llvm-for-llvmta/lib/Target/Hexagon/MCTargetDesc/HexagonShuffler.cpp

698 lines
22 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===- HexagonShuffler.cpp - Instruction bundle shuffling -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the shuffling of insns inside a bundle according to the
// packet formation rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-shuffle"
#include "MCTargetDesc/HexagonShuffler.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
// Insn shuffling priority.
class HexagonBid {
// The priority is directly proportional to how restricted the insn is based
// on its flexibility to run on the available slots. So, the fewer slots it
// may run on, the higher its priority.
enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15.
unsigned Bid = 0;
public:
HexagonBid() = default;
HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; }
// Check if the insn priority is overflowed.
bool isSold() const { return (Bid >= MAX); }
HexagonBid &operator+=(const HexagonBid &B) {
Bid += B.Bid;
return *this;
}
};
// Slot shuffling allocation.
class HexagonUnitAuction {
HexagonBid Scores[HEXAGON_PACKET_SIZE];
// Mask indicating which slot is unavailable.
unsigned isSold : HEXAGON_PACKET_SIZE;
public:
HexagonUnitAuction(unsigned cs = 0) : isSold(cs) {}
// Allocate slots.
bool bid(unsigned B) {
// Exclude already auctioned slots from the bid.
unsigned b = B & ~isSold;
if (b) {
for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i)
if (b & (1 << i)) {
// Request candidate slots.
Scores[i] += HexagonBid(b);
isSold |= Scores[i].isSold() << i;
}
return true;
} else
// Error if the desired slots are already full.
return false;
}
};
} // end anonymous namespace
unsigned HexagonResource::setWeight(unsigned s) {
const unsigned SlotWeight = 8;
const unsigned MaskWeight = SlotWeight - 1;
unsigned Units = getUnits();
unsigned Key = ((1u << s) & Units) != 0;
// Calculate relative weight of the insn for the given slot, weighing it the
// heavier the more restrictive the insn is and the lowest the slots that the
// insn may be executed in.
if (Key == 0 || Units == 0 || (SlotWeight * s >= 32))
return Weight = 0;
unsigned Ctpop = countPopulation(Units);
unsigned Cttz = countTrailingZeros(Units);
Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz);
return Weight;
}
HexagonCVIResource::HexagonCVIResource(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
unsigned s,
MCInst const *id)
: HexagonResource(s) {
const unsigned ItinUnits = HexagonMCInstrInfo::getCVIResources(MCII, STI, *id);
unsigned Lanes;
const unsigned Units = HexagonConvertUnits(ItinUnits, &Lanes);
if (Units == 0 && Lanes == 0) {
// For core insns.
Valid = false;
setUnits(0);
setLanes(0);
setLoad(false);
setStore(false);
} else {
// For an HVX insn.
Valid = true;
setUnits(Units);
setLanes(Lanes);
setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad());
setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore());
}
}
struct CVIUnits {
unsigned Units;
unsigned Lanes;
};
using HVXInstsT = SmallVector<struct CVIUnits, 8>;
static unsigned makeAllBits(unsigned startBit, unsigned Lanes)
{
for (unsigned i = 1; i < Lanes; ++i)
startBit = (startBit << 1) | startBit;
return startBit;
}
static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx,
unsigned usedUnits) {
if (startIdx < hvxInsts.size()) {
if (!hvxInsts[startIdx].Units)
return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits);
for (unsigned b = 0x1; b <= 0x8; b <<= 1) {
if ((hvxInsts[startIdx].Units & b) == 0)
continue;
unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes);
if ((allBits & usedUnits) == 0) {
if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits))
return true;
}
}
return false;
}
return true;
}
HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors,
MCInstrInfo const &MCII,
MCSubtargetInfo const &STI)
: Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) {
reset();
}
void HexagonShuffler::reset() {
Packet.clear();
BundleFlags = 0;
CheckFailure = false;
}
void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender,
unsigned S) {
HexagonInstr PI(MCII, STI, &ID, Extender, S);
Packet.push_back(PI);
}
static const unsigned Slot0Mask = 1 << 0;
static const unsigned Slot1Mask = 1 << 1;
static const unsigned Slot3Mask = 1 << 3;
static const unsigned slotSingleLoad = Slot0Mask;
static const unsigned slotSingleStore = Slot0Mask;
void HexagonShuffler::restrictSlot1AOK(HexagonPacketSummary const &Summary) {
if (Summary.Slot1AOKLoc)
for (HexagonInstr &ISJ : insts()) {
MCInst const &Inst = ISJ.getDesc();
const unsigned Type = HexagonMCInstrInfo::getType(MCII, Inst);
if (Type != HexagonII::TypeALU32_2op &&
Type != HexagonII::TypeALU32_3op &&
Type != HexagonII::TypeALU32_ADDI) {
const unsigned Units = ISJ.Core.getUnits();
if (Units & Slot1Mask) {
AppliedRestrictions.push_back(std::make_pair(
Inst.getLoc(),
"Instruction was restricted from being in slot 1"));
AppliedRestrictions.push_back(std::make_pair(
*Summary.Slot1AOKLoc, "Instruction can only be combined "
"with an ALU instruction in slot 1"));
ISJ.Core.setUnits(Units & ~Slot1Mask);
}
}
}
}
void HexagonShuffler::restrictNoSlot1Store(
HexagonPacketSummary const &Summary) {
// If this packet contains an instruction that bars slot-1 stores,
// we should mask off slot 1 from all of the store instructions in
// this packet.
