->getCC()), TypeArray(N->getRawTypeArray()) {}
bool isKeyOf(const DISubroutineType *RHS) const {
return Flags == RHS->getFlags() && CC == RHS->getCC() &&
TypeArray == RHS->getRawTypeArray();
}
unsigned getHashValue() const { return hash_combine(Flags, CC, TypeArray); }
};
template <> struct MDNodeKeyImpl<DIFile> {
MDString *Filename;
MDString *Directory;
Optional<DIFile::ChecksumInfo<MDString *>> Checksum;
Optional<MDString *> Source;
MDNodeKeyImpl(MDString *Filename, MDString *Directory,
Optional<DIFile::ChecksumInfo<MDString *>> Checksum,
Optional<MDString *> Source)
: Filename(Filename), Directory(Directory), Checksum(Checksum),
Source(Source) {}
MDNodeKeyImpl(const DIFile *N)
: Filename(N->getRawFilename()), Directory(N->getRawDirectory()),
Checksum(N->getRawChecksum()), Source(N->getRawSource()) {}
bool isKeyOf(const DIFile *RHS) const {
return Filename == RHS->getRawFilename() &&
Directory == RHS->getRawDirectory() &&
Checksum == RHS->getRawChecksum() &&
Source == RHS->getRawSource();
}
unsigned getHashValue() const {
return hash_combine(
Filename, Directory, Checksum ? Checksum->Kind : 0,
Checksum ? Checksum->Value : nullptr, Source.getValueOr(nullptr));
}
};
template <> struct MDNodeKeyImpl<DISubprogram> {
Metadata *Scope;
MDString *Name;
MDString *LinkageName;
Metadata *File;
unsigned Line;
Metadata *Type;
unsigned ScopeLine;
Metadata *ContainingType;
unsigned VirtualIndex;
int ThisAdjustment;
unsigned Flags;
unsigned SPFlags;
Metadata *Unit;
Metadata *TemplateParams;
Metadata *Declaration;
Metadata *RetainedNodes;
Metadata *ThrownTypes;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName,
Metadata *File, unsigned Line, Metadata *Type,
unsigned ScopeLine, Metadata *ContainingType,
unsigned VirtualIndex, int ThisAdjustment, unsigned Flags,
unsigned SPFlags, Metadata *Unit, Metadata *TemplateParams,
Metadata *Declaration, Metadata *RetainedNodes,
Metadata *ThrownTypes)
: Scope(Scope), Name(Name), LinkageName(LinkageName), File(File),
Line(Line), Type(Type), ScopeLine(ScopeLine),
ContainingType(ContainingType), VirtualIndex(VirtualIndex),
ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags),
Unit(Unit), TemplateParams(TemplateParams), Declaration(Declaration),
RetainedNodes(RetainedNodes), ThrownTypes(ThrownTypes) {}
MDNodeKeyImpl(const DISubprogram *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
LinkageName(N->getRawLinkageName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()), ScopeLine(N->getScopeLine()),
ContainingType(N->getRawContainingType()),
VirtualIndex(N->getVirtualIndex()),
ThisAdjustment(N->getThisAdjustment()), Flags(N->getFlags()),
SPFlags(N->getSPFlags()), Unit(N->getRawUnit()),
TemplateParams(N->getRawTemplateParams()),
Declaration(N->getRawDeclaration()),
RetainedNodes(N->getRawRetainedNodes()),
ThrownTypes(N->getRawThrownTypes()) {}
bool isKeyOf(const DISubprogram *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
LinkageName == RHS->getRawLinkageName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && ScopeLine == RHS->getScopeLine() &&
ContainingType == RHS->getRawContainingType() &&
VirtualIndex == RHS->getVirtualIndex() &&
ThisAdjustment == RHS->getThisAdjustment() &&
Flags == RHS->getFlags() && SPFlags == RHS->getSPFlags() &&
Unit == RHS->getUnit() &&
TemplateParams == RHS->getRawTemplateParams() &&
Declaration == RHS->getRawDeclaration() &&
RetainedNodes == RHS->getRawRetainedNodes() &&
ThrownTypes == RHS->getRawThrownTypes();
}
bool isDefinition() const { return SPFlags & DISubprogram::SPFlagDefinition; }
unsigned getHashValue() const {
// If this is a declaration inside an ODR type, only hash the type and the
// name. Otherwise the hash will be stronger than
// MDNodeSubsetEqualImpl::isDeclarationOfODRMember().
