1545 lines
61 KiB
C++
1545 lines
61 KiB
C++
|
//===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements functions and classes used to support LTO.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/LTO/LTO.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
|
#include "llvm/Analysis/StackSafetyAnalysis.h"
|
||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
|
#include "llvm/Bitcode/BitcodeReader.h"
|
||
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
||
|
#include "llvm/CodeGen/Analysis.h"
|
||
|
#include "llvm/Config/llvm-config.h"
|
||
|
#include "llvm/IR/AutoUpgrade.h"
|
||
|
#include "llvm/IR/DiagnosticPrinter.h"
|
||
|
#include "llvm/IR/Intrinsics.h"
|
||
|
#include "llvm/IR/LLVMRemarkStreamer.h"
|
||
|
#include "llvm/IR/LegacyPassManager.h"
|
||
|
#include "llvm/IR/Mangler.h"
|
||
|
#include "llvm/IR/Metadata.h"
|
||
|
#include "llvm/LTO/LTOBackend.h"
|
||
|
#include "llvm/LTO/SummaryBasedOptimizations.h"
|
||
|
#include "llvm/Linker/IRMover.h"
|
||
|
#include "llvm/Object/IRObjectFile.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Error.h"
|
||
|
#include "llvm/Support/ManagedStatic.h"
|
||
|
#include "llvm/Support/MemoryBuffer.h"
|
||
|
#include "llvm/Support/Path.h"
|
||
|
#include "llvm/Support/SHA1.h"
|
||
|
#include "llvm/Support/SourceMgr.h"
|
||
|
#include "llvm/Support/TargetRegistry.h"
|
||
|
#include "llvm/Support/ThreadPool.h"
|
||
|
#include "llvm/Support/Threading.h"
|
||
|
#include "llvm/Support/TimeProfiler.h"
|
||
|
#include "llvm/Support/VCSRevision.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include "llvm/Target/TargetMachine.h"
|
||
|
#include "llvm/Target/TargetOptions.h"
|
||
|
#include "llvm/Transforms/IPO.h"
|
||
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
||
|
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
|
||
|
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
|
||
|
#include "llvm/Transforms/Utils/SplitModule.h"
|
||
|
|
||
|
#include <set>
|
||
|
|
||
|
using namespace llvm;
|
||
|
using namespace lto;
|
||
|
using namespace object;
|
||
|
|
||
|
#define DEBUG_TYPE "lto"
|
||
|
|
||
|
static cl::opt<bool>
|
||
|
DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
|
||
|
cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
|
||
|
|
||
|
/// Enable global value internalization in LTO.
|
||
|
cl::opt<bool> EnableLTOInternalization(
|
||
|
"enable-lto-internalization", cl::init(true), cl::Hidden,
|
||
|
cl::desc("Enable global value internalization in LTO"));
|
||
|
|
||
|
// Computes a unique hash for the Module considering the current list of
|
||
|
// export/import and other global analysis results.
|
||
|
// The hash is produced in \p Key.
|
||
|
void llvm::computeLTOCacheKey(
|
||
|
SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
|
||
|
StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
|
||
|
const FunctionImporter::ExportSetTy &ExportList,
|
||
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
||
|
const GVSummaryMapTy &DefinedGlobals,
|
||
|
const std::set<GlobalValue::GUID> &CfiFunctionDefs,
|
||
|
const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
|
||
|
// Compute the unique hash for this entry.
|
||
|
// This is based on the current compiler version, the module itself, the
|
||
|
// export list, the hash for every single module in the import list, the
|
||
|
// list of ResolvedODR for the module, and the list of preserved symbols.
|
||
|
SHA1 Hasher;
|
||
|
|
||
|
// Start with the compiler revision
|
||
|
Hasher.update(LLVM_VERSION_STRING);
|
||
|
#ifdef LLVM_REVISION
|
||
|
Hasher.update(LLVM_REVISION);
|
||
|
#endif
|
||
|
|
||
|
// Include the parts of the LTO configuration that affect code generation.
|
||
|
auto AddString = [&](StringRef Str) {
|
||
|
Hasher.update(Str);
|
||
|
Hasher.update(ArrayRef<uint8_t>{0});
|
||
|
};
|
||
|
auto AddUnsigned = [&](unsigned I) {
|
||
|
uint8_t Data[4];
|
||
|
support::endian::write32le(Data, I);
|
||
|
Hasher.update(ArrayRef<uint8_t>{Data, 4});
|
||
|
};
|
||
|
auto AddUint64 = [&](uint64_t I) {
|
||
|
uint8_t Data[8];
|
||
|
support::endian::write64le(Data, I);
|
||
|
Hasher.update(ArrayRef<uint8_t>{Data, 8});
|
||
|
};
|
||
|
AddString(Conf.CPU);
|
||
|
// FIXME: Hash more of Options. For now all clients initialize Options from
|
||
|
// command-line flags (which is unsupported in production), but may set
|
||
|
// RelaxELFRelocations. The clang driver can also pass FunctionSections,
|
||
|
// DataSections and DebuggerTuning via command line flags.
|
||
|
AddUnsigned(Conf.Options.RelaxELFRelocations);
|
||
|
AddUnsigned(Conf.Options.FunctionSections);
|
||
|
AddUnsigned(Conf.Options.DataSections);
|
||
|
AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
|
||
|
for (auto &A : Conf.MAttrs)
|
||
|
AddString(A);
|
||
|
if (Conf.RelocModel)
|
||
|
AddUnsigned(*Conf.RelocModel);
|
||
|
else
|
||
|
AddUnsigned(-1);
|
||
|
if (Conf.CodeModel)
|
||
|
AddUnsigned(*Conf.CodeModel);
|
||
|
else
|
||
|
AddUnsigned(-1);
|
||
|
AddUnsigned(Conf.CGOptLevel);
|
||
|
AddUnsigned(Conf.CGFileType);
|
||
|
AddUnsigned(Conf.OptLevel);
|
||
|
AddUnsigned(Conf.UseNewPM);
|
||
|
AddUnsigned(Conf.Freestanding);
|
||
|
AddString(Conf.OptPipeline);
|
||
|
AddString(Conf.AAPipeline);
|
||
|
AddString(Conf.OverrideTriple);
|
||
|
AddString(Conf.DefaultTriple);
|
||
|
AddString(Conf.DwoDir);
|
||
|
|
||
|
// Include the hash for the current module
|
||
|
auto ModHash = Index.getModuleHash(ModuleID);
|
||
|
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
|
||
|
|
||
|
std::vector<uint64_t> ExportsGUID;
|
||
|
ExportsGUID.reserve(ExportList.size());
|
||
|
for (const auto &VI : ExportList) {
|
||
|
auto GUID = VI.getGUID();
|
||
|
ExportsGUID.push_back(GUID);
|
||
|
}
|
||
|
|
||
|
// Sort the export list elements GUIDs.
|
||
|
llvm::sort(ExportsGUID);
|
||
|
for (uint64_t GUID : ExportsGUID) {
|
||
|
// The export list can impact the internalization, be conservative here
|
||
|
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID)));
|
||
|
}
|
||
|
|
||
|
// Include the hash for every module we import functions from. The set of
|
||
|
// imported symbols for each module may affect code generation and is
|
||
|
// sensitive to link order, so include that as well.
|
||
|
using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator;
|
||
|
std::vector<ImportMapIteratorTy> ImportModulesVector;
|
||
|
ImportModulesVector.reserve(ImportList.size());
|
||
|
|
||
|
for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end();
|
||
|
++It) {
|
||
|
ImportModulesVector.push_back(It);
|
||
|
}
|
||
|
llvm::sort(ImportModulesVector,
|
||
|
[](const ImportMapIteratorTy &Lhs, const ImportMapIteratorTy &Rhs)
|
||
|
-> bool { return Lhs->getKey() < Rhs->getKey(); });
|
||
|
for (const ImportMapIteratorTy &EntryIt : ImportModulesVector) {
|
||
|
auto ModHash = Index.getModuleHash(EntryIt->first());
|
||
|
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
|
||
|
|
||
|
AddUint64(EntryIt->second.size());
|
||
|
for (auto &Fn : EntryIt->second)
|
||
|
AddUint64(Fn);
|
||
|
}
|
||
|
|
||
|
// Include the hash for the resolved ODR.
|
||
|
for (auto &Entry : ResolvedODR) {
|
||
|
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
|
||
|
sizeof(GlobalValue::GUID)));
|
||
|
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
|
||
|
sizeof(GlobalValue::LinkageTypes)));
|
||
|
}
|
||
|
|
||
|
// Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
|
||
|
// defined in this module.
