llvm-for-llvmta/lib/Transforms/CFGuard/CFGuard.cpp

301 lines
10 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- CFGuard.cpp - Control Flow Guard checks -----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the IR transform to add Microsoft's Control Flow Guard
/// checks on Windows targets.
///
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/CFGuard.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
using namespace llvm;
using OperandBundleDef = OperandBundleDefT<Value *>;
#define DEBUG_TYPE "cfguard"
STATISTIC(CFGuardCounter, "Number of Control Flow Guard checks added");
namespace {
/// Adds Control Flow Guard (CFG) checks on indirect function calls/invokes.
/// These checks ensure that the target address corresponds to the start of an
/// address-taken function. X86_64 targets use the CF_Dispatch mechanism. X86,
/// ARM, and AArch64 targets use the CF_Check machanism.
class CFGuard : public FunctionPass {
public:
static char ID;
enum Mechanism { CF_Check, CF_Dispatch };
// Default constructor required for the INITIALIZE_PASS macro.
CFGuard() : FunctionPass(ID) {
initializeCFGuardPass(*PassRegistry::getPassRegistry());
// By default, use the guard check mechanism.
GuardMechanism = CF_Check;
}
// Recommended constructor used to specify the type of guard mechanism.
CFGuard(Mechanism Var) : FunctionPass(ID) {
initializeCFGuardPass(*PassRegistry::getPassRegistry());
GuardMechanism = Var;
}
/// Inserts a Control Flow Guard (CFG) check on an indirect call using the CFG
/// check mechanism. When the image is loaded, the loader puts the appropriate
/// guard check function pointer in the __guard_check_icall_fptr global
/// symbol. This checks that the target address is a valid address-taken
/// function. The address of the target function is passed to the guard check
/// function in an architecture-specific register (e.g. ECX on 32-bit X86,
/// X15 on Aarch64, and R0 on ARM). The guard check function has no return
/// value (if the target is invalid, the guard check funtion will raise an
/// error).
///
/// For example, the following LLVM IR:
/// \code
/// %func_ptr = alloca i32 ()*, align 8
/// store i32 ()* @target_func, i32 ()** %func_ptr, align 8
/// %0 = load i32 ()*, i32 ()** %func_ptr, align 8
/// %1 = call i32 %0()
/// \endcode
///
/// is transformed to:
/// \code
/// %func_ptr = alloca i32 ()*, align 8
/// store i32 ()* @target_func, i32 ()** %func_ptr, align 8
/// %0 = load i32 ()*, i32 ()** %func_ptr, align 8
/// %1 = load void (i8*)*, void (i8*)** @__guard_check_icall_fptr
/// %2 = bitcast i32 ()* %0 to i8*
/// call cfguard_checkcc void %1(i8* %2)
/// %3 = call i32 %0()
/// \endcode
///
/// For example, the following X86 assembly code:
/// \code
/// movl $_target_func, %eax
/// calll *%eax
/// \endcode
///
/// is transformed to:
/// \code
/// movl $_target_func, %ecx
/// calll *___guard_check_icall_fptr
/// calll *%ecx
/// \endcode
///
/// \param CB indirect call to instrument.
void insertCFGuardCheck(CallBase *CB);
/// Inserts a Control Flow Guard (CFG) check on an indirect call using the CFG
/// dispatch mechanism. When the image is loaded, the loader puts the
/// appropriate guard check function pointer in the
/// __guard_dispatch_icall_fptr global symbol. This checks that the target
/// address is a valid address-taken function and, if so, tail calls the
/// target. The target address is passed in an architecture-specific register
/// (e.g. RAX on X86_64), with all other arguments for the target function
/// passed as usual.
///
/// For example, the following LLVM IR:
/// \code
/// %func_ptr = alloca i32 ()*, align 8
/// store i32 ()* @target_func, i32 ()** %func_ptr, align 8
/// %0 = load i32 ()*, i32 ()** %func_ptr, align 8
/// %1 = call i32 %0()
/// \endcode
///
/// is transformed to:
/// \code
/// %func_ptr = alloca i32 ()*, align 8
/// store i32 ()* @target_func, i32 ()** %func_ptr, align 8
/// %0 = load i32 ()*, i32 ()** %func_ptr, align 8
/// %1 = load i32 ()*, i32 ()** @__guard_dispatch_icall_fptr
/// %2 = call i32 %1() [ "cfguardtarget"(i32 ()* %0) ]
/// \endcode
///
/// For example, the following X86_64 assembly code:
/// \code
/// leaq target_func(%rip), %rax
/// callq *%rax
/// \endcode
///
/// is transformed to:
/// \code
/// leaq target_func(%rip), %rax
/// callq *__guard_dispatch_icall_fptr(%rip)
/// \endcode
///
/// \param CB indirect call to instrument.
void insertCFGuardDispatch(CallBase *CB);
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
private:
// Only add checks if the module has the cfguard=2 flag.
int cfguard_module_flag = 0;
Mechanism GuardMechanism = CF_Check;
FunctionType *GuardFnType = nullptr;
PointerType *GuardFnPtrType = nullptr;
Constant *GuardFnGlobal = nullptr;
};
} // end anonymous namespace
void CFGuard::insertCFGuardCheck(CallBase *CB) {
assert(Triple(CB->getModule()->getTargetTriple()).isOSWindows() &&
"Only applicable for Windows targets");
assert(CB->isIndirectCall() &&
"Control Flow Guard checks can only be added to indirect calls");
IRBuilder<> B(CB);
Value *CalledOperand = CB->getCalledOperand();
// Load the global symbol as a pointer to the check function.
