llvm-for-llvmta/lib/Target/Hexagon/HexagonAsmPrinter.cpp

777 lines
27 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- HexagonAsmPrinter.cpp - Print machine instrs to Hexagon assembly ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to Hexagon assembly language. This printer is
// the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#include "HexagonAsmPrinter.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "MCTargetDesc/HexagonInstPrinter.h"
#include "MCTargetDesc/HexagonMCExpr.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "TargetInfo/HexagonTargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <string>
using namespace llvm;
namespace llvm {
void HexagonLowerToMC(const MCInstrInfo &MCII, const MachineInstr *MI,
MCInst &MCB, HexagonAsmPrinter &AP);
} // end namespace llvm
#define DEBUG_TYPE "asm-printer"
// Given a scalar register return its pair.
inline static unsigned getHexagonRegisterPair(unsigned Reg,
const MCRegisterInfo *RI) {
assert(Hexagon::IntRegsRegClass.contains(Reg));
MCSuperRegIterator SR(Reg, RI, false);
unsigned Pair = *SR;
assert(Hexagon::DoubleRegsRegClass.contains(Pair));
return Pair;
}
void HexagonAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default:
llvm_unreachable ("<unknown operand type>");
case MachineOperand::MO_Register:
O << HexagonInstPrinter::getRegisterName(MO.getReg());
return;
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
case MachineOperand::MO_ConstantPoolIndex:
GetCPISymbol(MO.getIndex())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress:
PrintSymbolOperand(MO, O);
return;
}
}
// isBlockOnlyReachableByFallthrough - We need to override this since the
// default AsmPrinter does not print labels for any basic block that
// is only reachable by a fall through. That works for all cases except
// for the case in which the basic block is reachable by a fall through but
// through an indirect from a jump table. In this case, the jump table
// will contain a label not defined by AsmPrinter.
bool HexagonAsmPrinter::isBlockOnlyReachableByFallthrough(
const MachineBasicBlock *MBB) const {
if (MBB->hasAddressTaken())
return false;
return AsmPrinter::isBlockOnlyReachableByFallthrough(MBB);
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
bool HexagonAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode,
raw_ostream &OS) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS);
case 'L':
case 'H': { // The highest-numbered register of a pair.
const MachineOperand &MO = MI->getOperand(OpNo);
const MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!MO.isReg())
return true;
Register RegNumber = MO.getReg();
// This should be an assert in the frontend.
if (Hexagon::DoubleRegsRegClass.contains(RegNumber))
RegNumber = TRI->getSubReg(RegNumber, ExtraCode[0] == 'L' ?
Hexagon::isub_lo :
Hexagon::isub_hi);
OS << HexagonInstPrinter::getRegisterName(RegNumber);
return false;
}
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
OS << "i";
return false;
}
}
printOperand(MI, OpNo, OS);
return false;
}
bool HexagonAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
const MachineOperand &Base = MI->getOperand(OpNo);
const MachineOperand &Offset = MI->getOperand(OpNo+1);
if (Base.isReg())
printOperand(MI, OpNo, O);
else
llvm_unreachable("Unimplemented");
if (Offset.isImm()) {
if (Offset.getImm())
O << "+#" << Offset.getImm();
} else {
llvm_unreachable("Unimplemented");
}
return false;
}
static MCSymbol *smallData(AsmPrinter &AP, const MachineInstr &MI,
MCStreamer &OutStreamer, const MCOperand &Imm,
int AlignSize) {
MCSymbol *Sym;
int64_t Value;
if (Imm.getExpr()->evaluateAsAbsolute(Value)) {
StringRef sectionPrefix;
std::string ImmString;
StringRef Name;
if (AlignSize == 8) {
Name = ".CONST_0000000000000000";
sectionPrefix = ".gnu.linkonce.l8";
ImmString = utohexstr(Value);
} else {
Name = ".CONST_00000000";
sectionPrefix = ".gnu.linkonce.l4";
ImmString = utohexstr(static_cast<uint32_t>(Value));
}
std::string symbolName = // Yes, leading zeros are kept.