if (!isDefinition() && LinkageName)
if (auto *CT = dyn_cast_or_null<DICompositeType>(Scope))
if (CT->getRawIdentifier())
return hash_combine(LinkageName, Scope);
// Intentionally computes the hash on a subset of the operands for
// performance reason. The subset has to be significant enough to avoid
// collision "most of the time". There is no correctness issue in case of
// collision because of the full check above.
return hash_combine(Name, Scope, File, Type, Line);
}
};
template <> struct MDNodeSubsetEqualImpl<DISubprogram> {
using KeyTy = MDNodeKeyImpl<DISubprogram>;
static bool isSubsetEqual(const KeyTy &LHS, const DISubprogram *RHS) {
return isDeclarationOfODRMember(LHS.isDefinition(), LHS.Scope,
LHS.LinkageName, LHS.TemplateParams, RHS);
}
static bool isSubsetEqual(const DISubprogram *LHS, const DISubprogram *RHS) {
return isDeclarationOfODRMember(LHS->isDefinition(), LHS->getRawScope(),
LHS->getRawLinkageName(),
LHS->getRawTemplateParams(), RHS);
}
/// Subprograms compare equal if they declare the same function in an ODR
/// type.
static bool isDeclarationOfODRMember(bool IsDefinition, const Metadata *Scope,
const MDString *LinkageName,
const Metadata *TemplateParams,
const DISubprogram *RHS) {
// Check whether the LHS is eligible.
if (IsDefinition || !Scope || !LinkageName)
return false;
auto *CT = dyn_cast_or_null<DICompositeType>(Scope);
if (!CT || !CT->getRawIdentifier())
return false;
// Compare to the RHS.
// FIXME: We need to compare template parameters here to avoid incorrect
// collisions in mapMetadata when RF_MoveDistinctMDs and a ODR-DISubprogram
// has a non-ODR template parameter (i.e., a DICompositeType that does not
// have an identifier). Eventually we should decouple ODR logic from
// uniquing logic.
return IsDefinition == RHS->isDefinition() && Scope == RHS->getRawScope() &&
LinkageName == RHS->getRawLinkageName() &&
TemplateParams == RHS->getRawTemplateParams();
}
};
template <> struct MDNodeKeyImpl<DILexicalBlock> {
Metadata *Scope;
Metadata *File;
unsigned Line;
unsigned Column;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Line, unsigned Column)
: Scope(Scope), File(File), Line(Line), Column(Column) {}
MDNodeKeyImpl(const DILexicalBlock *N)
: Scope(N->getRawScope()), File(N->getRawFile()), Line(N->getLine()),
Column(N->getColumn()) {}
bool isKeyOf(const DILexicalBlock *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Line == RHS->getLine() && Column == RHS->getColumn();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Line, Column);
}
};
template <> struct MDNodeKeyImpl<DILexicalBlockFile> {
Metadata *Scope;
Metadata *File;
unsigned Discriminator;
MDNodeKeyImpl(Metadata *Scope, Metadata *File, unsigned Discriminator)
: Scope(Scope), File(File), Discriminator(Discriminator) {}
MDNodeKeyImpl(const DILexicalBlockFile *N)
: Scope(N->getRawScope()), File(N->getRawFile()),
Discriminator(N->getDiscriminator()) {}
bool isKeyOf(const DILexicalBlockFile *RHS) const {
return Scope == RHS->getRawScope() && File == RHS->getRawFile() &&
Discriminator == RHS->getDiscriminator();
}
unsigned getHashValue() const {
return hash_combine(Scope, File, Discriminator);
}
};
template <> struct MDNodeKeyImpl<DINamespace> {
Metadata *Scope;
MDString *Name;
bool ExportSymbols;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, bool ExportSymbols)
: Scope(Scope), Name(Name), ExportSymbols(ExportSymbols) {}
MDNodeKeyImpl(const DINamespace *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
ExportSymbols(N->getExportSymbols()) {}