|
||
|
std::set<GlobalValue::GUID> UsedCfiDefs;
|
||
|
std::set<GlobalValue::GUID> UsedCfiDecls;
|
||
|
|
||
|
// Typeids used in this module.
|
||
|
std::set<GlobalValue::GUID> UsedTypeIds;
|
||
|
|
||
|
auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
|
||
|
if (CfiFunctionDefs.count(ValueGUID))
|
||
|
UsedCfiDefs.insert(ValueGUID);
|
||
|
if (CfiFunctionDecls.count(ValueGUID))
|
||
|
UsedCfiDecls.insert(ValueGUID);
|
||
|
};
|
||
|
|
||
|
auto AddUsedThings = [&](GlobalValueSummary *GS) {
|
||
|
if (!GS) return;
|
||
|
AddUnsigned(GS->isLive());
|
||
|
AddUnsigned(GS->canAutoHide());
|
||
|
for (const ValueInfo &VI : GS->refs()) {
|
||
|
AddUnsigned(VI.isDSOLocal());
|
||
|
AddUsedCfiGlobal(VI.getGUID());
|
||
|
}
|
||
|
if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
|
||
|
AddUnsigned(GVS->maybeReadOnly());
|
||
|
AddUnsigned(GVS->maybeWriteOnly());
|
||
|
}
|
||
|
if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
|
||
|
for (auto &TT : FS->type_tests())
|
||
|
UsedTypeIds.insert(TT);
|
||
|
for (auto &TT : FS->type_test_assume_vcalls())
|
||
|
UsedTypeIds.insert(TT.GUID);
|
||
|
for (auto &TT : FS->type_checked_load_vcalls())
|
||
|
UsedTypeIds.insert(TT.GUID);
|
||
|
for (auto &TT : FS->type_test_assume_const_vcalls())
|
||
|
UsedTypeIds.insert(TT.VFunc.GUID);
|
||
|
for (auto &TT : FS->type_checked_load_const_vcalls())
|
||
|
UsedTypeIds.insert(TT.VFunc.GUID);
|
||
|
for (auto &ET : FS->calls()) {
|
||
|
AddUnsigned(ET.first.isDSOLocal());
|
||
|
AddUsedCfiGlobal(ET.first.getGUID());
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Include the hash for the linkage type to reflect internalization and weak
|
||
|
// resolution, and collect any used type identifier resolutions.
|
||
|
for (auto &GS : DefinedGlobals) {
|
||
|
GlobalValue::LinkageTypes Linkage = GS.second->linkage();
|
||
|
Hasher.update(
|
||
|
ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
|
||
|
AddUsedCfiGlobal(GS.first);
|
||
|
AddUsedThings(GS.second);
|
||
|
}
|
||
|
|
||
|
// Imported functions may introduce new uses of type identifier resolutions,
|
||
|
// so we need to collect their used resolutions as well.
|
||
|
for (auto &ImpM : ImportList)
|
||
|
for (auto &ImpF : ImpM.second) {
|
||
|
GlobalValueSummary *S = Index.findSummaryInModule(ImpF, ImpM.first());
|
||
|
AddUsedThings(S);
|
||
|
// If this is an alias, we also care about any types/etc. that the aliasee
|
||
|
// may reference.
|
||
|
if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
|
||
|
AddUsedThings(AS->getBaseObject());
|
||
|
}
|
||
|
|
||
|
auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
|
||
|
AddString(TId);
|
||
|
|
||
|
AddUnsigned(S.TTRes.TheKind);
|
||
|
AddUnsigned(S.TTRes.SizeM1BitWidth);
|
||
|
|
||
|
AddUint64(S.TTRes.AlignLog2);
|
||
|
AddUint64(S.TTRes.SizeM1);
|
||
|
AddUint64(S.TTRes.BitMask);
|
||
|
AddUint64(S.TTRes.InlineBits);
|
||
|
|
||
|
AddUint64(S.WPDRes.size());
|
||
|
for (auto &WPD : S.WPDRes) {
|
||
|
AddUnsigned(WPD.first);
|
||
|
AddUnsigned(WPD.second.TheKind);
|
||
|
AddString(WPD.second.SingleImplName);
|
||
|
|
||
|
AddUint64(WPD.second.ResByArg.size());
|
||
|
for (auto &ByArg : WPD.second.ResByArg) {
|
||
|
AddUint64(ByArg.first.size());
|
||
|
for (uint64_t Arg : ByArg.first)
|
||
|
AddUint64(Arg);
|
||
|
AddUnsigned(ByArg.second.TheKind);
|
||
|
AddUint64(ByArg.second.Info);
|
||
|
AddUnsigned(ByArg.second.Byte);
|
||
|
AddUnsigned(ByArg.second.Bit);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Include the hash for all type identifiers used by this module.
|
||
|
for (GlobalValue::GUID TId : UsedTypeIds) {
|
||
|
auto TidIter = Index.typeIds().equal_range(TId);
|
||
|
for (auto It = TidIter.first; It != TidIter.second; ++It)
|
||
|
AddTypeIdSummary(It->second.first, It->second.second);
|
||
|
}
|
||
|
|
||
|
AddUnsigned(UsedCfiDefs.size());
|
||
|
for (auto &V : UsedCfiDefs)
|
||
|
AddUint64(V);
|
||
|
|
||
|
AddUnsigned(UsedCfiDecls.size());
|
||
|
for (auto &V : UsedCfiDecls)
|
||
|
AddUint64(V);
|
||
|
|
||
|
if (!Conf.SampleProfile.empty()) {
|
||
|
auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
|
||
|
if (FileOrErr) {
|
||
|
Hasher.update(FileOrErr.get()->getBuffer());
|
||
|
|
||
|
if (!Conf.ProfileRemapping.empty()) {
|
||
|
FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
|
||
|
if (FileOrErr)
|
||
|
Hasher.update(FileOrErr.get()->getBuffer());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Key = toHex(Hasher.result());
|
||
|
}
|
||
|
|
||
|
static void thinLTOResolvePrevailingGUID(
|
||
|
ValueInfo VI, DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
|
||
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
||
|
isPrevailing,
|
||
|
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
|
||
|
recordNewLinkage,
|
||
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
||
|
for (auto &S : VI.getSummaryList()) {
|
||
|
GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
|
||
|
// Ignore local and appending linkage values since the linker
|
||
|
// doesn't resolve them.
|
||
|
if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
|
||
|
GlobalValue::isAppendingLinkage(S->linkage()))
|
||
|
continue;
|
||
|
// We need to emit only one of these. The prevailing module will keep it,
|
||
|
// but turned into a weak, while the others will drop it when possible.
|
||
|
// This is both a compile-time optimization and a correctness
|
||
|
// transformation. This is necessary for correctness when we have exported
|
||
|
// a reference - we need to convert the linkonce to weak to
|
||
|
// ensure a copy is kept to satisfy the exported reference.
|
||
|
// FIXME: We may want to split the compile time and correctness
|
||
|
// aspects into separate routines.
|
||
|
if (isPrevailing(VI.getGUID(), S.get())) {
|
||
|
if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
|
||
|
S->setLinkage(GlobalValue::getWeakLinkage(
|
||
|
GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
|
||
|
// The kept copy is eligible for auto-hiding (hidden visibility) if all
|
||
|
// copies were (i.e. they were all linkonce_odr global unnamed addr).
|
||
|
// If any copy is not (e.g. it was originally weak_odr), then the symbol
|
||
|
// must remain externally available (e.g. a weak_odr from an explicitly
|
||
|
// instantiated template). Additionally, if it is in the
|
||
|
// GUIDPreservedSymbols set, that means that it is visibile outside
|
||
|
// the summary (e.g. in a native object or a bitcode file without
|
||
|
// summary), and in that case we cannot hide it as it isn't possible to
|
||
|
// check all copies.
|
||
|
S->setCanAutoHide(VI.canAutoHide() &&
|
||
|
!GUIDPreservedSymbols.count(VI.getGUID()));
|
||
|
}
|
||
|
}
|
||
|
// Alias and aliasee can't be turned into available_externally.
|
||
|
else if (!isa<AliasSummary>(S.get()) &&
|
||
|
!GlobalInvolvedWithAlias.count(S.get()))
|
||
|
S->setLinkage(GlobalValue::AvailableExternallyLinkage);
|
||
|
if (S->linkage() != OriginalLinkage)
|
||
|
recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Resolve linkage for prevailing symbols in the \p Index.
|
||
|
//
|
||
|
// We'd like to drop these functions if they are no longer referenced in the
|
||
|
// current module. However there is a chance that another module is still
|
||
|
// referencing them because of the import. We make sure we always emit at least
|
||
|
// one copy.