LoadInst *GuardCheckLoad = B.CreateLoad(GuardFnPtrType, GuardFnGlobal);
// Create new call instruction. The CFGuard check should always be a call,
// even if the original CallBase is an Invoke or CallBr instruction.
CallInst *GuardCheck =
B.CreateCall(GuardFnType, GuardCheckLoad,
{B.CreateBitCast(CalledOperand, B.getInt8PtrTy())});
// Ensure that the first argument is passed in the correct register
// (e.g. ECX on 32-bit X86 targets).
GuardCheck->setCallingConv(CallingConv::CFGuard_Check);
}
void CFGuard::insertCFGuardDispatch(CallBase *CB) {
assert(Triple(CB->getModule()->getTargetTriple()).isOSWindows() &&
"Only applicable for Windows targets");
assert(CB->isIndirectCall() &&
"Control Flow Guard checks can only be added to indirect calls");
IRBuilder<> B(CB);
Value *CalledOperand = CB->getCalledOperand();
Type *CalledOperandType = CalledOperand->getType();
// Cast the guard dispatch global to the type of the called operand.
PointerType *PTy = PointerType::get(CalledOperandType, 0);
if (GuardFnGlobal->getType() != PTy)
GuardFnGlobal = ConstantExpr::getBitCast(GuardFnGlobal, PTy);
// Load the global as a pointer to a function of the same type.
LoadInst *GuardDispatchLoad = B.CreateLoad(CalledOperandType, GuardFnGlobal);
// Add the original call target as a cfguardtarget operand bundle.
SmallVector<llvm::OperandBundleDef, 1> Bundles;
CB->getOperandBundlesAsDefs(Bundles);
Bundles.emplace_back("cfguardtarget", CalledOperand);
// Create a copy of the call/invoke instruction and add the new bundle.
assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
"Unknown indirect call type");
CallBase *NewCB = CallBase::Create(CB, Bundles, CB);
// Change the target of the call to be the guard dispatch function.
NewCB->setCalledOperand(GuardDispatchLoad);
// Replace the original call/invoke with the new instruction.
CB->replaceAllUsesWith(NewCB);
// Delete the original call/invoke.
CB->eraseFromParent();
}
bool CFGuard::doInitialization(Module &M) {
// Check if this module has the cfguard flag and read its value.
if (auto *MD =
mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
cfguard_module_flag = MD->getZExtValue();
// Skip modules for which CFGuard checks have been disabled.
if (cfguard_module_flag != 2)
return false;
// Set up prototypes for the guard check and dispatch functions.
GuardFnType = FunctionType::get(Type::getVoidTy(M.getContext()),
{Type::getInt8PtrTy(M.getContext())}, false);
GuardFnPtrType = PointerType::get(GuardFnType, 0);
// Get or insert the guard check or dispatch global symbols.
if (GuardMechanism == CF_Check) {
GuardFnGlobal =
M.getOrInsertGlobal("__guard_check_icall_fptr", GuardFnPtrType);
} else {
assert(GuardMechanism == CF_Dispatch && "Invalid CFGuard mechanism");
GuardFnGlobal =
M.getOrInsertGlobal("__guard_dispatch_icall_fptr", GuardFnPtrType);
}
return true;
}
bool CFGuard::runOnFunction(Function &F) {
// Skip modules for which CFGuard checks have been disabled.
if (cfguard_module_flag != 2)
return false;
SmallVector<CallBase *, 8> IndirectCalls;
// Iterate over the instructions to find all indirect call/invoke/callbr
// instructions. Make a separate list of pointers to indirect
// call/invoke/callbr instructions because the original instructions will be
// deleted as the checks are added.
for (BasicBlock &BB : F.getBasicBlockList()) {
for (Instruction &I : BB.getInstList()) {
auto *CB = dyn_cast<CallBase>(&I);
if (CB && CB->isIndirectCall() && !CB->hasFnAttr("guard_nocf")) {
IndirectCalls.push_back(CB);
CFGuardCounter++;
}
}
}
// If no checks are needed, return early.
if (IndirectCalls.empty()) {
return false;
}
// For each indirect call/invoke, add the appropriate dispatch or check.
if (GuardMechanism == CF_Dispatch) {
for (CallBase *CB : IndirectCalls) {
insertCFGuardDispatch(CB);
}
} else {
for (CallBase *CB : IndirectCalls) {
insertCFGuardCheck(CB);
}
}
return true;
}
char CFGuard::ID = 0;
INITIALIZE_PASS(CFGuard, "CFGuard", "CFGuard", false, false)
FunctionPass *llvm::createCFGuardCheckPass() {
return new CFGuard(CFGuard::CF_Check);
}
FunctionPass *llvm::createCFGuardDispatchPass() {
return new CFGuard(CFGuard::CF_Dispatch);
}