bool isKeyOf(const DINamespace *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
ExportSymbols == RHS->getExportSymbols();
}
unsigned getHashValue() const {
return hash_combine(Scope, Name);
}
};
template <> struct MDNodeKeyImpl<DICommonBlock> {
Metadata *Scope;
Metadata *Decl;
MDString *Name;
Metadata *File;
unsigned LineNo;
MDNodeKeyImpl(Metadata *Scope, Metadata *Decl, MDString *Name,
Metadata *File, unsigned LineNo)
: Scope(Scope), Decl(Decl), Name(Name), File(File), LineNo(LineNo) {}
MDNodeKeyImpl(const DICommonBlock *N)
: Scope(N->getRawScope()), Decl(N->getRawDecl()), Name(N->getRawName()),
File(N->getRawFile()), LineNo(N->getLineNo()) {}
bool isKeyOf(const DICommonBlock *RHS) const {
return Scope == RHS->getRawScope() && Decl == RHS->getRawDecl() &&
Name == RHS->getRawName() && File == RHS->getRawFile() &&
LineNo == RHS->getLineNo();
}
unsigned getHashValue() const {
return hash_combine(Scope, Decl, Name, File, LineNo);
}
};
template <> struct MDNodeKeyImpl<DIModule> {
Metadata *File;
Metadata *Scope;
MDString *Name;
MDString *ConfigurationMacros;
MDString *IncludePath;
MDString *APINotesFile;
unsigned LineNo;
bool IsDecl;
MDNodeKeyImpl(Metadata *File, Metadata *Scope, MDString *Name,
MDString *ConfigurationMacros, MDString *IncludePath,
MDString *APINotesFile, unsigned LineNo, bool IsDecl)
: File(File), Scope(Scope), Name(Name),
ConfigurationMacros(ConfigurationMacros), IncludePath(IncludePath),
APINotesFile(APINotesFile), LineNo(LineNo), IsDecl(IsDecl) {}
MDNodeKeyImpl(const DIModule *N)
: File(N->getRawFile()), Scope(N->getRawScope()), Name(N->getRawName()),
ConfigurationMacros(N->getRawConfigurationMacros()),
IncludePath(N->getRawIncludePath()),
APINotesFile(N->getRawAPINotesFile()), LineNo(N->getLineNo()),
IsDecl(N->getIsDecl()) {}
bool isKeyOf(const DIModule *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
ConfigurationMacros == RHS->getRawConfigurationMacros() &&
IncludePath == RHS->getRawIncludePath() &&
APINotesFile == RHS->getRawAPINotesFile() &&
File == RHS->getRawFile() && LineNo == RHS->getLineNo() &&
IsDecl == RHS->getIsDecl();
}
unsigned getHashValue() const {
return hash_combine(Scope, Name, ConfigurationMacros, IncludePath);
}
};
template <> struct MDNodeKeyImpl<DITemplateTypeParameter> {
MDString *Name;
Metadata *Type;
bool IsDefault;
MDNodeKeyImpl(MDString *Name, Metadata *Type, bool IsDefault)
: Name(Name), Type(Type), IsDefault(IsDefault) {}
MDNodeKeyImpl(const DITemplateTypeParameter *N)
: Name(N->getRawName()), Type(N->getRawType()),
IsDefault(N->isDefault()) {}
bool isKeyOf(const DITemplateTypeParameter *RHS) const {
return Name == RHS->getRawName() && Type == RHS->getRawType() &&
IsDefault == RHS->isDefault();
}
unsigned getHashValue() const { return hash_combine(Name, Type, IsDefault); }
};
template <> struct MDNodeKeyImpl<DITemplateValueParameter> {
unsigned Tag;
MDString *Name;
Metadata *Type;
bool IsDefault;
Metadata *Value;
MDNodeKeyImpl(unsigned Tag, MDString *Name, Metadata *Type, bool IsDefault,
Metadata *Value)
: Tag(Tag), Name(Name), Type(Type), IsDefault(IsDefault), Value(Value) {}
MDNodeKeyImpl(const DITemplateValueParameter *N)
: Tag(N->getTag()), Name(N->getRawName()), Type(N->getRawType()),
IsDefault(N->isDefault()), Value(N->getValue()) {}
bool isKeyOf(const DITemplateValueParameter *RHS) const {
return Tag == RHS->getTag() && Name == RHS->getRawName() &&
Type == RHS->getRawType() && IsDefault == RHS->isDefault() &&
Value == RHS->getValue();
}
unsigned getHashValue() const {
return hash_combine(Tag, Name, Type, IsDefault, Value);
}
};
