llvm-for-llvmta/tools/llvm-readobj/ARMWinEHPrinter.cpp

1302 lines
47 KiB
C++
Raw Permalink Normal View History

2022-04-25 10:02:23 +02:00
//===-- ARMWinEHPrinter.cpp - Windows on ARM EH Data Printer ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Windows on ARM uses a series of serialised data structures (RuntimeFunction)
// to create a table of information for unwinding. In order to conserve space,
// there are two different ways that this data is represented.
//
// For functions with canonical forms for the prologue and epilogue, the data
// can be stored in a "packed" form. In this case, the data is packed into the
// RuntimeFunction's remaining 30-bits and can fully describe the entire frame.
//
// +---------------------------------------+
// | Function Entry Address |
// +---------------------------------------+
// | Packed Form Data |
// +---------------------------------------+
//
// This layout is parsed by Decoder::dumpPackedEntry. No unwind bytecode is
// associated with such a frame as they can be derived from the provided data.
// The decoder does not synthesize this data as it is unnecessary for the
// purposes of validation, with the synthesis being required only by a proper
// unwinder.
//
// For functions that are large or do not match canonical forms, the data is
// split up into two portions, with the actual data residing in the "exception
// data" table (.xdata) with a reference to the entry from the "procedure data"
// (.pdata) entry.
//
// The exception data contains information about the frame setup, all of the
// epilogue scopes (for functions for which there are multiple exit points) and
// the associated exception handler. Additionally, the entry contains byte-code
// describing how to unwind the function (c.f. Decoder::decodeOpcodes).
//
// +---------------------------------------+
// | Function Entry Address |
// +---------------------------------------+
// | Exception Data Entry Address |
// +---------------------------------------+
//
// This layout is parsed by Decoder::dumpUnpackedEntry. Such an entry must
// first resolve the exception data entry address. This structure
// (ExceptionDataRecord) has a variable sized header
// (c.f. ARM::WinEH::HeaderWords) and encodes most of the same information as
// the packed form. However, because this information is insufficient to
// synthesize the unwinding, there are associated unwinding bytecode which make
// up the bulk of the Decoder.
//
// The decoder itself is table-driven, using the first byte to determine the
// opcode and dispatching to the associated printing routine. The bytecode
// itself is a variable length instruction encoding that can fully describe the
// state of the stack and the necessary operations for unwinding to the
// beginning of the frame.
//
// The byte-code maintains a 1-1 instruction mapping, indicating both the width
// of the instruction (Thumb2 instructions are variable length, 16 or 32 bits
// wide) allowing the program to unwind from any point in the prologue, body, or
// epilogue of the function.
#include "ARMWinEHPrinter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/ARMWinEH.h"
#include "llvm/Support/Format.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support;
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const ARM::WinEH::ReturnType &RT) {
switch (RT) {
case ARM::WinEH::ReturnType::RT_POP:
OS << "pop {pc}";
break;
case ARM::WinEH::ReturnType::RT_B:
OS << "b target";
break;
case ARM::WinEH::ReturnType::RT_BW:
OS << "b.w target";
break;
case ARM::WinEH::ReturnType::RT_NoEpilogue:
OS << "(no epilogue)";
break;
}
return OS;
}
}
static std::string formatSymbol(StringRef Name, uint64_t Address,
uint64_t Offset = 0) {
std::string Buffer;