|
||
|
void llvm::thinLTOResolvePrevailingInIndex(
|
||
|
ModuleSummaryIndex &Index,
|
||
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
||
|
isPrevailing,
|
||
|
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
|
||
|
recordNewLinkage,
|
||
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
||
|
// We won't optimize the globals that are referenced by an alias for now
|
||
|
// Ideally we should turn the alias into a global and duplicate the definition
|
||
|
// when needed.
|
||
|
DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
|
||
|
for (auto &I : Index)
|
||
|
for (auto &S : I.second.SummaryList)
|
||
|
if (auto AS = dyn_cast<AliasSummary>(S.get()))
|
||
|
GlobalInvolvedWithAlias.insert(&AS->getAliasee());
|
||
|
|
||
|
for (auto &I : Index)
|
||
|
thinLTOResolvePrevailingGUID(Index.getValueInfo(I), GlobalInvolvedWithAlias,
|
||
|
isPrevailing, recordNewLinkage,
|
||
|
GUIDPreservedSymbols);
|
||
|
}
|
||
|
|
||
|
static bool isWeakObjectWithRWAccess(GlobalValueSummary *GVS) {
|
||
|
if (auto *VarSummary = dyn_cast<GlobalVarSummary>(GVS->getBaseObject()))
|
||
|
return !VarSummary->maybeReadOnly() && !VarSummary->maybeWriteOnly() &&
|
||
|
(VarSummary->linkage() == GlobalValue::WeakODRLinkage ||
|
||
|
VarSummary->linkage() == GlobalValue::LinkOnceODRLinkage);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void thinLTOInternalizeAndPromoteGUID(
|
||
|
ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported,
|
||
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
||
|
isPrevailing) {
|
||
|
for (auto &S : VI.getSummaryList()) {
|
||
|
if (isExported(S->modulePath(), VI)) {
|
||
|
if (GlobalValue::isLocalLinkage(S->linkage()))
|
||
|
S->setLinkage(GlobalValue::ExternalLinkage);
|
||
|
} else if (EnableLTOInternalization &&
|
||
|
// Ignore local and appending linkage values since the linker
|
||
|
// doesn't resolve them.
|
||
|
!GlobalValue::isLocalLinkage(S->linkage()) &&
|
||
|
(!GlobalValue::isInterposableLinkage(S->linkage()) ||
|
||
|
isPrevailing(VI.getGUID(), S.get())) &&
|
||
|
S->linkage() != GlobalValue::AppendingLinkage &&
|
||
|
// We can't internalize available_externally globals because this
|
||
|
// can break function pointer equality.
|
||
|
S->linkage() != GlobalValue::AvailableExternallyLinkage &&
|
||
|
// Functions and read-only variables with linkonce_odr and
|
||
|
// weak_odr linkage can be internalized. We can't internalize
|
||
|
// linkonce_odr and weak_odr variables which are both modified
|
||
|
// and read somewhere in the program because reads and writes
|
||
|
// will become inconsistent.
|
||
|
!isWeakObjectWithRWAccess(S.get()))
|
||
|
S->setLinkage(GlobalValue::InternalLinkage);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Update the linkages in the given \p Index to mark exported values
|
||
|
// as external and non-exported values as internal.
|
||
|
void llvm::thinLTOInternalizeAndPromoteInIndex(
|
||
|
ModuleSummaryIndex &Index,
|
||
|
function_ref<bool(StringRef, ValueInfo)> isExported,
|
||
|
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
|
||
|
isPrevailing) {
|
||
|
for (auto &I : Index)
|
||
|
thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported,
|
||
|
isPrevailing);
|
||
|
}
|
||
|
|
||
|
// Requires a destructor for std::vector<InputModule>.
|
||
|
InputFile::~InputFile() = default;
|
||
|
|
||
|
Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
|
||
|
std::unique_ptr<InputFile> File(new InputFile);
|
||
|
|
||
|
Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
|
||
|
if (!FOrErr)
|
||
|
return FOrErr.takeError();
|
||
|
|
||
|
File->TargetTriple = FOrErr->TheReader.getTargetTriple();
|
||
|
File->SourceFileName = FOrErr->TheReader.getSourceFileName();
|
||
|
File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
|
||
|
File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
|
||
|
File->ComdatTable = FOrErr->TheReader.getComdatTable();
|
||
|
|
||
|
for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
|
||
|
size_t Begin = File->Symbols.size();
|
||
|
for (const irsymtab::Reader::SymbolRef &Sym :
|
||
|
FOrErr->TheReader.module_symbols(I))
|
||
|
// Skip symbols that are irrelevant to LTO. Note that this condition needs
|
||
|
// to match the one in Skip() in LTO::addRegularLTO().
|
||
|
if (Sym.isGlobal() && !Sym.isFormatSpecific())
|
||
|
File->Symbols.push_back(Sym);
|
||
|
File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
|
||
|
}
|
||
|
|
||
|
File->Mods = FOrErr->Mods;
|
||
|
File->Strtab = std::move(FOrErr->Strtab);
|
||
|
return std::move(File);
|
||
|
}
|
||
|
|
||
|
StringRef InputFile::getName() const {
|
||
|
return Mods[0].getModuleIdentifier();
|
||
|
}
|
||
|
|
||
|
BitcodeModule &InputFile::getSingleBitcodeModule() {
|
||
|
assert(Mods.size() == 1 && "Expect only one bitcode module");
|
||
|
return Mods[0];
|
||
|
}
|
||
|
|
||
|
LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
|
||
|
const Config &Conf)
|
||
|
: ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
|
||
|
Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
|
||
|
Mover(std::make_unique<IRMover>(*CombinedModule)) {}
|
||
|
|
||
|
LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
|
||
|
: Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
|
||
|
if (!Backend)
|
||
|
this->Backend =
|
||
|
createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
|
||
|
}
|
||
|
|
||
|
LTO::LTO(Config Conf, ThinBackend Backend,
|
||
|
unsigned ParallelCodeGenParallelismLevel)
|
||
|
: Conf(std::move(Conf)),
|
||
|
RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
|
||
|
ThinLTO(std::move(Backend)) {}
|
||
|
|
||
|
// Requires a destructor for MapVector<BitcodeModule>.
|
||
|
LTO::~LTO() = default;
|
||
|
|
||
|
// Add the symbols in the given module to the GlobalResolutions map, and resolve
|
||
|
// their partitions.
|
||
|
void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
|
||
|
ArrayRef<SymbolResolution> Res,
|
||
|
unsigned Partition, bool InSummary) {
|
||
|
auto *ResI = Res.begin();
|
||
|
auto *ResE = Res.end();
|
||
|
(void)ResE;
|
||
|
for (const InputFile::Symbol &Sym : Syms) {
|
||
|
assert(ResI != ResE);
|
||
|
SymbolResolution Res = *ResI++;
|
||
|
|
||
|
StringRef Name = Sym.getName();
|
||
|
Triple TT(RegularLTO.CombinedModule->getTargetTriple());
|
||
|
// Strip the __imp_ prefix from COFF dllimport symbols (similar to the
|
||
|
// way they are handled by lld), otherwise we can end up with two
|
||
|
// global resolutions (one with and one for a copy of the symbol without).
|
||
|
if (TT.isOSBinFormatCOFF() && Name.startswith("__imp_"))
|
||
|
Name = Name.substr(strlen("__imp_"));
|
||
|
auto &GlobalRes = GlobalResolutions[Name];
|
||
|
GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
|
||
|
if (Res.Prevailing) {
|
||
|
assert(!GlobalRes.Prevailing &&
|
||
|
"Multiple prevailing defs are not allowed");
|
||
|
GlobalRes.Prevailing = true;
|
||
|
GlobalRes.IRName = std::string(Sym.getIRName());
|
||
|
} else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
|
||
|
// Sometimes it can be two copies of symbol in a module and prevailing
|
||
|
// symbol can have no IR name. That might happen if symbol is defined in
|
||
|
// module level inline asm block. In case we have multiple modules with
|
||
|
// the same symbol we want to use IR name of the prevailing symbol.
|
||
|
// Otherwise, if we haven't seen a prevailing symbol, set the name so that
|
||
|
// we can later use it to check if there is any prevailing copy in IR.
|
||
|
GlobalRes.IRName = std::string(Sym.getIRName());
|
||
|
}
|
||
|
|
||
|
// Set the partition to external if we know it is re-defined by the linker
|
||
|
// with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
|
||
|
// regular object, is referenced from llvm.compiler_used, or was already
|
||
|
// recorded as being referenced from a different partition.