template <> struct MDNodeKeyImpl<DIGlobalVariable> {
Metadata *Scope;
MDString *Name;
MDString *LinkageName;
Metadata *File;
unsigned Line;
Metadata *Type;
bool IsLocalToUnit;
bool IsDefinition;
Metadata *StaticDataMemberDeclaration;
Metadata *TemplateParams;
uint32_t AlignInBits;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, MDString *LinkageName,
Metadata *File, unsigned Line, Metadata *Type,
bool IsLocalToUnit, bool IsDefinition,
Metadata *StaticDataMemberDeclaration, Metadata *TemplateParams,
uint32_t AlignInBits)
: Scope(Scope), Name(Name), LinkageName(LinkageName), File(File),
Line(Line), Type(Type), IsLocalToUnit(IsLocalToUnit),
IsDefinition(IsDefinition),
StaticDataMemberDeclaration(StaticDataMemberDeclaration),
TemplateParams(TemplateParams), AlignInBits(AlignInBits) {}
MDNodeKeyImpl(const DIGlobalVariable *N)
: Scope(N->getRawScope()), Name(N->getRawName()),
LinkageName(N->getRawLinkageName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()),
IsLocalToUnit(N->isLocalToUnit()), IsDefinition(N->isDefinition()),
StaticDataMemberDeclaration(N->getRawStaticDataMemberDeclaration()),
TemplateParams(N->getRawTemplateParams()),
AlignInBits(N->getAlignInBits()) {}
bool isKeyOf(const DIGlobalVariable *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
LinkageName == RHS->getRawLinkageName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && IsLocalToUnit == RHS->isLocalToUnit() &&
IsDefinition == RHS->isDefinition() &&
StaticDataMemberDeclaration ==
RHS->getRawStaticDataMemberDeclaration() &&
TemplateParams == RHS->getRawTemplateParams() &&
AlignInBits == RHS->getAlignInBits();
}
unsigned getHashValue() const {
// We do not use AlignInBits in hashing function here on purpose:
// in most cases this param for local variable is zero (for function param
// it is always zero). This leads to lots of hash collisions and errors on
// cases with lots of similar variables.
// clang/test/CodeGen/debug-info-257-args.c is an example of this problem,
// generated IR is random for each run and test fails with Align included.
// TODO: make hashing work fine with such situations
return hash_combine(Scope, Name, LinkageName, File, Line, Type,
IsLocalToUnit, IsDefinition, /* AlignInBits, */
StaticDataMemberDeclaration);
}
};
template <> struct MDNodeKeyImpl<DILocalVariable> {
Metadata *Scope;
MDString *Name;
Metadata *File;
unsigned Line;
Metadata *Type;
unsigned Arg;
unsigned Flags;
uint32_t AlignInBits;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line,
Metadata *Type, unsigned Arg, unsigned Flags,
uint32_t AlignInBits)
: Scope(Scope), Name(Name), File(File), Line(Line), Type(Type), Arg(Arg),
Flags(Flags), AlignInBits(AlignInBits) {}
MDNodeKeyImpl(const DILocalVariable *N)
: Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()), Type(N->getRawType()), Arg(N->getArg()),
Flags(N->getFlags()), AlignInBits(N->getAlignInBits()) {}
bool isKeyOf(const DILocalVariable *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine() &&
Type == RHS->getRawType() && Arg == RHS->getArg() &&
Flags == RHS->getFlags() && AlignInBits == RHS->getAlignInBits();
}
unsigned getHashValue() const {
// We do not use AlignInBits in hashing function here on purpose:
// in most cases this param for local variable is zero (for function param
// it is always zero). This leads to lots of hash collisions and errors on
// cases with lots of similar variables.
// clang/test/CodeGen/debug-info-257-args.c is an example of this problem,
// generated IR is random for each run and test fails with Align included.
