llvm-for-llvmta/lib/Target/X86/X86IndirectThunks.cpp

270 lines
9.8 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86 --=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Pass that injects an MI thunk that is used to lower indirect calls in a way
/// that prevents speculation on some x86 processors and can be used to mitigate
/// security vulnerabilities due to targeted speculative execution and side
/// channels such as CVE-2017-5715.
///
/// Currently supported thunks include:
/// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
/// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
/// before making an indirect call/jump
///
/// Note that the reason that this is implemented as a MachineFunctionPass and
/// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
/// serialize all transformations, which can consume lots of memory.
///
/// TODO(chandlerc): All of this code could use better comments and
/// documentation.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/IndirectThunks.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "x86-retpoline-thunks"
static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
static const char R11RetpolineName[] = "__llvm_retpoline_r11";
static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
static const char EDIRetpolineName[] = "__llvm_retpoline_edi";
static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";
namespace {
struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
const char *getThunkPrefix() { return RetpolineNamePrefix; }
bool mayUseThunk(const MachineFunction &MF) {
const auto &STI = MF.getSubtarget<X86Subtarget>();
return (STI.useRetpolineIndirectCalls() ||
STI.useRetpolineIndirectBranches()) &&
!STI.useRetpolineExternalThunk();
}
void insertThunks(MachineModuleInfo &MMI);
void populateThunk(MachineFunction &MF);
};
struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
const char *getThunkPrefix() { return LVIThunkNamePrefix; }
bool mayUseThunk(const MachineFunction &MF) {
return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
}
void insertThunks(MachineModuleInfo &MMI) {
createThunkFunction(MMI, R11LVIThunkName);
}
void populateThunk(MachineFunction &MF) {
assert (MF.size() == 1);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
// This code mitigates LVI by replacing each indirect call/jump with a
// direct call/jump to a thunk that looks like:
// ```
// lfence
// jmpq *%r11
// ```
// This ensures that if the value in register %r11 was loaded from memory,
// then the value in %r11 is (architecturally) correct prior to the jump.
const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
MF.front().addLiveIn(X86::R11);
}
};
class X86IndirectThunks : public MachineFunctionPass {
public:
static char ID;
X86IndirectThunks() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "X86 Indirect Thunks"; }
bool doInitialization(Module &M) override;
bool runOnMachineFunction(MachineFunction &MF) override;
private:
std::tuple<RetpolineThunkInserter, LVIThunkInserter> TIs;
// FIXME: When LLVM moves to C++17, these can become folds
template <typename... ThunkInserterT>
static void initTIs(Module &M,
std::tuple<ThunkInserterT...> &ThunkInserters) {
(void)std::initializer_list<int>{
(std::get<ThunkInserterT>(ThunkInserters).init(M), 0)...};
}
template <typename... ThunkInserterT>
static bool runTIs(MachineModuleInfo &MMI, MachineFunction &MF,
std::tuple<ThunkInserterT...> &ThunkInserters) {
bool Modified = false;
(void)std::initializer_list<int>{
Modified |= std::get<ThunkInserterT>(ThunkInserters).run(MMI, MF)...};
return Modified;
}
};
} // end anonymous namespace
void RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI) {
if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
createThunkFunction(MMI, R11RetpolineName);
else
for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
EDIRetpolineName})
createThunkFunction(MMI, Name);
}
void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
Register ThunkReg;
if (Is64Bit) {
assert(MF.getName() == "__llvm_retpoline_r11" &&
"Should only have an r11 thunk on 64-bit targets");
// __llvm_retpoline_r11:
// callq .Lr11_call_target
// .Lr11_capture_spec:
// pause
// lfence
// jmp .Lr11_capture_spec
// .align 16
// .Lr11_call_target:
// movq %r11, (%rsp)
// retq
ThunkReg = X86::R11;
} else {
// For 32-bit targets we need to emit a collection of thunks for various
// possible scratch registers as well as a fallback that uses EDI, which is
// normally callee saved.
// __llvm_retpoline_eax:
// calll .Leax_call_target
// .Leax_capture_spec:
// pause
// jmp .Leax_capture_spec
// .align 16
// .Leax_call_target:
// movl %eax, (%esp) # Clobber return addr
// retl
//
// __llvm_retpoline_ecx:
// ... # Same setup
// movl %ecx, (%esp)
// retl
//
// __llvm_retpoline_edx:
// ... # Same setup
// movl %edx, (%esp)
// retl
//
// __llvm_retpoline_edi:
// ... # Same setup
// movl %edi, (%esp)
// retl
if (MF.getName() == EAXRetpolineName)
ThunkReg = X86::EAX;
else if (MF.getName() == ECXRetpolineName)
ThunkReg = X86::ECX;
else if (MF.getName() == EDXRetpolineName)
ThunkReg = X86::EDX;
else if (MF.getName() == EDIRetpolineName)
ThunkReg = X86::EDI;
else
llvm_unreachable("Invalid thunk name on x86-32!");
}
const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
assert (MF.size() == 1);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
MachineBasicBlock *CaptureSpec =
MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MachineBasicBlock *CallTarget =
MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MCSymbol *TargetSym = MF.getContext().createTempSymbol();
MF.push_back(CaptureSpec);
MF.push_back(CallTarget);
const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;
Entry->addLiveIn(ThunkReg);
BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
// The MIR verifier thinks that the CALL in the entry block will fall through
// to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
// the successor, but the MIR verifier doesn't know how to cope with that.
Entry->addSuccessor(CaptureSpec);
// In the capture loop for speculation, we want to stop the processor from
// speculating as fast as possible. On Intel processors, the PAUSE instruction
// will block speculation without consuming any execution resources. On AMD
// processors, the PAUSE instruction is (essentially) a nop, so we also use an
// LFENCE instruction which they have advised will stop speculation as well
// with minimal resource utilization. We still end the capture with a jump to
// form an infinite loop to fully guarantee that no matter what implementation
// of the x86 ISA, speculating this code path never escapes.
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
CaptureSpec->setHasAddressTaken();
CaptureSpec->addSuccessor(CaptureSpec);
CallTarget->addLiveIn(ThunkReg);
CallTarget->setHasAddressTaken();
CallTarget->setAlignment(Align(16));
// Insert return address clobber
const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
0)
.addReg(ThunkReg);
CallTarget->back().setPreInstrSymbol(MF, TargetSym);
BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
FunctionPass *llvm::createX86IndirectThunksPass() {
return new X86IndirectThunks();
}
char X86IndirectThunks::ID = 0;
bool X86IndirectThunks::doInitialization(Module &M) {
initTIs(M, TIs);
return false;
}
bool X86IndirectThunks::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << getPassName() << '\n');
auto &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
return runTIs(MMI, MF, TIs);
}