|
||
|
if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
|
||
|
(GlobalRes.Partition != GlobalResolution::Unknown &&
|
||
|
GlobalRes.Partition != Partition)) {
|
||
|
GlobalRes.Partition = GlobalResolution::External;
|
||
|
} else
|
||
|
// First recorded reference, save the current partition.
|
||
|
GlobalRes.Partition = Partition;
|
||
|
|
||
|
// Flag as visible outside of summary if visible from a regular object or
|
||
|
// from a module that does not have a summary.
|
||
|
GlobalRes.VisibleOutsideSummary |=
|
||
|
(Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
|
||
|
ArrayRef<SymbolResolution> Res) {
|
||
|
StringRef Path = Input->getName();
|
||
|
OS << Path << '\n';
|
||
|
auto ResI = Res.begin();
|
||
|
for (const InputFile::Symbol &Sym : Input->symbols()) {
|
||
|
assert(ResI != Res.end());
|
||
|
SymbolResolution Res = *ResI++;
|
||
|
|
||
|
OS << "-r=" << Path << ',' << Sym.getName() << ',';
|
||
|
if (Res.Prevailing)
|
||
|
OS << 'p';
|
||
|
if (Res.FinalDefinitionInLinkageUnit)
|
||
|
OS << 'l';
|
||
|
if (Res.VisibleToRegularObj)
|
||
|
OS << 'x';
|
||
|
if (Res.LinkerRedefined)
|
||
|
OS << 'r';
|
||
|
OS << '\n';
|
||
|
}
|
||
|
OS.flush();
|
||
|
assert(ResI == Res.end());
|
||
|
}
|
||
|
|
||
|
Error LTO::add(std::unique_ptr<InputFile> Input,
|
||
|
ArrayRef<SymbolResolution> Res) {
|
||
|
assert(!CalledGetMaxTasks);
|
||
|
|
||
|
if (Conf.ResolutionFile)
|
||
|
writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
|
||
|
|
||
|
if (RegularLTO.CombinedModule->getTargetTriple().empty())
|
||
|
RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
|
||
|
|
||
|
const SymbolResolution *ResI = Res.begin();
|
||
|
for (unsigned I = 0; I != Input->Mods.size(); ++I)
|
||
|
if (Error Err = addModule(*Input, I, ResI, Res.end()))
|
||
|
return Err;
|
||
|
|
||
|
assert(ResI == Res.end());
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
Error LTO::addModule(InputFile &Input, unsigned ModI,
|
||
|
const SymbolResolution *&ResI,
|
||
|
const SymbolResolution *ResE) {
|
||
|
Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
|
||
|
if (!LTOInfo)
|
||
|
return LTOInfo.takeError();
|
||
|
|
||
|
if (EnableSplitLTOUnit.hasValue()) {
|
||
|
// If only some modules were split, flag this in the index so that
|
||
|
// we can skip or error on optimizations that need consistently split
|
||
|
// modules (whole program devirt and lower type tests).
|
||
|
if (EnableSplitLTOUnit.getValue() != LTOInfo->EnableSplitLTOUnit)
|
||
|
ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
|
||
|
} else
|
||
|
EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
|
||
|
|
||
|
BitcodeModule BM = Input.Mods[ModI];
|
||
|
auto ModSyms = Input.module_symbols(ModI);
|
||
|
addModuleToGlobalRes(ModSyms, {ResI, ResE},
|
||
|
LTOInfo->IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
|
||
|
LTOInfo->HasSummary);
|
||
|
|
||
|
if (LTOInfo->IsThinLTO)
|
||
|
return addThinLTO(BM, ModSyms, ResI, ResE);
|
||
|
|
||
|
RegularLTO.EmptyCombinedModule = false;
|
||
|
Expected<RegularLTOState::AddedModule> ModOrErr =
|
||
|
addRegularLTO(BM, ModSyms, ResI, ResE);
|
||
|
if (!ModOrErr)
|
||
|
return ModOrErr.takeError();
|
||
|
|
||
|
if (!LTOInfo->HasSummary)
|
||
|
return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
|
||
|
|
||
|
// Regular LTO module summaries are added to a dummy module that represents
|
||
|
// the combined regular LTO module.
|
||
|
if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, "", -1ull))
|
||
|
return Err;
|
||
|
RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
// Checks whether the given global value is in a non-prevailing comdat
|
||
|
// (comdat containing values the linker indicated were not prevailing,
|
||
|
// which we then dropped to available_externally), and if so, removes
|
||
|
// it from the comdat. This is called for all global values to ensure the
|
||
|
// comdat is empty rather than leaving an incomplete comdat. It is needed for
|
||
|
// regular LTO modules, in case we are in a mixed-LTO mode (both regular
|
||
|
// and thin LTO modules) compilation. Since the regular LTO module will be
|
||
|
// linked first in the final native link, we want to make sure the linker
|
||
|
// doesn't select any of these incomplete comdats that would be left
|
||
|
// in the regular LTO module without this cleanup.
|
||
|
static void
|
||
|
handleNonPrevailingComdat(GlobalValue &GV,
|
||
|
std::set<const Comdat *> &NonPrevailingComdats) {
|
||
|
Comdat *C = GV.getComdat();
|
||
|
if (!C)
|
||
|
return;
|
||
|
|
||
|
if (!NonPrevailingComdats.count(C))
|
||
|
return;
|
||
|
|
||
|
// Additionally need to drop externally visible global values from the comdat
|
||
|
// to available_externally, so that there aren't multiply defined linker
|
||
|
// errors.
|
||
|
if (!GV.hasLocalLinkage())
|
||
|
GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
|
||
|
|
||
|
if (auto GO = dyn_cast<GlobalObject>(&GV))
|
||
|
GO->setComdat(nullptr);
|
||
|
}
|
||
|
|
||
|
// Add a regular LTO object to the link.
|
||
|
// The resulting module needs to be linked into the combined LTO module with
|
||
|
// linkRegularLTO.
|
||
|
Expected<LTO::RegularLTOState::AddedModule>
|
||
|
LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
|
||
|
const SymbolResolution *&ResI,
|
||
|
const SymbolResolution *ResE) {
|
||
|
RegularLTOState::AddedModule Mod;
|
||
|
Expected<std::unique_ptr<Module>> MOrErr =
|
||
|
BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
|
||
|
/*IsImporting*/ false);
|
||
|
if (!MOrErr)
|
||
|
return MOrErr.takeError();
|
||
|
Module &M = **MOrErr;
|
||
|
Mod.M = std::move(*MOrErr);
|
||
|
|
||
|
if (Error Err = M.materializeMetadata())
|
||
|
return std::move(Err);
|
||
|
UpgradeDebugInfo(M);
|
||
|
|
||
|
ModuleSymbolTable SymTab;
|
||
|
SymTab.addModule(&M);
|
||
|
|
||
|
for (GlobalVariable &GV : M.globals())
|
||
|
if (GV.hasAppendingLinkage())
|
||
|
Mod.Keep.push_back(&GV);
|
||
|
|
||
|
DenseSet<GlobalObject *> AliasedGlobals;
|
||
|
for (auto &GA : M.aliases())
|
||
|
if (GlobalObject *GO = GA.getBaseObject())
|
||
|
AliasedGlobals.insert(GO);
|
||
|
|
||
|
// In this function we need IR GlobalValues matching the symbols in Syms
|
||
|
// (which is not backed by a module), so we need to enumerate them in the same
|
||
|
// order. The symbol enumeration order of a ModuleSymbolTable intentionally
|
||
|
// matches the order of an irsymtab, but when we read the irsymtab in
|
||
|
// InputFile::create we omit some symbols that are irrelevant to LTO. The
|
||
|
// Skip() function skips the same symbols from the module as InputFile does
|
||
|
// from the symbol table.
|
||
|
auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
|
||
|
auto Skip = [&]() {
|
||
|
while (MsymI != MsymE) {
|
||
|
auto Flags = SymTab.getSymbolFlags(*MsymI);
|
||
|
if ((Flags & object::BasicSymbolRef::SF_Global) &&
|
||
|
!(Flags & object::BasicSymbolRef::SF_FormatSpecific))
|
||
|
return;
|
||
|
++MsymI;
|
||
|
}
|
||
|
};
|
||
|
Skip();
|
||
|
|
||
|
std::set<const Comdat *> NonPrevailingComdats;
|
||
|
for (const InputFile::Symbol &Sym : Syms) {
|
||
|
assert(ResI != ResE);
|
||
|
SymbolResolution Res = *ResI++;
|
||
|
|
||
|
assert(MsymI != MsymE);
|
||
|
ModuleSymbolTable::Symbol Msym = *MsymI++;
|
||
|
Skip();
|
||
|
|
||
|
if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
|
||
|
if (Res.Prevailing) {
|
||
|
if (Sym.isUndefined())
|
||
|
continue;
|
||
|
Mod.Keep.push_back(GV);
|
||
|
// For symbols re-defined with linker -wrap and -defsym options,
|
||
|
// set the linkage to weak to inhibit IPO. The linkage will be
|
||
|
// restored by the linker.