raw_string_ostream OS(Buffer);
if (!Name.empty())
OS << Name << " ";
if (Offset)
OS << format("+0x%X (0x%" PRIX64 ")", Offset, Address);
else if (!Name.empty())
OS << format("(0x%" PRIX64 ")", Address);
else
OS << format("0x%" PRIX64, Address);
return OS.str();
}
namespace llvm {
namespace ARM {
namespace WinEH {
const size_t Decoder::PDataEntrySize = sizeof(RuntimeFunction);
// TODO name the uops more appropriately
const Decoder::RingEntry Decoder::Ring[] = {
{ 0x80, 0x00, 1, &Decoder::opcode_0xxxxxxx }, // UOP_STACK_FREE (16-bit)
{ 0xc0, 0x80, 2, &Decoder::opcode_10Lxxxxx }, // UOP_POP (32-bit)
{ 0xf0, 0xc0, 1, &Decoder::opcode_1100xxxx }, // UOP_STACK_SAVE (16-bit)
{ 0xf8, 0xd0, 1, &Decoder::opcode_11010Lxx }, // UOP_POP (16-bit)
{ 0xf8, 0xd8, 1, &Decoder::opcode_11011Lxx }, // UOP_POP (32-bit)
{ 0xf8, 0xe0, 1, &Decoder::opcode_11100xxx }, // UOP_VPOP (32-bit)
{ 0xfc, 0xe8, 2, &Decoder::opcode_111010xx }, // UOP_STACK_FREE (32-bit)
{ 0xfe, 0xec, 2, &Decoder::opcode_1110110L }, // UOP_POP (16-bit)
{ 0xff, 0xee, 2, &Decoder::opcode_11101110 }, // UOP_MICROSOFT_SPECIFIC (16-bit)
// UOP_PUSH_MACHINE_FRAME
// UOP_PUSH_CONTEXT
// UOP_PUSH_TRAP_FRAME
// UOP_REDZONE_RESTORE_LR
{ 0xff, 0xef, 2, &Decoder::opcode_11101111 }, // UOP_LDRPC_POSTINC (32-bit)
{ 0xff, 0xf5, 2, &Decoder::opcode_11110101 }, // UOP_VPOP (32-bit)
{ 0xff, 0xf6, 2, &Decoder::opcode_11110110 }, // UOP_VPOP (32-bit)
{ 0xff, 0xf7, 3, &Decoder::opcode_11110111 }, // UOP_STACK_RESTORE (16-bit)
{ 0xff, 0xf8, 4, &Decoder::opcode_11111000 }, // UOP_STACK_RESTORE (16-bit)
{ 0xff, 0xf9, 3, &Decoder::opcode_11111001 }, // UOP_STACK_RESTORE (32-bit)
{ 0xff, 0xfa, 4, &Decoder::opcode_11111010 }, // UOP_STACK_RESTORE (32-bit)
{ 0xff, 0xfb, 1, &Decoder::opcode_11111011 }, // UOP_NOP (16-bit)
{ 0xff, 0xfc, 1, &Decoder::opcode_11111100 }, // UOP_NOP (32-bit)
{ 0xff, 0xfd, 1, &Decoder::opcode_11111101 }, // UOP_NOP (16-bit) / END
{ 0xff, 0xfe, 1, &Decoder::opcode_11111110 }, // UOP_NOP (32-bit) / END
{ 0xff, 0xff, 1, &Decoder::opcode_11111111 }, // UOP_END
};
// Unwind opcodes for ARM64.
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
const Decoder::RingEntry Decoder::Ring64[] = {
{ 0xe0, 0x00, 1, &Decoder::opcode_alloc_s },
{ 0xe0, 0x20, 1, &Decoder::opcode_save_r19r20_x },
{ 0xc0, 0x40, 1, &Decoder::opcode_save_fplr },
{ 0xc0, 0x80, 1, &Decoder::opcode_save_fplr_x },
{ 0xf8, 0xc0, 2, &Decoder::opcode_alloc_m },
{ 0xfc, 0xc8, 2, &Decoder::opcode_save_regp },
{ 0xfc, 0xcc, 2, &Decoder::opcode_save_regp_x },
{ 0xfc, 0xd0, 2, &Decoder::opcode_save_reg },
{ 0xfe, 0xd4, 2, &Decoder::opcode_save_reg_x },
{ 0xfe, 0xd6, 2, &Decoder::opcode_save_lrpair },
{ 0xfe, 0xd8, 2, &Decoder::opcode_save_fregp },
{ 0xfe, 0xda, 2, &Decoder::opcode_save_fregp_x },
{ 0xfe, 0xdc, 2, &Decoder::opcode_save_freg },
{ 0xff, 0xde, 2, &Decoder::opcode_save_freg_x },
{ 0xff, 0xe0, 4, &Decoder::opcode_alloc_l },
{ 0xff, 0xe1, 1, &Decoder::opcode_setfp },
{ 0xff, 0xe2, 2, &Decoder::opcode_addfp },
{ 0xff, 0xe3, 1, &Decoder::opcode_nop },
{ 0xff, 0xe4, 1, &Decoder::opcode_end },
{ 0xff, 0xe5, 1, &Decoder::opcode_end_c },
{ 0xff, 0xe6, 1, &Decoder::opcode_save_next },
{ 0xff, 0xe8, 1, &Decoder::opcode_trap_frame },
{ 0xff, 0xe9, 1, &Decoder::opcode_machine_frame },
{ 0xff, 0xea, 1, &Decoder::opcode_context },
{ 0xff, 0xec, 1, &Decoder::opcode_clear_unwound_to_call },
};
void Decoder::printRegisters(const std::pair<uint16_t, uint32_t> &RegisterMask) {
static const char * const GPRRegisterNames[16] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10",
"r11", "ip", "sp", "lr", "pc",
};
const uint16_t GPRMask = std::get<0>(RegisterMask);
const uint16_t VFPMask = std::get<1>(RegisterMask);
OS << '{';
bool Comma = false;
for (unsigned RI = 0, RE = 11; RI < RE; ++RI) {