if (!Summary.NoSlot1StoreLoc)
return;
bool AppliedRestriction = false;
for (HexagonInstr &ISJ : insts()) {
MCInst const &Inst = ISJ.getDesc();
if (HexagonMCInstrInfo::getDesc(MCII, Inst).mayStore()) {
unsigned Units = ISJ.Core.getUnits();
if (Units & Slot1Mask) {
AppliedRestriction = true;
AppliedRestrictions.push_back(std::make_pair(
Inst.getLoc(), "Instruction was restricted from being in slot 1"));
ISJ.Core.setUnits(Units & ~Slot1Mask);
}
}
}
if (AppliedRestriction)
AppliedRestrictions.push_back(
std::make_pair(*Summary.NoSlot1StoreLoc,
"Instruction does not allow a store in slot 1"));
}
bool HexagonShuffler::applySlotRestrictions(
HexagonPacketSummary const &Summary) {
// These restrictions can modify the slot masks in the instructions
// in the Packet member. They should run unconditionally and their
// order does not matter.
restrictSlot1AOK(Summary);
restrictNoSlot1Store(Summary);
permitNonSlot();
// These restrictions can modify the slot masks in the instructions
// in the Packet member, but they can also detect constraint failures
// which are fatal.
if (!CheckFailure)
restrictStoreLoadOrder(Summary);
if (!CheckFailure)
restrictBranchOrder(Summary);
if (!CheckFailure)
restrictPreferSlot3(Summary);
return !CheckFailure;
}
void HexagonShuffler::restrictBranchOrder(HexagonPacketSummary const &Summary) {
// preserve branch order
const bool HasMultipleBranches = Summary.branchInsts.size() > 1;
if (!HasMultipleBranches)
return;
if (Summary.branchInsts.size() > 2) {
reportError(Twine("too many branches in packet"));
return;
}
const static std::pair<unsigned, unsigned> jumpSlots[] = {
{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}};
// try all possible choices
for (std::pair<unsigned, unsigned> jumpSlot : jumpSlots) {
// validate first jump with this slot rule
if (!(jumpSlot.first & Summary.branchInsts[0]->Core.getUnits()))
continue;
// validate second jump with this slot rule
if (!(jumpSlot.second & Summary.branchInsts[1]->Core.getUnits()))
continue;
// both valid for this configuration, set new slot rules
const HexagonPacket PacketSave = Packet;
Summary.branchInsts[0]->Core.setUnits(jumpSlot.first);
Summary.branchInsts[1]->Core.setUnits(jumpSlot.second);
const bool HasShuffledPacket = tryAuction(Summary).hasValue();
if (HasShuffledPacket)
return;
// if yes, great, if not then restore original slot mask
// restore original values
Packet = PacketSave;
}
reportError("invalid instruction packet: out of slots");
}
void HexagonShuffler::permitNonSlot() {
for (HexagonInstr &ISJ : insts()) {
const bool RequiresSlot = HexagonMCInstrInfo::requiresSlot(STI, *ISJ.ID);
if (!RequiresSlot)
ISJ.Core.setAllUnits();
}
}
bool HexagonShuffler::ValidResourceUsage(HexagonPacketSummary const &Summary) {
Optional<HexagonPacket> ShuffledPacket = tryAuction(Summary);
if (!ShuffledPacket) {
reportError("invalid instruction packet: slot error");
return false;
} else {
Packet = *ShuffledPacket;
}
// Verify the CVI slot subscriptions.