|
||
|
if (Res.LinkerRedefined)
|
||
|
GV->setLinkage(GlobalValue::WeakAnyLinkage);
|
||
|
|
||
|
GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
|
||
|
if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
|
||
|
GV->setLinkage(GlobalValue::getWeakLinkage(
|
||
|
GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
|
||
|
} else if (isa<GlobalObject>(GV) &&
|
||
|
(GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
|
||
|
GV->hasAvailableExternallyLinkage()) &&
|
||
|
!AliasedGlobals.count(cast<GlobalObject>(GV))) {
|
||
|
// Any of the above three types of linkage indicates that the
|
||
|
// chosen prevailing symbol will have the same semantics as this copy of
|
||
|
// the symbol, so we may be able to link it with available_externally
|
||
|
// linkage. We will decide later whether to do that when we link this
|
||
|
// module (in linkRegularLTO), based on whether it is undefined.
|
||
|
Mod.Keep.push_back(GV);
|
||
|
GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
|
||
|
if (GV->hasComdat())
|
||
|
NonPrevailingComdats.insert(GV->getComdat());
|
||
|
cast<GlobalObject>(GV)->setComdat(nullptr);
|
||
|
}
|
||
|
|
||
|
// Set the 'local' flag based on the linker resolution for this symbol.
|
||
|
if (Res.FinalDefinitionInLinkageUnit) {
|
||
|
GV->setDSOLocal(true);
|
||
|
if (GV->hasDLLImportStorageClass())
|
||
|
GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
|
||
|
DefaultStorageClass);
|
||
|
}
|
||
|
}
|
||
|
// Common resolution: collect the maximum size/alignment over all commons.
|
||
|
// We also record if we see an instance of a common as prevailing, so that
|
||
|
// if none is prevailing we can ignore it later.
|
||
|
if (Sym.isCommon()) {
|
||
|
// FIXME: We should figure out what to do about commons defined by asm.
|
||
|
// For now they aren't reported correctly by ModuleSymbolTable.
|
||
|
auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())];
|
||
|
CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
|
||
|
MaybeAlign SymAlign(Sym.getCommonAlignment());
|
||
|
if (SymAlign)
|
||
|
CommonRes.Align = max(*SymAlign, CommonRes.Align);
|
||
|
CommonRes.Prevailing |= Res.Prevailing;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
if (!M.getComdatSymbolTable().empty())
|
||
|
for (GlobalValue &GV : M.global_values())
|
||
|
handleNonPrevailingComdat(GV, NonPrevailingComdats);
|
||
|
assert(MsymI == MsymE);
|
||
|
return std::move(Mod);
|
||
|
}
|
||
|
|
||
|
Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
|
||
|
bool LivenessFromIndex) {
|
||
|
std::vector<GlobalValue *> Keep;
|
||
|
for (GlobalValue *GV : Mod.Keep) {
|
||
|
if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) {
|
||
|
if (Function *F = dyn_cast<Function>(GV)) {
|
||
|
OptimizationRemarkEmitter ORE(F, nullptr);
|
||
|
ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F)
|
||
|
<< ore::NV("Function", F)
|
||
|
<< " not added to the combined module ");
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!GV->hasAvailableExternallyLinkage()) {
|
||
|
Keep.push_back(GV);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Only link available_externally definitions if we don't already have a
|
||
|
// definition.
|
||
|
GlobalValue *CombinedGV =
|
||
|
RegularLTO.CombinedModule->getNamedValue(GV->getName());
|
||
|
if (CombinedGV && !CombinedGV->isDeclaration())
|
||
|
continue;
|
||
|
|
||
|
Keep.push_back(GV);
|
||
|
}
|
||
|
|
||
|
return RegularLTO.Mover->move(std::move(Mod.M), Keep,
|
||
|
[](GlobalValue &, IRMover::ValueAdder) {},
|
||
|
/* IsPerformingImport */ false);
|
||
|
}
|
||
|
|
||
|
// Add a ThinLTO module to the link.
|
||
|
Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
|
||
|
const SymbolResolution *&ResI,
|
||
|
const SymbolResolution *ResE) {
|
||
|
if (Error Err =
|
||
|
BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
|
||
|
ThinLTO.ModuleMap.size()))
|
||
|
return Err;
|
||
|
|
||
|
for (const InputFile::Symbol &Sym : Syms) {
|
||
|
assert(ResI != ResE);
|
||
|
SymbolResolution Res = *ResI++;
|
||
|
|
||
|
if (!Sym.getIRName().empty()) {
|
||
|
auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
|
||
|
Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
|
||
|
if (Res.Prevailing) {
|
||
|
ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
|
||
|
|
||
|
// For linker redefined symbols (via --wrap or --defsym) we want to
|
||
|
// switch the linkage to `weak` to prevent IPOs from happening.
|
||
|
// Find the summary in the module for this very GV and record the new
|
||
|
// linkage so that we can switch it when we import the GV.
|
||
|
if (Res.LinkerRedefined)
|
||
|
if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
|
||
|
GUID, BM.getModuleIdentifier()))
|
||
|
S->setLinkage(GlobalValue::WeakAnyLinkage);
|
||
|
}
|
||
|
|
||
|
// If the linker resolved the symbol to a local definition then mark it
|
||
|
// as local in the summary for the module we are adding.
|
||
|
if (Res.FinalDefinitionInLinkageUnit) {
|
||
|
if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
|
||
|
GUID, BM.getModuleIdentifier())) {
|
||
|
S->setDSOLocal(true);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
|
||
|
return make_error<StringError>(
|
||
|
"Expected at most one ThinLTO module per bitcode file",
|
||
|
inconvertibleErrorCode());
|
||
|
|
||
|
if (!Conf.ThinLTOModulesToCompile.empty()) {
|
||
|
if (!ThinLTO.ModulesToCompile)
|
||
|
ThinLTO.ModulesToCompile = ModuleMapType();
|
||
|
// This is a fuzzy name matching where only modules with name containing the
|
||
|
// specified switch values are going to be compiled.
|
||
|
for (const std::string &Name : Conf.ThinLTOModulesToCompile) {
|
||
|
if (BM.getModuleIdentifier().contains(Name)) {
|
||
|
ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM});
|
||
|
llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier()
|
||
|
<< " to compile\n";
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
unsigned LTO::getMaxTasks() const {
|
||
|
CalledGetMaxTasks = true;
|
||
|
auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size()
|
||
|
: ThinLTO.ModuleMap.size();
|
||
|
return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount;
|
||
|
}
|
||
|
|
||
|
// If only some of the modules were split, we cannot correctly handle
|
||
|
// code that contains type tests or type checked loads.
|
||
|
Error LTO::checkPartiallySplit() {
|
||
|
if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
|
||
|
return Error::success();
|
||
|
|
||
|
Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
|
||
|
Intrinsic::getName(Intrinsic::type_test));
|
||
|
Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
|
||
|
Intrinsic::getName(Intrinsic::type_checked_load));
|
||
|
|
||
|
// First check if there are type tests / type checked loads in the
|
||
|
// merged regular LTO module IR.
|
||
|
if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
|
||
|
(TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()))
|
||
|
return make_error<StringError>(
|
||
|
"inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
|
||
|
inconvertibleErrorCode());
|
||
|
|
||
|
// Otherwise check if there are any recorded in the combined summary from the
|
||
|
// ThinLTO modules.
|
||
|
for (auto &P : ThinLTO.CombinedIndex) {
|
||
|
for (auto &S : P.second.SummaryList) {
|
||
|
auto *FS = dyn_cast<FunctionSummary>(S.get());
|
||
|
if (!FS)
|
||
|
continue;
|
||
|
if (!FS->type_test_assume_vcalls().empty() ||
|
||
|
!FS->type_checked_load_vcalls().empty() ||
|
||
|
!FS->type_test_assume_const_vcalls().empty() ||
|
||
|
!FS->type_checked_load_const_vcalls().empty() ||
|
||
|
!FS->type_tests().empty())
|
||
|
return make_error<StringError>(
|
||
|
"inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
|
||
|
inconvertibleErrorCode());
|
||
|
}
|
||
|
}
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
Error LTO::run(AddStreamFn AddStream, NativeObjectCache Cache) {
|
||
|
// Compute "dead" symbols, we don't want to import/export these!
|
||
|
DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
|
||
|
DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
|
||
|
for (auto &Res : GlobalResolutions) {
|
||
|
// Normally resolution have IR name of symbol. We can do nothing here
|
||
|
// otherwise. See comments in GlobalResolution struct for more details.