// TODO: make hashing work fine with such situations
return hash_combine(Scope, Name, File, Line, Type, Arg, Flags);
}
};
template <> struct MDNodeKeyImpl<DILabel> {
Metadata *Scope;
MDString *Name;
Metadata *File;
unsigned Line;
MDNodeKeyImpl(Metadata *Scope, MDString *Name, Metadata *File, unsigned Line)
: Scope(Scope), Name(Name), File(File), Line(Line) {}
MDNodeKeyImpl(const DILabel *N)
: Scope(N->getRawScope()), Name(N->getRawName()), File(N->getRawFile()),
Line(N->getLine()) {}
bool isKeyOf(const DILabel *RHS) const {
return Scope == RHS->getRawScope() && Name == RHS->getRawName() &&
File == RHS->getRawFile() && Line == RHS->getLine();
}
/// Using name and line to get hash value. It should already be mostly unique.
unsigned getHashValue() const {
return hash_combine(Scope, Name, Line);
}
};
template <> struct MDNodeKeyImpl<DIExpression> {
ArrayRef<uint64_t> Elements;
MDNodeKeyImpl(ArrayRef<uint64_t> Elements) : Elements(Elements) {}
MDNodeKeyImpl(const DIExpression *N) : Elements(N->getElements()) {}
bool isKeyOf(const DIExpression *RHS) const {
return Elements == RHS->getElements();
}
unsigned getHashValue() const {
return hash_combine_range(Elements.begin(), Elements.end());
}
};
template <> struct MDNodeKeyImpl<DIGlobalVariableExpression> {
Metadata *Variable;
Metadata *Expression;
MDNodeKeyImpl(Metadata *Variable, Metadata *Expression)
: Variable(Variable), Expression(Expression) {}
MDNodeKeyImpl(const DIGlobalVariableExpression *N)
: Variable(N->getRawVariable()), Expression(N->getRawExpression()) {}
bool isKeyOf(const DIGlobalVariableExpression *RHS) const {
return Variable == RHS->getRawVariable() &&
Expression == RHS->getRawExpression();
}
unsigned getHashValue() const { return hash_combine(Variable, Expression); }
};
template <> struct MDNodeKeyImpl<DIObjCProperty> {
MDString *Name;
Metadata *File;
unsigned Line;
MDString *GetterName;
MDString *SetterName;
unsigned Attributes;
Metadata *Type;
MDNodeKeyImpl(MDString *Name, Metadata *File, unsigned Line,
MDString *GetterName, MDString *SetterName, unsigned Attributes,
Metadata *Type)
: Name(Name), File(File), Line(Line), GetterName(GetterName),
SetterName(SetterName), Attributes(Attributes), Type(Type) {}
MDNodeKeyImpl(const DIObjCProperty *N)
: Name(N->getRawName()), File(N->getRawFile()), Line(N->getLine()),
GetterName(N->getRawGetterName()), SetterName(N->getRawSetterName()),
Attributes(N->getAttributes()), Type(N->getRawType()) {}
bool isKeyOf(const DIObjCProperty *RHS) const {
return Name == RHS->getRawName() && File == RHS->getRawFile() &&
Line == RHS->getLine() && GetterName == RHS->getRawGetterName() &&
SetterName == RHS->getRawSetterName() &&
Attributes == RHS->getAttributes() && Type == RHS->getRawType();
}
unsigned getHashValue() const {
return hash_combine(Name, File, Line, GetterName, SetterName, Attributes,
Type);
}
};
template <> struct MDNodeKeyImpl<DIImportedEntity> {
unsigned Tag;
Metadata *Scope;
Metadata *Entity;
Metadata *File;
unsigned Line;
MDString *Name;
MDNodeKeyImpl(unsigned Tag, Metadata *Scope, Metadata *Entity, Metadata *File,
unsigned Line, MDString *Name)
: Tag(Tag), Scope(Scope), Entity(Entity), File(File), Line(Line),
Name(Name) {}
MDNodeKeyImpl(const DIImportedEntity *N)
: Tag(N->getTag()), Scope(N->getRawScope()), Entity(N->getRawEntity()),
File(N->getRawFile()), Line(N->getLine()), Name(N->getRawName()) {}
bool isKeyOf(const DIImportedEntity *RHS) const {
return Tag == RHS->getTag() && Scope == RHS->getRawScope() &&
Entity == RHS->getRawEntity() && File == RHS->getFile() &&
Line == RHS->getLine() && Name == RHS->getRawName();
}
unsigned getHashValue() const {
return hash_combine(Tag, Scope, Entity, File, Line, Name);