Name.drop_back(ImmString.size()).str() + ImmString;
std::string sectionName = sectionPrefix.str() + symbolName;
MCSectionELF *Section = OutStreamer.getContext().getELFSection(
sectionName, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer.SwitchSection(Section);
Sym = AP.OutContext.getOrCreateSymbol(Twine(symbolName));
if (Sym->isUndefined()) {
OutStreamer.emitLabel(Sym);
OutStreamer.emitSymbolAttribute(Sym, MCSA_Global);
OutStreamer.emitIntValue(Value, AlignSize);
OutStreamer.emitCodeAlignment(AlignSize);
}
} else {
assert(Imm.isExpr() && "Expected expression and found none");
const MachineOperand &MO = MI.getOperand(1);
assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
MCSymbol *MOSymbol = nullptr;
if (MO.isGlobal())
MOSymbol = AP.getSymbol(MO.getGlobal());
else if (MO.isCPI())
MOSymbol = AP.GetCPISymbol(MO.getIndex());
else if (MO.isJTI())
MOSymbol = AP.GetJTISymbol(MO.getIndex());
else
llvm_unreachable("Unknown operand type!");
StringRef SymbolName = MOSymbol->getName();
std::string LitaName = ".CONST_" + SymbolName.str();
MCSectionELF *Section = OutStreamer.getContext().getELFSection(
".lita", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer.SwitchSection(Section);
Sym = AP.OutContext.getOrCreateSymbol(Twine(LitaName));
if (Sym->isUndefined()) {
OutStreamer.emitLabel(Sym);
OutStreamer.emitSymbolAttribute(Sym, MCSA_Local);
OutStreamer.emitValue(Imm.getExpr(), AlignSize);
OutStreamer.emitCodeAlignment(AlignSize);
}
}
return Sym;
}
static MCInst ScaleVectorOffset(MCInst &Inst, unsigned OpNo,
unsigned VectorSize, MCContext &Ctx) {
MCInst T;
T.setOpcode(Inst.getOpcode());
for (unsigned i = 0, n = Inst.getNumOperands(); i != n; ++i) {
if (i != OpNo) {
T.addOperand(Inst.getOperand(i));
continue;
}
MCOperand &ImmOp = Inst.getOperand(i);
const auto *HE = static_cast<const HexagonMCExpr*>(ImmOp.getExpr());
int32_t V = cast<MCConstantExpr>(HE->getExpr())->getValue();
auto *NewCE = MCConstantExpr::create(V / int32_t(VectorSize), Ctx);
auto *NewHE = HexagonMCExpr::create(NewCE, Ctx);
T.addOperand(MCOperand::createExpr(NewHE));
}
return T;
}
void HexagonAsmPrinter::HexagonProcessInstruction(MCInst &Inst,
const MachineInstr &MI) {
MCInst &MappedInst = static_cast <MCInst &>(Inst);
const MCRegisterInfo *RI = OutStreamer->getContext().getRegisterInfo();
const MachineFunction &MF = *MI.getParent()->getParent();
auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
unsigned VectorSize = HRI.getRegSizeInBits(Hexagon::HvxVRRegClass) / 8;
switch (Inst.getOpcode()) {
default:
return;
case Hexagon::A2_iconst: {
Inst.setOpcode(Hexagon::A2_addi);
MCOperand Reg = Inst.getOperand(0);
MCOperand S16 = Inst.getOperand(1);
HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
HexagonMCInstrInfo::setS27_2_reloc(*S16.getExpr());
Inst.clear();
Inst.addOperand(Reg);
Inst.addOperand(MCOperand::createReg(Hexagon::R0));
Inst.addOperand(S16);
break;
}
case Hexagon::A2_tfrf: {
const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
Inst.setOpcode(Hexagon::A2_paddif);
Inst.addOperand(MCOperand::createExpr(Zero));
break;
}
case Hexagon::A2_tfrt: {
const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
Inst.setOpcode(Hexagon::A2_paddit);
Inst.addOperand(MCOperand::createExpr(Zero));
break;
}
case Hexagon::A2_tfrfnew: {
const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
Inst.setOpcode(Hexagon::A2_paddifnew);
Inst.addOperand(MCOperand::createExpr(Zero));
break;
}
case Hexagon::A2_tfrtnew: {
const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
Inst.setOpcode(Hexagon::A2_padditnew);
Inst.addOperand(MCOperand::createExpr(Zero));
break;
}
case Hexagon::A2_zxtb: {
const MCConstantExpr *C255 = MCConstantExpr::create(255, OutContext);
Inst.setOpcode(Hexagon::A2_andir);
Inst.addOperand(MCOperand::createExpr(C255));
break;
}
// "$dst = CONST64(#$src1)",
case Hexagon::CONST64:
if (!OutStreamer->hasRawTextSupport()) {
const MCOperand &Imm = MappedInst.getOperand(1);
MCSectionSubPair Current = OutStreamer->getCurrentSection();
MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 8);
OutStreamer->SwitchSection(Current.first, Current.second);
MCInst TmpInst;
MCOperand &Reg = MappedInst.getOperand(0);