|
||
|
if (Res.second.IRName.empty())
|
||
|
continue;
|
||
|
|
||
|
GlobalValue::GUID GUID = GlobalValue::getGUID(
|
||
|
GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
|
||
|
|
||
|
if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
|
||
|
GUIDPreservedSymbols.insert(GUID);
|
||
|
|
||
|
GUIDPrevailingResolutions[GUID] =
|
||
|
Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
|
||
|
}
|
||
|
|
||
|
auto isPrevailing = [&](GlobalValue::GUID G) {
|
||
|
auto It = GUIDPrevailingResolutions.find(G);
|
||
|
if (It == GUIDPrevailingResolutions.end())
|
||
|
return PrevailingType::Unknown;
|
||
|
return It->second;
|
||
|
};
|
||
|
computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
|
||
|
isPrevailing, Conf.OptLevel > 0);
|
||
|
|
||
|
// Setup output file to emit statistics.
|
||
|
auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
|
||
|
if (!StatsFileOrErr)
|
||
|
return StatsFileOrErr.takeError();
|
||
|
std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
|
||
|
|
||
|
Error Result = runRegularLTO(AddStream);
|
||
|
if (!Result)
|
||
|
Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
|
||
|
|
||
|
if (StatsFile)
|
||
|
PrintStatisticsJSON(StatsFile->os());
|
||
|
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
Error LTO::runRegularLTO(AddStreamFn AddStream) {
|
||
|
// Setup optimization remarks.
|
||
|
auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
|
||
|
RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename,
|
||
|
Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness,
|
||
|
Conf.RemarksHotnessThreshold);
|
||
|
if (!DiagFileOrErr)
|
||
|
return DiagFileOrErr.takeError();
|
||
|
|
||
|
// Finalize linking of regular LTO modules containing summaries now that
|
||
|
// we have computed liveness information.
|
||
|
for (auto &M : RegularLTO.ModsWithSummaries)
|
||
|
if (Error Err = linkRegularLTO(std::move(M),
|
||
|
/*LivenessFromIndex=*/true))
|
||
|
return Err;
|
||
|
|
||
|
// Ensure we don't have inconsistently split LTO units with type tests.
|
||
|
// FIXME: this checks both LTO and ThinLTO. It happens to work as we take
|
||
|
// this path both cases but eventually this should be split into two and
|
||
|
// do the ThinLTO checks in `runThinLTO`.
|
||
|
if (Error Err = checkPartiallySplit())
|
||
|
return Err;
|
||
|
|
||
|
// Make sure commons have the right size/alignment: we kept the largest from
|
||
|
// all the prevailing when adding the inputs, and we apply it here.
|
||
|
const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
|
||
|
for (auto &I : RegularLTO.Commons) {
|
||
|
if (!I.second.Prevailing)
|
||
|
// Don't do anything if no instance of this common was prevailing.
|
||
|
continue;
|
||
|
GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
|
||
|
if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
|
||
|
// Don't create a new global if the type is already correct, just make
|
||
|
// sure the alignment is correct.
|
||
|
OldGV->setAlignment(I.second.Align);
|
||
|
continue;
|
||
|
}
|
||
|
ArrayType *Ty =
|
||
|
ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
|
||
|
auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
|
||
|
GlobalValue::CommonLinkage,
|
||
|
ConstantAggregateZero::get(Ty), "");
|
||
|
GV->setAlignment(I.second.Align);
|
||
|
if (OldGV) {
|
||
|
OldGV->replaceAllUsesWith(ConstantExpr::getBitCast(GV, OldGV->getType()));
|
||
|
GV->takeName(OldGV);
|
||
|
OldGV->eraseFromParent();
|
||
|
} else {
|
||
|
GV->setName(I.first);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If allowed, upgrade public vcall visibility metadata to linkage unit
|
||
|
// visibility before whole program devirtualization in the optimizer.
|
||
|
updateVCallVisibilityInModule(*RegularLTO.CombinedModule,
|
||
|
Conf.HasWholeProgramVisibility);
|
||
|
|
||
|
if (Conf.PreOptModuleHook &&
|
||
|
!Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
|
||
|
return Error::success();
|
||
|
|
||
|
if (!Conf.CodeGenOnly) {
|
||
|
for (const auto &R : GlobalResolutions) {
|
||
|
if (!R.second.isPrevailingIRSymbol())
|
||
|
continue;
|
||
|
if (R.second.Partition != 0 &&
|
||
|
R.second.Partition != GlobalResolution::External)
|
||
|
continue;
|
||
|
|
||
|
GlobalValue *GV =
|
||
|
RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
|
||
|
// Ignore symbols defined in other partitions.
|
||
|
// Also skip declarations, which are not allowed to have internal linkage.
|
||
|
if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
|
||
|
continue;
|
||
|
GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
|
||
|
: GlobalValue::UnnamedAddr::None);
|
||
|
if (EnableLTOInternalization && R.second.Partition == 0)
|
||
|
GV->setLinkage(GlobalValue::InternalLinkage);
|
||
|
}
|
||
|
|
||
|
RegularLTO.CombinedModule->addModuleFlag(Module::Error, "LTOPostLink", 1);
|
||
|
|
||
|
if (Conf.PostInternalizeModuleHook &&
|
||
|
!Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) {
|
||
|
if (Error Err = backend(
|
||
|
Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
|
||
|
std::move(RegularLTO.CombinedModule), ThinLTO.CombinedIndex))
|
||
|
return Err;
|
||
|
}
|
||
|
|
||
|
return finalizeOptimizationRemarks(std::move(*DiagFileOrErr));
|
||
|
}
|
||
|
|
||
|
static const char *libcallRoutineNames[] = {
|
||
|
#define HANDLE_LIBCALL(code, name) name,
|
||
|
#include "llvm/IR/RuntimeLibcalls.def"
|
||
|
#undef HANDLE_LIBCALL
|
||
|
};
|
||
|
|
||
|
ArrayRef<const char*> LTO::getRuntimeLibcallSymbols() {
|
||
|
return makeArrayRef(libcallRoutineNames);
|
||
|
}
|
||
|
|
||
|
/// This class defines the interface to the ThinLTO backend.
|
||
|
class lto::ThinBackendProc {
|
||
|
protected:
|
||
|
const Config &Conf;
|
||
|
ModuleSummaryIndex &CombinedIndex;
|
||
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries;
|
||
|
|
||
|
public:
|
||
|
ThinBackendProc(const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
||
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries)
|
||
|
: Conf(Conf), CombinedIndex(CombinedIndex),
|
||
|
ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries) {}
|
||
|
|
||
|
virtual ~ThinBackendProc() {}
|
||
|
virtual Error start(
|
||
|
unsigned Task, BitcodeModule BM,
|
||
|
const FunctionImporter::ImportMapTy &ImportList,
|
||
|
const FunctionImporter::ExportSetTy &ExportList,
|
||
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
||
|
MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
|
||
|
virtual Error wait() = 0;
|
||
|
virtual unsigned getThreadCount() = 0;
|
||
|
};
|
||
|
|
||
|
namespace {
|
||
|
class InProcessThinBackend : public ThinBackendProc {
|
||
|
ThreadPool BackendThreadPool;
|
||
|
AddStreamFn AddStream;
|
||
|
NativeObjectCache Cache;
|
||
|
std::set<GlobalValue::GUID> CfiFunctionDefs;
|
||
|
std::set<GlobalValue::GUID> CfiFunctionDecls;
|
||
|
|
||
|
Optional<Error> Err;
|
||
|
std::mutex ErrMu;
|
||
|
|
||
|
public:
|
||
|
InProcessThinBackend(
|
||
|
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
||
|
ThreadPoolStrategy ThinLTOParallelism,
|
||
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
||
|
AddStreamFn AddStream, NativeObjectCache Cache)
|
||
|
: ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
|
||
|
BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)),
|
||
|
Cache(std::move(Cache)) {
|
||
|
for (auto &Name : CombinedIndex.cfiFunctionDefs())
|
||
|
CfiFunctionDefs.insert(
|
||
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
|
||
|
for (auto &Name : CombinedIndex.cfiFunctionDecls())
|
||
|
CfiFunctionDecls.insert(
|
||
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
|
||
|
}
|
||
|
|
||
|
Error runThinLTOBackendThread(
|
||
|
AddStreamFn AddStream, NativeObjectCache Cache, unsigned Task,
|
||
|
BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
|
||
|
const FunctionImporter::ImportMapTy &ImportList,
|
||
|
const FunctionImporter::ExportSetTy &ExportList,
|
||
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
||
|
const GVSummaryMapTy &DefinedGlobals,
|
||
|
MapVector<StringRef, BitcodeModule> &ModuleMap) {
|
||
|
auto RunThinBackend = [&](AddStreamFn AddStream) {
|
||
|
LTOLLVMContext BackendContext(Conf);
|
||
|
Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
|
||
|
if (!MOrErr)
|
||
|
return MOrErr.takeError();
|
||
|
|
||
|
return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
|
||
|
ImportList, DefinedGlobals, ModuleMap);
|
||
|
};
|
||
|
|
||
|
auto ModuleID = BM.getModuleIdentifier();
|
||
|
|
||
|
if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
|
||
|
all_of(CombinedIndex.getModuleHash(ModuleID),
|
||
|
[](uint32_t V) { return V == 0; }))
|
||
|
// Cache disabled or no entry for this module in the combined index or
|
||
|
// no module hash.