llvm::stable_sort(*this, HexagonInstr::lessCVI);
// create vector of hvx instructions to check
HVXInstsT hvxInsts;
hvxInsts.clear();
for (const_iterator I = cbegin(); I != cend(); ++I) {
struct CVIUnits inst;
inst.Units = I->CVI.getUnits();
inst.Lanes = I->CVI.getLanes();
if (inst.Units == 0)
continue; // not an hvx inst or an hvx inst that doesn't uses any pipes
hvxInsts.push_back(inst);
}
// if there are any hvx instructions in this packet, check pipe usage
if (hvxInsts.size() > 0) {
unsigned startIdx, usedUnits;
startIdx = usedUnits = 0x0;
if (!checkHVXPipes(hvxInsts, startIdx, usedUnits)) {
// too many pipes used to be valid
reportError(Twine("invalid instruction packet: slot error"));
return false;
}
}
return true;
}
bool HexagonShuffler::restrictStoreLoadOrder(
HexagonPacketSummary const &Summary) {
// Modify packet accordingly.
// TODO: need to reserve slots #0 and #1 for duplex insns.
static const unsigned slotFirstLoadStore = Slot1Mask;
static const unsigned slotLastLoadStore = Slot0Mask;
unsigned slotLoadStore = slotFirstLoadStore;
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
MCInst const &ID = ISJ->getDesc();
if (!ISJ->Core.getUnits())
// Error if insn may not be executed in any slot.
return false;
// A single load must use slot #0.
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
if (Summary.loads == 1 && Summary.loads == Summary.memory &&
Summary.memops == 0)
// Pin the load to slot #0.
switch (ID.getOpcode()) {
case Hexagon::V6_vgathermw:
case Hexagon::V6_vgathermh:
case Hexagon::V6_vgathermhw:
case Hexagon::V6_vgathermwq:
case Hexagon::V6_vgathermhq:
case Hexagon::V6_vgathermhwq:
// Slot1 only loads
break;
default:
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad);
break;
}
else if (Summary.loads >= 1 && isMemReorderDisabled()) { // }:mem_noshuf
// Loads must keep the original order ONLY if
// isMemReorderDisabled() == true
if (slotLoadStore < slotLastLoadStore) {
// Error if no more slots available for loads.
reportError("invalid instruction packet: too many loads");
return false;
}
// Pin the load to the highest slot available to it.
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
// Update the next highest slot available to loads.
slotLoadStore >>= 1;
}
}
// A single store must use slot #0.
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) {
if (!Summary.store0) {
const bool PacketHasNoOnlySlot0 =
llvm::none_of(insts(), [&](HexagonInstr const &I) {
return I.Core.getUnits() == Slot0Mask &&
I.ID->getOpcode() != ID.getOpcode();
});
const bool SafeToMoveToSlot0 =
(Summary.loads == 0) ||
(!isMemReorderDisabled() && PacketHasNoOnlySlot0);
if (Summary.stores == 1 && SafeToMoveToSlot0)
// Pin the store to slot #0 only if isMemReorderDisabled() == false
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore);
else if (Summary.stores >= 1) {
if (slotLoadStore < slotLastLoadStore) {
// Error if no more slots available for stores.
reportError("invalid instruction packet: too many stores");
return false;
}
// Pin the store to the highest slot available to it.
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
// Update the next highest slot available to stores.
slotLoadStore >>= 1;
}
}
if (Summary.store1 && Summary.stores > 1) {
// Error if a single store with another store.
reportError("invalid instruction packet: too many stores");
return false;
}
}
}
return true;
}
HexagonShuffler::HexagonPacketSummary HexagonShuffler::GetPacketSummary() {
HexagonPacketSummary Summary = HexagonPacketSummary();
// Collect information from the insns in the packet.