TmpInst.setOpcode(Hexagon::L2_loadrdgp);
TmpInst.addOperand(Reg);
TmpInst.addOperand(MCOperand::createExpr(
MCSymbolRefExpr::create(Sym, OutContext)));
MappedInst = TmpInst;
}
break;
case Hexagon::CONST32:
if (!OutStreamer->hasRawTextSupport()) {
MCOperand &Imm = MappedInst.getOperand(1);
MCSectionSubPair Current = OutStreamer->getCurrentSection();
MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 4);
OutStreamer->SwitchSection(Current.first, Current.second);
MCInst TmpInst;
MCOperand &Reg = MappedInst.getOperand(0);
TmpInst.setOpcode(Hexagon::L2_loadrigp);
TmpInst.addOperand(Reg);
TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
MCSymbolRefExpr::create(Sym, OutContext), OutContext)));
MappedInst = TmpInst;
}
break;
// C2_pxfer_map maps to C2_or instruction. Though, it's possible to use
// C2_or during instruction selection itself but it results
// into suboptimal code.
case Hexagon::C2_pxfer_map: {
MCOperand &Ps = Inst.getOperand(1);
MappedInst.setOpcode(Hexagon::C2_or);
MappedInst.addOperand(Ps);
return;
}
// Vector reduce complex multiply by scalar, Rt & 1 map to :hi else :lo
// The insn is mapped from the 4 operand to the 3 operand raw form taking
// 3 register pairs.
case Hexagon::M2_vrcmpys_acc_s1: {
MCOperand &Rt = Inst.getOperand(3);
assert(Rt.isReg() && "Expected register and none was found");
unsigned Reg = RI->getEncodingValue(Rt.getReg());
if (Reg & 1)
MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
else
MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
return;
}
case Hexagon::M2_vrcmpys_s1: {
MCOperand &Rt = Inst.getOperand(2);
assert(Rt.isReg() && "Expected register and none was found");
unsigned Reg = RI->getEncodingValue(Rt.getReg());
if (Reg & 1)
MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
else
MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
return;
}
case Hexagon::M2_vrcmpys_s1rp: {
MCOperand &Rt = Inst.getOperand(2);
assert(Rt.isReg() && "Expected register and none was found");
unsigned Reg = RI->getEncodingValue(Rt.getReg());
if (Reg & 1)
MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
else
MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
return;
}
case Hexagon::A4_boundscheck: {
MCOperand &Rs = Inst.getOperand(1);
assert(Rs.isReg() && "Expected register and none was found");
unsigned Reg = RI->getEncodingValue(Rs.getReg());
if (Reg & 1) // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
MappedInst.setOpcode(Hexagon::A4_boundscheck_hi);
else // raw:lo
MappedInst.setOpcode(Hexagon::A4_boundscheck_lo);
Rs.setReg(getHexagonRegisterPair(Rs.getReg(), RI));
return;
}
case Hexagon::PS_call_nr:
Inst.setOpcode(Hexagon::J2_call);
break;
case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
MCOperand &MO = MappedInst.getOperand(2);
int64_t Imm;
MCExpr const *Expr = MO.getExpr();
bool Success = Expr->evaluateAsAbsolute(Imm);
assert(Success && "Expected immediate and none was found");
(void)Success;
MCInst TmpInst;
if (Imm == 0) {
TmpInst.setOpcode(Hexagon::S2_vsathub);
TmpInst.addOperand(MappedInst.getOperand(0));
TmpInst.addOperand(MappedInst.getOperand(1));
MappedInst = TmpInst;
return;
}
TmpInst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
TmpInst.addOperand(MappedInst.getOperand(0));
TmpInst.addOperand(MappedInst.getOperand(1));
const MCExpr *One = MCConstantExpr::create(1, OutContext);
const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
TmpInst.addOperand(
MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
MappedInst = TmpInst;
return;
}
case Hexagon::S5_vasrhrnd_goodsyntax:
case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
MCOperand &MO2 = MappedInst.getOperand(2);
MCExpr const *Expr = MO2.getExpr();
int64_t Imm;
bool Success = Expr->evaluateAsAbsolute(Imm);
assert(Success && "Expected immediate and none was found");
(void)Success;
MCInst TmpInst;
if (Imm == 0) {
TmpInst.setOpcode(Hexagon::A2_combinew);
TmpInst.addOperand(MappedInst.getOperand(0));
MCOperand &MO1 = MappedInst.getOperand(1);
unsigned High = RI->getSubReg(MO1.getReg(), Hexagon::isub_hi);
unsigned Low = RI->getSubReg(MO1.getReg(), Hexagon::isub_lo);
// Add a new operand for the second register in the pair.