if (GPRMask & (1 << RI)) {
if (Comma)
OS << ", ";
OS << GPRRegisterNames[RI];
Comma = true;
}
}
for (unsigned RI = 0, RE = 32; RI < RE; ++RI) {
if (VFPMask & (1 << RI)) {
if (Comma)
OS << ", ";
OS << "d" << unsigned(RI);
Comma = true;
}
}
for (unsigned RI = 11, RE = 16; RI < RE; ++RI) {
if (GPRMask & (1 << RI)) {
if (Comma)
OS << ", ";
OS << GPRRegisterNames[RI];
Comma = true;
}
}
OS << '}';
}
ErrorOr<object::SectionRef>
Decoder::getSectionContaining(const COFFObjectFile &COFF, uint64_t VA) {
for (const auto &Section : COFF.sections()) {
uint64_t Address = Section.getAddress();
uint64_t Size = Section.getSize();
if (VA >= Address && (VA - Address) <= Size)
return Section;
}
return inconvertibleErrorCode();
}
ErrorOr<object::SymbolRef> Decoder::getSymbol(const COFFObjectFile &COFF,
uint64_t VA, bool FunctionOnly) {
for (const auto &Symbol : COFF.symbols()) {
Expected<SymbolRef::Type> Type = Symbol.getType();
if (!Type)
return errorToErrorCode(Type.takeError());
if (FunctionOnly && *Type != SymbolRef::ST_Function)
continue;
Expected<uint64_t> Address = Symbol.getAddress();
if (!Address)
return errorToErrorCode(Address.takeError());
if (*Address == VA)
return Symbol;
}
return inconvertibleErrorCode();
}
ErrorOr<SymbolRef> Decoder::getRelocatedSymbol(const COFFObjectFile &,
const SectionRef &Section,
uint64_t Offset) {
for (const auto &Relocation : Section.relocations()) {
uint64_t RelocationOffset = Relocation.getOffset();
if (RelocationOffset == Offset)
return *Relocation.getSymbol();
}
return inconvertibleErrorCode();
}
bool Decoder::opcode_0xxxxxxx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint8_t Imm = OC[Offset] & 0x7f;
SW.startLine() << format("0x%02x ; %s sp, #(%u * 4)\n",
OC[Offset],
static_cast<const char *>(Prologue ? "sub" : "add"),
Imm);
++Offset;
return false;
}
bool Decoder::opcode_10Lxxxxx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned Link = (OC[Offset] & 0x20) >> 5;
uint16_t RegisterMask = (Link << (Prologue ? 14 : 15))
| ((OC[Offset + 0] & 0x1f) << 8)
| ((OC[Offset + 1] & 0xff) << 0);
assert((~RegisterMask & (1 << 13)) && "sp must not be set");
assert((~RegisterMask & (1 << (Prologue ? 15 : 14))) && "pc must not be set");
SW.startLine() << format("0x%02x 0x%02x ; %s.w ",
OC[Offset + 0], OC[Offset + 1],
Prologue ? "push" : "pop");
printRegisters(std::make_pair(RegisterMask, 0));
OS << '\n';
Offset += 2;
return false;
}
bool Decoder::opcode_1100xxxx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
if (Prologue)
SW.startLine() << format("0x%02x ; mov r%u, sp\n",
OC[Offset], OC[Offset] & 0xf);
else
SW.startLine() << format("0x%02x ; mov sp, r%u\n",
OC[Offset], OC[Offset] & 0xf);
++Offset;
return false;
}
bool Decoder::opcode_11010Lxx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned Link = (OC[Offset] & 0x4) >> 3;
unsigned Count = (OC[Offset] & 0x3);
uint16_t GPRMask = (Link << (Prologue ? 14 : 15))
| (((1 << (Count + 1)) - 1) << 4);
SW.startLine() << format("0x%02x ; %s ", OC[Offset],
Prologue ? "push" : "pop");
printRegisters(std::make_pair(GPRMask, 0));
OS << '\n';
++Offset;
return false;
}
bool Decoder::opcode_11011Lxx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned Link = (OC[Offset] & 0x4) >> 2;
unsigned Count = (OC[Offset] & 0x3) + 4;
uint16_t GPRMask = (Link << (Prologue ? 14 : 15))
| (((1 << (Count + 1)) - 1) << 4);
SW.startLine() << format("0x%02x ; %s.w ", OC[Offset],
Prologue ? "push" : "pop");
printRegisters(std::make_pair(GPRMask, 0));
OS << '\n';
++Offset;
return false;
}
bool Decoder::opcode_11100xxx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned High = (OC[Offset] & 0x7);
uint32_t VFPMask = (((1 << (High + 1)) - 1) << 8);
SW.startLine() << format("0x%02x ; %s ", OC[Offset],
Prologue ? "vpush" : "vpop");