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
MCInst const &ID = ISJ->getDesc();
if (HexagonMCInstrInfo::isRestrictSlot1AOK(MCII, ID))
Summary.Slot1AOKLoc = ID.getLoc();
if (HexagonMCInstrInfo::isRestrictNoSlot1Store(MCII, ID))
Summary.NoSlot1StoreLoc = ID.getLoc();
if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) {
++Summary.pSlot3Cnt;
Summary.PrefSlot3Inst = ISJ;
}
Summary.ReservedSlotMask |=
HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID);
switch (HexagonMCInstrInfo::getType(MCII, ID)) {
case HexagonII::TypeS_2op:
case HexagonII::TypeS_3op:
case HexagonII::TypeALU64:
break;
case HexagonII::TypeJ:
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeCVI_VM_VP_LDU:
case HexagonII::TypeCVI_VM_LD:
case HexagonII::TypeCVI_VM_TMP_LD:
case HexagonII::TypeCVI_GATHER:
case HexagonII::TypeCVI_GATHER_DV:
case HexagonII::TypeCVI_GATHER_RST:
++Summary.NonZCVIloads;
LLVM_FALLTHROUGH;
case HexagonII::TypeCVI_ZW:
++Summary.AllCVIloads;
LLVM_FALLTHROUGH;
case HexagonII::TypeLD:
++Summary.loads;
++Summary.memory;
if (ISJ->Core.getUnits() == slotSingleLoad ||
HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU)
++Summary.load0;
if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn())
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeCVI_VM_STU:
case HexagonII::TypeCVI_VM_ST:
case HexagonII::TypeCVI_VM_NEW_ST:
case HexagonII::TypeCVI_SCATTER:
case HexagonII::TypeCVI_SCATTER_DV:
case HexagonII::TypeCVI_SCATTER_RST:
case HexagonII::TypeCVI_SCATTER_NEW_RST:
case HexagonII::TypeCVI_SCATTER_NEW_ST:
++Summary.CVIstores;
LLVM_FALLTHROUGH;
case HexagonII::TypeST:
++Summary.stores;
++Summary.memory;
if (ISJ->Core.getUnits() == slotSingleStore ||
HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU)
++Summary.store0;
break;
case HexagonII::TypeV4LDST:
++Summary.loads;
++Summary.stores;
++Summary.store1;
++Summary.memops;
++Summary.memory;
break;
case HexagonII::TypeNCJ:
++Summary.memory; // NV insns are memory-like.
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeV2LDST:
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
++Summary.loads;
++Summary.memory;
if (ISJ->Core.getUnits() == slotSingleLoad ||
HexagonMCInstrInfo::getType(MCII, ID) ==
HexagonII::TypeCVI_VM_VP_LDU)
++Summary.load0;
} else {
assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore());
++Summary.memory;
++Summary.stores;
}
break;
case HexagonII::TypeCR:
// Legacy conditional branch predicated on a register.
case HexagonII::TypeCJ:
if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch())
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeDUPLEX: {
++Summary.duplex;
MCInst const &Inst0 = *ID.getOperand(0).getInst();
MCInst const &Inst1 = *ID.getOperand(1).getInst();
if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch())
Summary.branchInsts.push_back(ISJ);
if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch())
Summary.branchInsts.push_back(ISJ);
if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn())
Summary.branchInsts.push_back(ISJ);
if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn())
Summary.branchInsts.push_back(ISJ);
break;
}
}
}
return Summary;
}
bool HexagonShuffler::ValidPacketMemoryOps(
HexagonPacketSummary const &Summary) const {
// Check if the packet is legal.
