llvm-for-llvmta/lib/Target/ARM/MVETailPredication.cpp

430 lines
17 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions,
/// combined with a new form of predication called tail-predication, can be used
/// to provide implicit vector predication within a low-overhead loop.
/// This is implicit because the predicate of active/inactive lanes is
/// calculated by hardware, and thus does not need to be explicitly passed
/// to vector instructions. The instructions responsible for this are the
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
/// the total number of data elements processed by the loop. The loop-end
/// LETP instruction is responsible for decrementing and setting the remaining
/// elements to be processed and generating the mask of active lanes.
///
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
/// get.active.lane.mask intrinsic and attempts to convert them to VCTP
/// instructions. This will be picked up by the ARM Low-overhead loop pass later
/// in the backend, which performs the final transformation to a DLSTP or WLSTP
/// tail-predicated loop.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
using namespace llvm;
#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"
cl::opt<TailPredication::Mode> EnableTailPredication(
"tail-predication", cl::desc("MVE tail-predication pass options"),
cl::init(TailPredication::Enabled),
cl::values(clEnumValN(TailPredication::Disabled, "disabled",
"Don't tail-predicate loops"),
clEnumValN(TailPredication::EnabledNoReductions,
"enabled-no-reductions",
"Enable tail-predication, but not for reduction loops"),
clEnumValN(TailPredication::Enabled,
"enabled",
"Enable tail-predication, including reduction loops"),
clEnumValN(TailPredication::ForceEnabledNoReductions,
"force-enabled-no-reductions",
"Enable tail-predication, but not for reduction loops, "
"and force this which might be unsafe"),
clEnumValN(TailPredication::ForceEnabled,
"force-enabled",
"Enable tail-predication, including reduction loops, "
"and force this which might be unsafe")));
namespace {
class MVETailPredication : public LoopPass {
SmallVector<IntrinsicInst*, 4> MaskedInsts;
Loop *L = nullptr;
ScalarEvolution *SE = nullptr;
TargetTransformInfo *TTI = nullptr;
const ARMSubtarget *ST = nullptr;
public:
static char ID;
MVETailPredication() : LoopPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.setPreservesCFG();
}
bool runOnLoop(Loop *L, LPPassManager&) override;
private:
/// Perform the relevant checks on the loop and convert active lane masks if
/// possible.
bool TryConvertActiveLaneMask(Value *TripCount);
/// Perform several checks on the arguments of @llvm.get.active.lane.mask
/// intrinsic. E.g., check that the loop induction variable and the element
/// count are of the form we expect, and also perform overflow checks for
/// the new expressions that are created.
bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount);
/// Insert the intrinsic to represent the effect of tail predication.
void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount);
/// Rematerialize the iteration count in exit blocks, which enables
/// ARMLowOverheadLoops to better optimise away loop update statements inside
/// hardware-loops.
void RematerializeIterCount();
};
} // end namespace
bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
if (skipLoop(L) || !EnableTailPredication)
return false;
MaskedInsts.clear();
Function &F = *L->getHeader()->getParent();
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<TargetMachine>();
ST = &TM.getSubtarget<ARMSubtarget>(F);
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
this->L = L;
// The MVE and LOB extensions are combined to enable tail-predication, but
// there's nothing preventing us from generating VCTP instructions for v8.1m.
if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
for (auto &I : *BB) {
auto *Call = dyn_cast<IntrinsicInst>(&I);
if (!Call)
continue;
Intrinsic::ID ID = Call->getIntrinsicID();
if (ID == Intrinsic::start_loop_iterations ||
ID == Intrinsic::test_set_loop_iterations)
return cast<IntrinsicInst>(&I);
}
return nullptr;
};
// Look for the hardware loop intrinsic that sets the iteration count.
IntrinsicInst *Setup = FindLoopIterations(Preheader);
// The test.set iteration could live in the pre-preheader.
if (!Setup) {
if (!Preheader->getSinglePredecessor())
return false;
Setup = FindLoopIterations(Preheader->getSinglePredecessor());
if (!Setup)
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n");
bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0));
return Changed;
}
// The active lane intrinsic has this form:
//
// @llvm.get.active.lane.mask(IV, TC)
//
// Here we perform checks that this intrinsic behaves as expected,
// which means:
//
// 1) Check that the TripCount (TC) belongs to this loop (originally).
// 2) The element count (TC) needs to be sufficiently large that the decrement
// of element counter doesn't overflow, which means that we need to prove:
// ceil(ElementCount / VectorWidth) >= TripCount
// by rounding up ElementCount up:
// ((ElementCount + (VectorWidth - 1)) / VectorWidth
// and evaluate if expression isKnownNonNegative:
// (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
// 3) The IV must be an induction phi with an increment equal to the
// vector width.
bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
Value *TripCount) {
bool ForceTailPredication =
EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
EnableTailPredication == TailPredication::ForceEnabled;
Value *ElemCount = ActiveLaneMask->getOperand(1);
auto *EC= SE->getSCEV(ElemCount);
auto *TC = SE->getSCEV(TripCount);
int VectorWidth =
cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
if (VectorWidth != 4 && VectorWidth != 8 && VectorWidth != 16)
return false;
ConstantInt *ConstElemCount = nullptr;
// 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
// this loop. The scalar tripcount corresponds the number of elements
// processed by the loop, so we will refer to that from this point on.
if (!SE->isLoopInvariant(EC, L)) {
LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
return false;
}
if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) {
ConstantInt *TC = dyn_cast<ConstantInt>(TripCount);
if (!TC) {
LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
"set.loop.iterations\n");
return false;
}
// Calculate 2 tripcount values and check that they are consistent with
// each other. The TripCount for a predicated vector loop body is
// ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
// work it out here.