}
};
template <> struct MDNodeKeyImpl<DIMacro> {
unsigned MIType;
unsigned Line;
MDString *Name;
MDString *Value;
MDNodeKeyImpl(unsigned MIType, unsigned Line, MDString *Name, MDString *Value)
: MIType(MIType), Line(Line), Name(Name), Value(Value) {}
MDNodeKeyImpl(const DIMacro *N)
: MIType(N->getMacinfoType()), Line(N->getLine()), Name(N->getRawName()),
Value(N->getRawValue()) {}
bool isKeyOf(const DIMacro *RHS) const {
return MIType == RHS->getMacinfoType() && Line == RHS->getLine() &&
Name == RHS->getRawName() && Value == RHS->getRawValue();
}
unsigned getHashValue() const {
return hash_combine(MIType, Line, Name, Value);
}
};
template <> struct MDNodeKeyImpl<DIMacroFile> {
unsigned MIType;
unsigned Line;
Metadata *File;
Metadata *Elements;
MDNodeKeyImpl(unsigned MIType, unsigned Line, Metadata *File,
Metadata *Elements)
: MIType(MIType), Line(Line), File(File), Elements(Elements) {}
MDNodeKeyImpl(const DIMacroFile *N)
: MIType(N->getMacinfoType()), Line(N->getLine()), File(N->getRawFile()),
Elements(N->getRawElements()) {}
bool isKeyOf(const DIMacroFile *RHS) const {
return MIType == RHS->getMacinfoType() && Line == RHS->getLine() &&
File == RHS->getRawFile() && Elements == RHS->getRawElements();
}
unsigned getHashValue() const {
return hash_combine(MIType, Line, File, Elements);
}
};
/// DenseMapInfo for MDNode subclasses.
template <class NodeTy> struct MDNodeInfo {
using KeyTy = MDNodeKeyImpl<NodeTy>;
using SubsetEqualTy = MDNodeSubsetEqualImpl<NodeTy>;
static inline NodeTy *getEmptyKey() {
return DenseMapInfo<NodeTy *>::getEmptyKey();
}
static inline NodeTy *getTombstoneKey() {
return DenseMapInfo<NodeTy *>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy &Key) { return Key.getHashValue(); }
static unsigned getHashValue(const NodeTy *N) {
return KeyTy(N).getHashValue();
}
static bool isEqual(const KeyTy &LHS, const NodeTy *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return SubsetEqualTy::isSubsetEqual(LHS, RHS) || LHS.isKeyOf(RHS);
}
static bool isEqual(const NodeTy *LHS, const NodeTy *RHS) {
if (LHS == RHS)
return true;
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return SubsetEqualTy::isSubsetEqual(LHS, RHS);
}
};
#define HANDLE_MDNODE_LEAF(CLASS) using CLASS##Info = MDNodeInfo<CLASS>;
#include "llvm/IR/Metadata.def"
/// Multimap-like storage for metadata attachments.
class MDAttachments {
public:
struct Attachment {
unsigned MDKind;
TrackingMDNodeRef Node;
};
private:
SmallVector<Attachment, 1> Attachments;
public:
bool empty() const { return Attachments.empty(); }
size_t size() const { return Attachments.size(); }
/// Returns the first attachment with the given ID or nullptr if no such
/// attachment exists.
MDNode *lookup(unsigned ID) const;
/// Appends all attachments with the given ID to \c Result in insertion order.
/// If the global has no attachments with the given ID, or if ID is invalid,
/// leaves Result unchanged.
void get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const;
/// Appends all attachments for the global to \c Result, sorting by attachment
/// ID. Attachments with the same ID appear in insertion order. This function
/// does \em not clear \c Result.
void getAll(SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const;
/// Set an attachment to a particular node.
///
/// Set the \c ID attachment to \c MD, replacing the current attachments at \c
/// ID (if anyway).
void set(unsigned ID, MDNode *MD);
/// Adds an attachment to a particular node.
void insert(unsigned ID, MDNode &MD);
/// Remove attachments with the given ID.
///
/// Remove the attachments at \c ID, if any.
bool erase(unsigned ID);
/// Erase matching attachments.