const unsigned ZCVIloads = Summary.AllCVIloads - Summary.NonZCVIloads;
const bool ValidHVXMem =
Summary.NonZCVIloads <= 1 && ZCVIloads <= 1 && Summary.CVIstores <= 1;
const bool InvalidPacket =
((Summary.load0 > 1 || Summary.store0 > 1 || !ValidHVXMem) ||
(Summary.duplex > 1 || (Summary.duplex && Summary.memory)));
return !InvalidPacket;
}
void HexagonShuffler::restrictPreferSlot3(HexagonPacketSummary const &Summary) {
// flag if an instruction requires to be in slot 3
const bool HasOnlySlot3 = llvm::any_of(insts(), [&](HexagonInstr const &I) {
return (I.Core.getUnits() == Slot3Mask);
});
const bool NeedsPrefSlot3Shuffle =
(Summary.branchInsts.size() <= 1 && !HasOnlySlot3 &&
Summary.pSlot3Cnt == 1 && Summary.PrefSlot3Inst);
if (!NeedsPrefSlot3Shuffle)
return;
HexagonInstr *PrefSlot3Inst = *Summary.PrefSlot3Inst;
// save off slot mask of instruction marked with A_PREFER_SLOT3
// and then pin it to slot #3
const unsigned saveUnits = PrefSlot3Inst->Core.getUnits();
PrefSlot3Inst->Core.setUnits(saveUnits & Slot3Mask);
const bool HasShuffledPacket = tryAuction(Summary).hasValue();
if (HasShuffledPacket)
return;
PrefSlot3Inst->Core.setUnits(saveUnits);
}
/// Check that the packet is legal and enforce relative insn order.
bool HexagonShuffler::check() {
const HexagonPacketSummary Summary = GetPacketSummary();
if (!applySlotRestrictions(Summary))
return false;
if (!ValidPacketMemoryOps(Summary)) {
reportError("invalid instruction packet");
return false;
}
ValidResourceUsage(Summary);
return !CheckFailure;
}
llvm::Optional<HexagonShuffler::HexagonPacket>
HexagonShuffler::tryAuction(HexagonPacketSummary const &Summary) const {
HexagonPacket PacketResult = Packet;
HexagonUnitAuction AuctionCore(Summary.ReservedSlotMask);
llvm::stable_sort(PacketResult, HexagonInstr::lessCore);
const bool ValidSlots =
llvm::all_of(insts(PacketResult), [&AuctionCore](HexagonInstr const &I) {
return AuctionCore.bid(I.Core.getUnits());
});
LLVM_DEBUG(
dbgs() << "Shuffle attempt: " << (ValidSlots ? "passed" : "failed")
<< "\n";
for (HexagonInstr const &ISJ : insts(PacketResult))
dbgs() << "\t" << HexagonMCInstrInfo::getName(MCII, *ISJ.ID) << ": "
<< llvm::format_hex(ISJ.Core.getUnits(), 4, true) << "\n";
);
Optional<HexagonPacket> Res;
if (ValidSlots)
Res = PacketResult;
return Res;
}
bool HexagonShuffler::shuffle() {
if (size() > HEXAGON_PACKET_SIZE) {
// Ignore a packet with with more than what a packet can hold
// or with compound or duplex insns for now.
reportError(Twine("invalid instruction packet"));
return false;
}
// Check and prepare packet.
bool Ok = true;
if (size() > 1 && (Ok = check()))
// Reorder the handles for each slot.
for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE;
++nSlot) {
iterator ISJ, ISK;
unsigned slotSkip, slotWeight;
// Prioritize the handles considering their restrictions.
for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0;
ISK != Packet.end(); ++ISK, ++slotSkip)
if (slotSkip < nSlot - emptySlots)
// Note which handle to begin at.
++ISJ;
else
// Calculate the weight of the slot.
slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1);
if (slotWeight)
// Sort the packet, favoring source order,
// beginning after the previous slot.
std::stable_sort(ISJ, Packet.end());
else
// Skip unused slot.
++emptySlots;
}
LLVM_DEBUG(
for (HexagonInstr const &ISJ : insts()) {
dbgs().write_hex(ISJ.Core.getUnits());
if (ISJ.CVI.isValid()) {
dbgs() << '/';
dbgs().write_hex(ISJ.CVI.getUnits()) << '|';
dbgs() << ISJ.CVI.getLanes();
}
dbgs() << ':'
<< HexagonMCInstrInfo::getDesc(MCII, ISJ.getDesc()).getOpcode()
<< '\n';
} dbgs() << '\n';
);
return Ok;
}
void HexagonShuffler::reportError(Twine const &Msg) {
CheckFailure = true;
if (ReportErrors) {
for (auto const &I : AppliedRestrictions) {
auto SM = Context.getSourceManager();
if (SM)
SM->PrintMessage(I.first, SourceMgr::DK_Note, I.second);
}
Context.reportError(Loc, Msg);
}
}