|
||
|
return RunThinBackend(AddStream);
|
||
|
|
||
|
SmallString<40> Key;
|
||
|
// The module may be cached, this helps handling it.
|
||
|
computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
|
||
|
ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
|
||
|
CfiFunctionDecls);
|
||
|
if (AddStreamFn CacheAddStream = Cache(Task, Key))
|
||
|
return RunThinBackend(CacheAddStream);
|
||
|
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
Error start(
|
||
|
unsigned Task, BitcodeModule BM,
|
||
|
const FunctionImporter::ImportMapTy &ImportList,
|
||
|
const FunctionImporter::ExportSetTy &ExportList,
|
||
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
||
|
MapVector<StringRef, BitcodeModule> &ModuleMap) override {
|
||
|
StringRef ModulePath = BM.getModuleIdentifier();
|
||
|
assert(ModuleToDefinedGVSummaries.count(ModulePath));
|
||
|
const GVSummaryMapTy &DefinedGlobals =
|
||
|
ModuleToDefinedGVSummaries.find(ModulePath)->second;
|
||
|
BackendThreadPool.async(
|
||
|
[=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
|
||
|
const FunctionImporter::ImportMapTy &ImportList,
|
||
|
const FunctionImporter::ExportSetTy &ExportList,
|
||
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
|
||
|
&ResolvedODR,
|
||
|
const GVSummaryMapTy &DefinedGlobals,
|
||
|
MapVector<StringRef, BitcodeModule> &ModuleMap) {
|
||
|
if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
|
||
|
timeTraceProfilerInitialize(Conf.TimeTraceGranularity,
|
||
|
"thin backend");
|
||
|
Error E = runThinLTOBackendThread(
|
||
|
AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
|
||
|
ResolvedODR, DefinedGlobals, ModuleMap);
|
||
|
if (E) {
|
||
|
std::unique_lock<std::mutex> L(ErrMu);
|
||
|
if (Err)
|
||
|
Err = joinErrors(std::move(*Err), std::move(E));
|
||
|
else
|
||
|
Err = std::move(E);
|
||
|
}
|
||
|
if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
|
||
|
timeTraceProfilerFinishThread();
|
||
|
},
|
||
|
BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
|
||
|
std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
Error wait() override {
|
||
|
BackendThreadPool.wait();
|
||
|
if (Err)
|
||
|
return std::move(*Err);
|
||
|
else
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
unsigned getThreadCount() override {
|
||
|
return BackendThreadPool.getThreadCount();
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism) {
|
||
|
return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
||
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
||
|
AddStreamFn AddStream, NativeObjectCache Cache) {
|
||
|
return std::make_unique<InProcessThinBackend>(
|
||
|
Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries, AddStream,
|
||
|
Cache);
|
||
|
};
|
||
|
}
|
||
|
|
||
|
// Given the original \p Path to an output file, replace any path
|
||
|
// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
|
||
|
// resulting directory if it does not yet exist.
|
||
|
std::string lto::getThinLTOOutputFile(const std::string &Path,
|
||
|
const std::string &OldPrefix,
|
||
|
const std::string &NewPrefix) {
|
||
|
if (OldPrefix.empty() && NewPrefix.empty())
|
||
|
return Path;
|
||
|
SmallString<128> NewPath(Path);
|
||
|
llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
|
||
|
StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
|
||
|
if (!ParentPath.empty()) {
|
||
|
// Make sure the new directory exists, creating it if necessary.
|
||
|
if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
|
||
|
llvm::errs() << "warning: could not create directory '" << ParentPath
|
||
|
<< "': " << EC.message() << '\n';
|
||
|
}
|
||
|
return std::string(NewPath.str());
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
class WriteIndexesThinBackend : public ThinBackendProc {
|
||
|
std::string OldPrefix, NewPrefix;
|
||
|
bool ShouldEmitImportsFiles;
|
||
|
raw_fd_ostream *LinkedObjectsFile;
|
||
|
lto::IndexWriteCallback OnWrite;
|
||
|
|
||
|
public:
|
||
|
WriteIndexesThinBackend(
|
||
|
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
||
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
||
|
std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
|
||
|
raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
|
||
|
: ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries),
|
||
|
OldPrefix(OldPrefix), NewPrefix(NewPrefix),
|
||
|
ShouldEmitImportsFiles(ShouldEmitImportsFiles),
|
||
|
LinkedObjectsFile(LinkedObjectsFile), OnWrite(OnWrite) {}
|
||
|
|
||
|
Error start(
|
||
|
unsigned Task, BitcodeModule BM,
|
||
|
const FunctionImporter::ImportMapTy &ImportList,
|
||
|
const FunctionImporter::ExportSetTy &ExportList,
|
||
|
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
|
||
|
MapVector<StringRef, BitcodeModule> &ModuleMap) override {
|
||
|
StringRef ModulePath = BM.getModuleIdentifier();
|
||
|
std::string NewModulePath =
|
||
|
getThinLTOOutputFile(std::string(ModulePath), OldPrefix, NewPrefix);
|
||
|
|
||
|
if (LinkedObjectsFile)
|
||
|
*LinkedObjectsFile << NewModulePath << '\n';
|
||
|
|
||
|
std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
|
||
|
gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
|
||
|
ImportList, ModuleToSummariesForIndex);
|
||
|
|
||
|
std::error_code EC;
|
||
|
raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
|
||
|
sys::fs::OpenFlags::OF_None);
|
||
|
if (EC)
|
||
|
return errorCodeToError(EC);
|
||
|
WriteIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex);
|
||
|
|
||
|
if (ShouldEmitImportsFiles) {
|
||
|
EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
|
||
|
ModuleToSummariesForIndex);
|
||
|
if (EC)
|
||
|
return errorCodeToError(EC);
|
||
|
}
|
||
|
|
||
|
if (OnWrite)
|
||
|
OnWrite(std::string(ModulePath));
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
Error wait() override { return Error::success(); }
|
||
|
|
||
|
// WriteIndexesThinBackend should always return 1 to prevent module
|
||
|
// re-ordering and avoid non-determinism in the final link.
|
||
|
unsigned getThreadCount() override { return 1; }
|
||
|
};
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
ThinBackend lto::createWriteIndexesThinBackend(
|
||
|
std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles,
|
||
|
raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
|
||
|
return [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
|
||
|
const StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
|
||
|
AddStreamFn AddStream, NativeObjectCache Cache) {
|
||
|
return std::make_unique<WriteIndexesThinBackend>(
|
||
|
Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix, NewPrefix,
|
||
|
ShouldEmitImportsFiles, LinkedObjectsFile, OnWrite);
|
||
|
};
|
||
|
}
|
||
|
|
||
|
Error LTO::runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
|
||
|
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
|
||
|
if (ThinLTO.ModuleMap.empty())
|
||
|
return Error::success();
|
||
|
|
||
|
if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) {
|
||
|
llvm::errs() << "warning: [ThinLTO] No module compiled\n";
|
||
|
return Error::success();
|
||
|
}
|
||
|
|
||
|
if (Conf.CombinedIndexHook &&
|
||
|
!Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols))
|
||
|
return Error::success();
|
||
|
|
||
|
// Collect for each module the list of function it defines (GUID ->
|
||
|
// Summary).
|
||
|
StringMap<GVSummaryMapTy>
|
||
|
ModuleToDefinedGVSummaries(ThinLTO.ModuleMap.size());
|
||
|
ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
|
||
|
ModuleToDefinedGVSummaries);
|
||
|
// Create entries for any modules that didn't have any GV summaries
|
||
|
// (either they didn't have any GVs to start with, or we suppressed
|
||
|
// generation of the summaries because they e.g. had inline assembly
|
||
|
// uses that couldn't be promoted/renamed on export). This is so
|
||
|
// InProcessThinBackend::start can still launch a backend thread, which
|
||
|
// is passed the map of summaries for the module, without any special
|
||
|
// handling for this case.