TmpInst.addOperand(MCOperand::createReg(High));
TmpInst.addOperand(MCOperand::createReg(Low));
MappedInst = TmpInst;
return;
}
if (Inst.getOpcode() == Hexagon::S2_asr_i_p_rnd_goodsyntax)
TmpInst.setOpcode(Hexagon::S2_asr_i_p_rnd);
else
TmpInst.setOpcode(Hexagon::S5_vasrhrnd);
TmpInst.addOperand(MappedInst.getOperand(0));
TmpInst.addOperand(MappedInst.getOperand(1));
const MCExpr *One = MCConstantExpr::create(1, OutContext);
const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
TmpInst.addOperand(
MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
MappedInst = TmpInst;
return;
}
// if ("#u5==0") Assembler mapped to: "Rd=Rs"; else Rd=asr(Rs,#u5-1):rnd
case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
MCOperand &MO = Inst.getOperand(2);
MCExpr const *Expr = MO.getExpr();
int64_t Imm;
bool Success = Expr->evaluateAsAbsolute(Imm);
assert(Success && "Expected immediate and none was found");
(void)Success;
MCInst TmpInst;
if (Imm == 0) {
TmpInst.setOpcode(Hexagon::A2_tfr);
TmpInst.addOperand(MappedInst.getOperand(0));
TmpInst.addOperand(MappedInst.getOperand(1));
MappedInst = TmpInst;
return;
}
TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
TmpInst.addOperand(MappedInst.getOperand(0));
TmpInst.addOperand(MappedInst.getOperand(1));
const MCExpr *One = MCConstantExpr::create(1, OutContext);
const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
TmpInst.addOperand(
MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
MappedInst = TmpInst;
return;
}
// Translate a "$Rdd = #imm" to "$Rdd = combine(#[-1,0], #imm)"
case Hexagon::A2_tfrpi: {
MCInst TmpInst;
MCOperand &Rdd = MappedInst.getOperand(0);
MCOperand &MO = MappedInst.getOperand(1);
TmpInst.setOpcode(Hexagon::A2_combineii);
TmpInst.addOperand(Rdd);
int64_t Imm;
bool Success = MO.getExpr()->evaluateAsAbsolute(Imm);
if (Success && Imm < 0) {
const MCExpr *MOne = MCConstantExpr::create(-1, OutContext);
const HexagonMCExpr *E = HexagonMCExpr::create(MOne, OutContext);
TmpInst.addOperand(MCOperand::createExpr(E));
} else {
const MCExpr *Zero = MCConstantExpr::create(0, OutContext);
const HexagonMCExpr *E = HexagonMCExpr::create(Zero, OutContext);
TmpInst.addOperand(MCOperand::createExpr(E));
}
TmpInst.addOperand(MO);
MappedInst = TmpInst;
return;
}
// Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
case Hexagon::A2_tfrp: {
MCOperand &MO = MappedInst.getOperand(1);
unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
MO.setReg(High);
// Add a new operand for the second register in the pair.
MappedInst.addOperand(MCOperand::createReg(Low));
MappedInst.setOpcode(Hexagon::A2_combinew);
return;
}
case Hexagon::A2_tfrpt:
case Hexagon::A2_tfrpf: {
MCOperand &MO = MappedInst.getOperand(2);
unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
MO.setReg(High);
// Add a new operand for the second register in the pair.