///
/// Erases all attachments matching the \c shouldRemove predicate.
template <class PredTy> void remove_if(PredTy shouldRemove) {
llvm::erase_if(Attachments, shouldRemove);
}
};
class LLVMContextImpl {
public:
/// OwnedModules - The set of modules instantiated in this context, and which
/// will be automatically deleted if this context is deleted.
SmallPtrSet<Module*, 4> OwnedModules;
LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler = nullptr;
void *InlineAsmDiagContext = nullptr;
/// The main remark streamer used by all the other streamers (e.g. IR, MIR,
/// frontends, etc.). This should only be used by the specific streamers, and
/// never directly.
std::unique_ptr<remarks::RemarkStreamer> MainRemarkStreamer;
std::unique_ptr<DiagnosticHandler> DiagHandler;
bool RespectDiagnosticFilters = false;
bool DiagnosticsHotnessRequested = false;
/// The minimum hotness value a diagnostic needs in order to be included in
/// optimization diagnostics.
///
/// The threshold is an Optional value, which maps to one of the 3 states:
/// 1). 0 => threshold disabled. All emarks will be printed.
/// 2). positive int => manual threshold by user. Remarks with hotness exceed
/// threshold will be printed.
/// 3). None => 'auto' threshold by user. The actual value is not
/// available at command line, but will be synced with
/// hotness threhold from profile summary during
/// compilation.
///
/// State 1 and 2 are considered as terminal states. State transition is
/// only allowed from 3 to 2, when the threshold is first synced with profile
/// summary. This ensures that the threshold is set only once and stays
/// constant.
///
/// If threshold option is not specified, it is disabled (0) by default.
Optional<uint64_t> DiagnosticsHotnessThreshold = 0;
/// The specialized remark streamer used by LLVM's OptimizationRemarkEmitter.
std::unique_ptr<LLVMRemarkStreamer> LLVMRS;
LLVMContext::YieldCallbackTy YieldCallback = nullptr;
void *YieldOpaqueHandle = nullptr;
using IntMapTy =
DenseMap<APInt, std::unique_ptr<ConstantInt>, DenseMapAPIntKeyInfo>;
IntMapTy IntConstants;
using FPMapTy =
DenseMap<APFloat, std::unique_ptr<ConstantFP>, DenseMapAPFloatKeyInfo>;
FPMapTy FPConstants;
FoldingSet<AttributeImpl> AttrsSet;
FoldingSet<AttributeListImpl> AttrsLists;
FoldingSet<AttributeSetNode> AttrsSetNodes;
StringMap<MDString, BumpPtrAllocator> MDStringCache;
DenseMap<Value *, ValueAsMetadata *> ValuesAsMetadata;
DenseMap<Metadata *, MetadataAsValue *> MetadataAsValues;
DenseMap<const Value*, ValueName*> ValueNames;
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
DenseSet<CLASS *, CLASS##Info> CLASS##s;
#include "llvm/IR/Metadata.def"
// Optional map for looking up composite types by identifier.
Optional<DenseMap<const MDString *, DICompositeType *>> DITypeMap;
// MDNodes may be uniqued or not uniqued. When they're not uniqued, they
// aren't in the MDNodeSet, but they're still shared between objects, so no
// one object can destroy them. Keep track of them here so we can delete
// them on context teardown.
std::vector<MDNode *> DistinctMDNodes;
DenseMap<Type *, std::unique_ptr<ConstantAggregateZero>> CAZConstants;
using ArrayConstantsTy = ConstantUniqueMap<ConstantArray>;
ArrayConstantsTy ArrayConstants;
using StructConstantsTy = ConstantUniqueMap<ConstantStruct>;
StructConstantsTy StructConstants;
using VectorConstantsTy = ConstantUniqueMap<ConstantVector>;
VectorConstantsTy VectorConstants;
DenseMap<PointerType *, std::unique_ptr<ConstantPointerNull>> CPNConstants;
DenseMap<Type *, std::unique_ptr<UndefValue>> UVConstants;
DenseMap<Type *, std::unique_ptr<PoisonValue>> PVConstants;
StringMap<std::unique_ptr<ConstantDataSequential>> CDSConstants;
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
DenseMap<const GlobalValue *, DSOLocalEquivalent *> DSOLocalEquivalents;
ConstantUniqueMap<ConstantExpr> ExprConstants;
ConstantUniqueMap<InlineAsm> InlineAsms;
ConstantInt *TheTrueVal = nullptr;
ConstantInt *TheFalseVal = nullptr;
std::unique_ptr<ConstantTokenNone> TheNoneToken;
// Basic type instances.