uint64_t TC1 = TC->getZExtValue();
uint64_t TC2 =
(ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth;
// If the tripcount values are inconsistent, we can't insert the VCTP and
// trigger tail-predication; keep the intrinsic as a get.active.lane.mask
// and legalize this.
if (TC1 != TC2) {
LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
<< TC1 << " from set.loop.iterations, and "
<< TC2 << " from get.active.lane.mask\n");
return false;
}
} else if (!ForceTailPredication) {
// 2) We need to prove that the sub expression that we create in the
// tail-predicated loop body, which calculates the remaining elements to be
// processed, is non-negative, i.e. it doesn't overflow:
//
// ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
//
// This is true if:
//
// TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
//
// which what we will be using here.
//
auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth));
// ElementCount + (VW-1):
auto *ECPlusVWMinus1 = SE->getAddExpr(EC,
SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
// Ceil = ElementCount + (VW-1) / VW
auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW);
// Prevent unused variable warnings with TC
(void)TC;
LLVM_DEBUG(
dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
dbgs() << "ARM TP: - TripCount = "; TC->dump();
dbgs() << "ARM TP: - ElemCount = "; EC->dump();
dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n";
dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = "; Ceil->dump();
);
// As an example, almost all the tripcount expressions (produced by the
// vectoriser) look like this:
//
// TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw>) /u 4)
//
// and "ElementCount + (VW-1) / VW":
//
// Ceil = ((3 + %N) /u 4)
//
// Check for equality of TC and Ceil by calculating SCEV expression
// TC - Ceil and test it for zero.
//
bool Zero = SE->getMinusSCEV(
SE->getBackedgeTakenCount(L),
SE->getUDivExpr(SE->getAddExpr(SE->getMulExpr(Ceil, VW),
SE->getNegativeSCEV(VW)),
VW))
->isZero();
if (!Zero) {
LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
return false;
}
}
// 3) Find out if IV is an induction phi. Note that we can't use Loop
// helpers here to get the induction variable, because the hardware loop is
// no longer in loopsimplify form, and also the hwloop intrinsic uses a
// different counter. Using SCEV, we check that the induction is of the
// form i = i + 4, where the increment must be equal to the VectorWidth.
auto *IV = ActiveLaneMask->getOperand(0);
auto *IVExpr = SE->getSCEV(IV);
auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
if (!AddExpr) {
LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
return false;
}
// Check that this AddRec is associated with this loop.
if (AddExpr->getLoop() != L) {
LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
return false;
}
auto *Base = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
if (!Base || !Base->isZero()) {
LLVM_DEBUG(dbgs() << "ARM TP: induction base is not 0\n");
return false;
}
auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
if (!Step) {
LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
AddExpr->getOperand(1)->dump());
return false;
}
auto StepValue = Step->getValue()->getSExtValue();
if (VectorWidth == StepValue)
return true;
LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
<< " doesn't match vector width " << VectorWidth << "\n");
return false;
}
void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
Value *TripCount) {
IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
Module *M = L->getHeader()->getModule();
Type *Ty = IntegerType::get(M->getContext(), 32);
unsigned VectorWidth =
cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements();
// Insert a phi to count the number of elements processed by the loop.
Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI());
PHINode *Processed = Builder.CreatePHI(Ty, 2);
Processed->addIncoming(ActiveLaneMask->getOperand(1), L->getLoopPreheader());
// Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
// thus represent the effect of tail predication.
Builder.SetInsertPoint(ActiveLaneMask);
ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);
Intrinsic::ID VCTPID;
switch (VectorWidth) {
default:
llvm_unreachable("unexpected number of lanes");
case 4: VCTPID = Intrinsic::arm_mve_vctp32; break;
case 8: VCTPID = Intrinsic::arm_mve_vctp16; break;
case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;
// FIXME: vctp64 currently not supported because the predicate
// vector wants to be <2 x i1>, but v2i1 is not a legal MVE
// type, so problems happen at isel time.
// Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
// purposes, but takes a v4i1 instead of a v2i1.
}
Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
ActiveLaneMask->replaceAllUsesWith(VCTPCall);
// Add the incoming value to the new phi.
// TODO: This add likely already exists in the loop.
Value *Remaining = Builder.CreateSub(Processed, Factor);
Processed->addIncoming(Remaining, L->getLoopLatch());
LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
<< *Processed << "\n"
<< "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
}
bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) {
SmallVector<IntrinsicInst *, 4> ActiveLaneMasks;
for (auto *BB : L->getBlocks())
for (auto &I : *BB)
if (auto *Int = dyn_cast<IntrinsicInst>(&I))
if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask)
ActiveLaneMasks.push_back(Int);
if (ActiveLaneMasks.empty())
return false;
LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
for (auto *ActiveLaneMask : ActiveLaneMasks) {
LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
<< *ActiveLaneMask << "\n");
if (!IsSafeActiveMask(ActiveLaneMask, TripCount)) {
LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
return false;
}
LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
InsertVCTPIntrinsic(ActiveLaneMask, TripCount);
}
// Remove dead instructions and now dead phis.
for (auto *II : ActiveLaneMasks)
RecursivelyDeleteTriviallyDeadInstructions(II);
for (auto I : L->blocks())
DeleteDeadPHIs(I);
return true;
}
Pass *llvm::createMVETailPredicationPass() {
return new MVETailPredication();
}
char MVETailPredication::ID = 0;
INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)