MappedInst.addOperand(MCOperand::createReg(Low));
MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
? Hexagon::C2_ccombinewt
: Hexagon::C2_ccombinewf);
return;
}
case Hexagon::A2_tfrptnew:
case Hexagon::A2_tfrpfnew: {
MCOperand &MO = MappedInst.getOperand(2);
unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
MO.setReg(High);
// Add a new operand for the second register in the pair.
MappedInst.addOperand(MCOperand::createReg(Low));
MappedInst.setOpcode(Inst.getOpcode() == Hexagon::A2_tfrptnew
? Hexagon::C2_ccombinewnewt
: Hexagon::C2_ccombinewnewf);
return;
}
case Hexagon::M2_mpysmi: {
MCOperand &Imm = MappedInst.getOperand(2);
MCExpr const *Expr = Imm.getExpr();
int64_t Value;
bool Success = Expr->evaluateAsAbsolute(Value);
assert(Success);
(void)Success;
if (Value < 0 && Value > -256) {
MappedInst.setOpcode(Hexagon::M2_mpysin);
Imm.setExpr(HexagonMCExpr::create(
MCUnaryExpr::createMinus(Expr, OutContext), OutContext));
} else
MappedInst.setOpcode(Hexagon::M2_mpysip);
return;
}
case Hexagon::A2_addsp: {
MCOperand &Rt = Inst.getOperand(1);
assert(Rt.isReg() && "Expected register and none was found");
unsigned Reg = RI->getEncodingValue(Rt.getReg());
if (Reg & 1)
MappedInst.setOpcode(Hexagon::A2_addsph);
else
MappedInst.setOpcode(Hexagon::A2_addspl);
Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
return;
}
case Hexagon::V6_vd0: {
MCInst TmpInst;
assert(Inst.getOperand(0).isReg() &&
"Expected register and none was found");
TmpInst.setOpcode(Hexagon::V6_vxor);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
MappedInst = TmpInst;
return;
}
case Hexagon::V6_vdd0: {
MCInst TmpInst;
assert (Inst.getOperand(0).isReg() &&
"Expected register and none was found");
TmpInst.setOpcode(Hexagon::V6_vsubw_dv);
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
TmpInst.addOperand(Inst.getOperand(0));
MappedInst = TmpInst;
return;
}
case Hexagon::V6_vL32Ub_pi:
case Hexagon::V6_vL32b_cur_pi:
case Hexagon::V6_vL32b_nt_cur_pi:
case Hexagon::V6_vL32b_pi:
case Hexagon::V6_vL32b_nt_pi:
case Hexagon::V6_vL32b_nt_tmp_pi:
case Hexagon::V6_vL32b_tmp_pi:
MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
return;
case Hexagon::V6_vL32Ub_ai:
case Hexagon::V6_vL32b_ai:
case Hexagon::V6_vL32b_cur_ai:
case Hexagon::V6_vL32b_nt_ai:
case Hexagon::V6_vL32b_nt_cur_ai:
case Hexagon::V6_vL32b_nt_tmp_ai:
case Hexagon::V6_vL32b_tmp_ai:
MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
return;
case Hexagon::V6_vS32Ub_pi:
case Hexagon::V6_vS32b_new_pi:
case Hexagon::V6_vS32b_nt_new_pi:
case Hexagon::V6_vS32b_nt_pi:
case Hexagon::V6_vS32b_pi:
MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
return;
case Hexagon::V6_vS32Ub_ai:
case Hexagon::V6_vS32b_ai:
case Hexagon::V6_vS32b_new_ai:
case Hexagon::V6_vS32b_nt_ai:
case Hexagon::V6_vS32b_nt_new_ai:
MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
return;
case Hexagon::V6_vL32b_cur_npred_pi:
case Hexagon::V6_vL32b_cur_pred_pi:
case Hexagon::V6_vL32b_npred_pi:
case Hexagon::V6_vL32b_nt_cur_npred_pi:
case Hexagon::V6_vL32b_nt_cur_pred_pi:
case Hexagon::V6_vL32b_nt_npred_pi:
case Hexagon::V6_vL32b_nt_pred_pi:
case Hexagon::V6_vL32b_nt_tmp_npred_pi:
case Hexagon::V6_vL32b_nt_tmp_pred_pi:
case Hexagon::V6_vL32b_pred_pi:
case Hexagon::V6_vL32b_tmp_npred_pi:
case Hexagon::V6_vL32b_tmp_pred_pi:
MappedInst = ScaleVectorOffset(Inst, 4, VectorSize, OutContext);
return;
case Hexagon::V6_vL32b_cur_npred_ai:
case Hexagon::V6_vL32b_cur_pred_ai:
case Hexagon::V6_vL32b_npred_ai:
case Hexagon::V6_vL32b_nt_cur_npred_ai:
case Hexagon::V6_vL32b_nt_cur_pred_ai:
case Hexagon::V6_vL32b_nt_npred_ai:
case Hexagon::V6_vL32b_nt_pred_ai:
case Hexagon::V6_vL32b_nt_tmp_npred_ai:
case Hexagon::V6_vL32b_nt_tmp_pred_ai:
case Hexagon::V6_vL32b_pred_ai:
case Hexagon::V6_vL32b_tmp_npred_ai:
case Hexagon::V6_vL32b_tmp_pred_ai:
MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
return;
case Hexagon::V6_vS32Ub_npred_pi:
case Hexagon::V6_vS32Ub_pred_pi:
case Hexagon::V6_vS32b_new_npred_pi:
case Hexagon::V6_vS32b_new_pred_pi:
case Hexagon::V6_vS32b_npred_pi:
case Hexagon::V6_vS32b_nqpred_pi:
case Hexagon::V6_vS32b_nt_new_npred_pi:
case Hexagon::V6_vS32b_nt_new_pred_pi:
case Hexagon::V6_vS32b_nt_npred_pi:
case Hexagon::V6_vS32b_nt_nqpred_pi:
case Hexagon::V6_vS32b_nt_pred_pi:
case Hexagon::V6_vS32b_nt_qpred_pi:
case Hexagon::V6_vS32b_pred_pi:
case Hexagon::V6_vS32b_qpred_pi:
MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
return;
case Hexagon::V6_vS32Ub_npred_ai:
case Hexagon::V6_vS32Ub_pred_ai:
case Hexagon::V6_vS32b_new_npred_ai:
case Hexagon::V6_vS32b_new_pred_ai:
case Hexagon::V6_vS32b_npred_ai:
case Hexagon::V6_vS32b_nqpred_ai:
case Hexagon::V6_vS32b_nt_new_npred_ai:
case Hexagon::V6_vS32b_nt_new_pred_ai:
case Hexagon::V6_vS32b_nt_npred_ai:
case Hexagon::V6_vS32b_nt_nqpred_ai:
case Hexagon::V6_vS32b_nt_pred_ai:
case Hexagon::V6_vS32b_nt_qpred_ai:
case Hexagon::V6_vS32b_pred_ai:
case Hexagon::V6_vS32b_qpred_ai:
MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
return;
// V65+
case Hexagon::V6_vS32b_srls_ai:
MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
return;
case Hexagon::V6_vS32b_srls_pi:
MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
return;
}
}
/// Print out a single Hexagon MI to the current output stream.
void HexagonAsmPrinter::emitInstruction(const MachineInstr *MI) {
MCInst MCB;
MCB.setOpcode(Hexagon::BUNDLE);
MCB.addOperand(MCOperand::createImm(0));
const MCInstrInfo &MCII = *Subtarget->getInstrInfo();
if (MI->isBundle()) {
const MachineBasicBlock* MBB = MI->getParent();
MachineBasicBlock::const_instr_iterator MII = MI->getIterator();
for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
if (!MII->isDebugInstr() && !MII->isImplicitDef())
HexagonLowerToMC(MCII, &*MII, MCB, *this);
} else {
HexagonLowerToMC(MCII, MI, MCB, *this);
}
const MachineFunction &MF = *MI->getParent()->getParent();
const auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
if (MI->isBundle() && HII.getBundleNoShuf(*MI))
HexagonMCInstrInfo::setMemReorderDisabled(MCB);
MCContext &Ctx = OutStreamer->getContext();
bool Ok = HexagonMCInstrInfo::canonicalizePacket(MCII, *Subtarget, Ctx,
MCB, nullptr);
assert(Ok); (void)Ok;
if (HexagonMCInstrInfo::bundleSize(MCB) == 0)
return;
OutStreamer->emitInstruction(MCB, getSubtargetInfo());
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonAsmPrinter() {
RegisterAsmPrinter<HexagonAsmPrinter> X(getTheHexagonTarget());
}