|
||
|
for (auto &Mod : ThinLTO.ModuleMap)
|
||
|
if (!ModuleToDefinedGVSummaries.count(Mod.first))
|
||
|
ModuleToDefinedGVSummaries.try_emplace(Mod.first);
|
||
|
|
||
|
// Synthesize entry counts for functions in the CombinedIndex.
|
||
|
computeSyntheticCounts(ThinLTO.CombinedIndex);
|
||
|
|
||
|
StringMap<FunctionImporter::ImportMapTy> ImportLists(
|
||
|
ThinLTO.ModuleMap.size());
|
||
|
StringMap<FunctionImporter::ExportSetTy> ExportLists(
|
||
|
ThinLTO.ModuleMap.size());
|
||
|
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
|
||
|
|
||
|
if (DumpThinCGSCCs)
|
||
|
ThinLTO.CombinedIndex.dumpSCCs(outs());
|
||
|
|
||
|
std::set<GlobalValue::GUID> ExportedGUIDs;
|
||
|
|
||
|
// If allowed, upgrade public vcall visibility to linkage unit visibility in
|
||
|
// the summaries before whole program devirtualization below.
|
||
|
updateVCallVisibilityInIndex(ThinLTO.CombinedIndex,
|
||
|
Conf.HasWholeProgramVisibility);
|
||
|
|
||
|
// Perform index-based WPD. This will return immediately if there are
|
||
|
// no index entries in the typeIdMetadata map (e.g. if we are instead
|
||
|
// performing IR-based WPD in hybrid regular/thin LTO mode).
|
||
|
std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
|
||
|
runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
|
||
|
LocalWPDTargetsMap);
|
||
|
|
||
|
if (Conf.OptLevel > 0)
|
||
|
ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
|
||
|
ImportLists, ExportLists);
|
||
|
|
||
|
// Figure out which symbols need to be internalized. This also needs to happen
|
||
|
// at -O0 because summary-based DCE is implemented using internalization, and
|
||
|
// we must apply DCE consistently with the full LTO module in order to avoid
|
||
|
// undefined references during the final link.
|
||
|
for (auto &Res : GlobalResolutions) {
|
||
|
// If the symbol does not have external references or it is not prevailing,
|
||
|
// then not need to mark it as exported from a ThinLTO partition.
|
||
|
if (Res.second.Partition != GlobalResolution::External ||
|
||
|
!Res.second.isPrevailingIRSymbol())
|
||
|
continue;
|
||
|
auto GUID = GlobalValue::getGUID(
|
||
|
GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
|
||
|
// Mark exported unless index-based analysis determined it to be dead.
|
||
|
if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
|
||
|
ExportedGUIDs.insert(GUID);
|
||
|
}
|
||
|
|
||
|
// Any functions referenced by the jump table in the regular LTO object must
|
||
|
// be exported.
|
||
|
for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
|
||
|
ExportedGUIDs.insert(
|
||
|
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
|
||
|
|
||
|
auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
|
||
|
const auto &ExportList = ExportLists.find(ModuleIdentifier);
|
||
|
return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
|
||
|
ExportedGUIDs.count(VI.getGUID());
|
||
|
};
|
||
|
|
||
|
// Update local devirtualized targets that were exported by cross-module
|
||
|
// importing or by other devirtualizations marked in the ExportedGUIDs set.
|
||
|
updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
|
||
|
LocalWPDTargetsMap);
|
||
|
|
||
|
auto isPrevailing = [&](GlobalValue::GUID GUID,
|
||
|
const GlobalValueSummary *S) {
|
||
|
return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
|
||
|
};
|
||
|
thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
|
||
|
isPrevailing);
|
||
|
|
||
|
auto recordNewLinkage = [&](StringRef ModuleIdentifier,
|
||
|
GlobalValue::GUID GUID,
|
||
|
GlobalValue::LinkageTypes NewLinkage) {
|
||
|
ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
|
||
|
};
|
||
|
thinLTOResolvePrevailingInIndex(ThinLTO.CombinedIndex, isPrevailing,
|
||
|
recordNewLinkage, GUIDPreservedSymbols);
|
||
|
|
||
|
generateParamAccessSummary(ThinLTO.CombinedIndex);
|
||
|
|
||
|
std::unique_ptr<ThinBackendProc> BackendProc =
|
||
|
ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
|
||
|
AddStream, Cache);
|
||
|
|
||
|
auto &ModuleMap =
|
||
|
ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap;
|
||
|
|
||
|
auto ProcessOneModule = [&](int I) -> Error {
|
||
|
auto &Mod = *(ModuleMap.begin() + I);
|
||
|
// Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
|
||
|
// combined module and parallel code generation partitions.
|
||
|
return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I,
|
||
|
Mod.second, ImportLists[Mod.first],
|
||
|
ExportLists[Mod.first], ResolvedODR[Mod.first],
|
||
|
ThinLTO.ModuleMap);
|
||
|
};
|
||
|
|
||
|
if (BackendProc->getThreadCount() == 1) {
|
||
|
// Process the modules in the order they were provided on the command-line.
|
||
|
// It is important for this codepath to be used for WriteIndexesThinBackend,
|
||
|
// to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
|
||
|
// order as the inputs, which otherwise would affect the final link order.
|
||
|
for (int I = 0, E = ModuleMap.size(); I != E; ++I)
|
||
|
if (Error E = ProcessOneModule(I))
|
||
|
return E;
|
||
|
} else {
|
||
|
// When executing in parallel, process largest bitsize modules first to
|
||
|
// improve parallelism, and avoid starving the thread pool near the end.
|
||
|
// This saves about 15 sec on a 36-core machine while link `clang.exe` (out
|
||
|
// of 100 sec).
|
||
|
std::vector<BitcodeModule *> ModulesVec;
|
||
|
ModulesVec.reserve(ModuleMap.size());
|
||
|
for (auto &Mod : ModuleMap)
|
||
|
ModulesVec.push_back(&Mod.second);
|
||
|
for (int I : generateModulesOrdering(ModulesVec))
|
||
|
if (Error E = ProcessOneModule(I))
|
||
|
return E;
|
||
|
}
|
||
|
return BackendProc->wait();
|
||
|
}
|
||
|
|
||
|
Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks(
|
||
|
LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
|
||
|
StringRef RemarksFormat, bool RemarksWithHotness,
|
||
|
Optional<uint64_t> RemarksHotnessThreshold, int Count) {
|
||
|
std::string Filename = std::string(RemarksFilename);
|
||
|
// For ThinLTO, file.opt.<format> becomes
|
||
|
// file.opt.<format>.thin.<num>.<format>.
|
||
|
if (!Filename.empty() && Count != -1)
|
||
|
Filename =
|
||
|
(Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat)
|
||
|
.str();
|
||
|
|
||
|
auto ResultOrErr = llvm::setupLLVMOptimizationRemarks(
|
||
|
Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness,
|
||
|
RemarksHotnessThreshold);
|
||
|
if (Error E = ResultOrErr.takeError())
|
||
|
return std::move(E);
|
||
|
|
||
|
if (*ResultOrErr)
|
||
|
(*ResultOrErr)->keep();
|
||
|
|
||
|
return ResultOrErr;
|
||
|
}
|
||
|
|
||
|
Expected<std::unique_ptr<ToolOutputFile>>
|
||
|
lto::setupStatsFile(StringRef StatsFilename) {
|
||
|
// Setup output file to emit statistics.
|
||
|
if (StatsFilename.empty())
|
||
|
return nullptr;
|
||
|
|
||
|
llvm::EnableStatistics(false);
|
||
|
std::error_code EC;
|
||
|
auto StatsFile =
|
||
|
std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
|
||
|
if (EC)
|
||
|
return errorCodeToError(EC);
|
||
|
|
||
|
StatsFile->keep();
|
||
|
return std::move(StatsFile);
|
||
|
}
|
||
|
|
||
|
// Compute the ordering we will process the inputs: the rough heuristic here
|
||
|
// is to sort them per size so that the largest module get schedule as soon as
|
||
|
// possible. This is purely a compile-time optimization.
|
||
|
std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) {
|
||
|
std::vector<int> ModulesOrdering;
|
||
|
ModulesOrdering.resize(R.size());
|
||
|
std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
|
||
|
llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) {
|
||
|
auto LSize = R[LeftIndex]->getBuffer().size();
|
||
|
auto RSize = R[RightIndex]->getBuffer().size();
|
||
|
return LSize > RSize;
|
||
|
});
|
||
|
return ModulesOrdering;
|
||
|
}
|