Type VoidTy, LabelTy, HalfTy, BFloatTy, FloatTy, DoubleTy, MetadataTy,
TokenTy;
Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy, X86_AMXTy;
IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty, Int128Ty;
BumpPtrAllocator Alloc;
UniqueStringSaver Saver{Alloc};
DenseMap<unsigned, IntegerType*> IntegerTypes;
using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
FunctionTypeSet FunctionTypes;
using StructTypeSet = DenseSet<StructType *, AnonStructTypeKeyInfo>;
StructTypeSet AnonStructTypes;
StringMap<StructType*> NamedStructTypes;
unsigned NamedStructTypesUniqueID = 0;
DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes;
DenseMap<std::pair<Type *, ElementCount>, VectorType*> VectorTypes;
DenseMap<Type*, PointerType*> PointerTypes; // Pointers in AddrSpace = 0
DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes;
/// ValueHandles - This map keeps track of all of the value handles that are
/// watching a Value*. The Value::HasValueHandle bit is used to know
/// whether or not a value has an entry in this map.
using ValueHandlesTy = DenseMap<Value *, ValueHandleBase *>;
ValueHandlesTy ValueHandles;
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
/// Collection of metadata used in this context.
DenseMap<const Value *, MDAttachments> ValueMetadata;
/// Collection of per-GlobalObject sections used in this context.
DenseMap<const GlobalObject *, StringRef> GlobalObjectSections;
/// Collection of per-GlobalValue partitions used in this context.
DenseMap<const GlobalValue *, StringRef> GlobalValuePartitions;
/// DiscriminatorTable - This table maps file:line locations to an
/// integer representing the next DWARF path discriminator to assign to
/// instructions in different blocks at the same location.
DenseMap<std::pair<const char *, unsigned>, unsigned> DiscriminatorTable;
/// A set of interned tags for operand bundles. The StringMap maps
/// bundle tags to their IDs.
///
/// \see LLVMContext::getOperandBundleTagID
StringMap<uint32_t> BundleTagCache;
StringMapEntry<uint32_t> *getOrInsertBundleTag(StringRef Tag);
void getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const;
uint32_t getOperandBundleTagID(StringRef Tag) const;
/// A set of interned synchronization scopes. The StringMap maps
/// synchronization scope names to their respective synchronization scope IDs.
StringMap<SyncScope::ID> SSC;
/// getOrInsertSyncScopeID - Maps synchronization scope name to
/// synchronization scope ID. Every synchronization scope registered with
/// LLVMContext has unique ID except pre-defined ones.
SyncScope::ID getOrInsertSyncScopeID(StringRef SSN);
/// getSyncScopeNames - Populates client supplied SmallVector with
/// synchronization scope names registered with LLVMContext. Synchronization
/// scope names are ordered by increasing synchronization scope IDs.
void getSyncScopeNames(SmallVectorImpl<StringRef> &SSNs) const;
/// Maintain the GC name for each function.
///
/// This saves allocating an additional word in Function for programs which
/// do not use GC (i.e., most programs) at the cost of increased overhead for
/// clients which do use GC.
DenseMap<const Function*, std::string> GCNames;
/// Flag to indicate if Value (other than GlobalValue) retains their name or
/// not.
bool DiscardValueNames = false;
LLVMContextImpl(LLVMContext &C);
~LLVMContextImpl();
/// Destroy the ConstantArrays if they are not used.
void dropTriviallyDeadConstantArrays();
mutable OptPassGate *OPG = nullptr;
/// Access the object which can disable optional passes and individual
/// optimizations at compile time.
OptPassGate &getOptPassGate() const;
/// Set the object which can disable optional passes and individual
/// optimizations at compile time.
///
/// The lifetime of the object must be guaranteed to extend as long as the
/// LLVMContext is used by compilation.
void setOptPassGate(OptPassGate&);
};
} // end namespace llvm
#endif // LLVM_LIB_IR_LLVMCONTEXTIMPL_H