printRegisters(std::make_pair(0, VFPMask));
OS << '\n';
++Offset;
return false;
}
bool Decoder::opcode_111010xx(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint16_t Imm = ((OC[Offset + 0] & 0x03) << 8) | ((OC[Offset + 1] & 0xff) << 0);
SW.startLine() << format("0x%02x 0x%02x ; %s.w sp, #(%u * 4)\n",
OC[Offset + 0], OC[Offset + 1],
static_cast<const char *>(Prologue ? "sub" : "add"),
Imm);
Offset += 2;
return false;
}
bool Decoder::opcode_1110110L(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint8_t GPRMask = ((OC[Offset + 0] & 0x01) << (Prologue ? 14 : 15))
| ((OC[Offset + 1] & 0xff) << 0);
SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0],
OC[Offset + 1], Prologue ? "push" : "pop");
printRegisters(std::make_pair(GPRMask, 0));
OS << '\n';
Offset += 2;
return false;
}
bool Decoder::opcode_11101110(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
assert(!Prologue && "may not be used in prologue");
if (OC[Offset + 1] & 0xf0)
SW.startLine() << format("0x%02x 0x%02x ; reserved\n",
OC[Offset + 0], OC[Offset + 1]);
else
SW.startLine()
<< format("0x%02x 0x%02x ; microsoft-specific (type: %u)\n",
OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] & 0x0f);
Offset += 2;
return false;
}
bool Decoder::opcode_11101111(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
assert(!Prologue && "may not be used in prologue");
if (OC[Offset + 1] & 0xf0)
SW.startLine() << format("0x%02x 0x%02x ; reserved\n",
OC[Offset + 0], OC[Offset + 1]);
else
SW.startLine()
<< format("0x%02x 0x%02x ; ldr.w lr, [sp], #%u\n",
OC[Offset + 0], OC[Offset + 1], OC[Offset + 1] << 2);
Offset += 2;
return false;
}
bool Decoder::opcode_11110101(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned Start = (OC[Offset + 1] & 0xf0) >> 4;
unsigned End = (OC[Offset + 1] & 0x0f) >> 0;
uint32_t VFPMask = ((1 << (End - Start)) - 1) << Start;
SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0],
OC[Offset + 1], Prologue ? "vpush" : "vpop");
printRegisters(std::make_pair(0, VFPMask));
OS << '\n';
Offset += 2;
return false;
}
bool Decoder::opcode_11110110(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned Start = (OC[Offset + 1] & 0xf0) >> 4;
unsigned End = (OC[Offset + 1] & 0x0f) >> 0;
uint32_t VFPMask = ((1 << (End - Start)) - 1) << 16;
SW.startLine() << format("0x%02x 0x%02x ; %s ", OC[Offset + 0],
OC[Offset + 1], Prologue ? "vpush" : "vpop");
printRegisters(std::make_pair(0, VFPMask));
OS << '\n';
Offset += 2;
return false;
}
bool Decoder::opcode_11110111(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Imm = (OC[Offset + 1] << 8) | (OC[Offset + 2] << 0);
SW.startLine() << format("0x%02x 0x%02x 0x%02x ; %s sp, sp, #(%u * 4)\n",
OC[Offset + 0], OC[Offset + 1], OC[Offset + 2],
static_cast<const char *>(Prologue ? "sub" : "add"),
Imm);
Offset += 3;
return false;
}
bool Decoder::opcode_11111000(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Imm = (OC[Offset + 1] << 16)
| (OC[Offset + 2] << 8)
| (OC[Offset + 3] << 0);
SW.startLine()
<< format("0x%02x 0x%02x 0x%02x 0x%02x ; %s sp, sp, #(%u * 4)\n",
OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3],
static_cast<const char *>(Prologue ? "sub" : "add"), Imm);
Offset += 4;
return false;
}
bool Decoder::opcode_11111001(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Imm = (OC[Offset + 1] << 8) | (OC[Offset + 2] << 0);
SW.startLine()
<< format("0x%02x 0x%02x 0x%02x ; %s.w sp, sp, #(%u * 4)\n",
OC[Offset + 0], OC[Offset + 1], OC[Offset + 2],
static_cast<const char *>(Prologue ? "sub" : "add"), Imm);
Offset += 3;
return false;
}
bool Decoder::opcode_11111010(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Imm = (OC[Offset + 1] << 16)
| (OC[Offset + 2] << 8)
| (OC[Offset + 3] << 0);
SW.startLine()
<< format("0x%02x 0x%02x 0x%02x 0x%02x ; %s.w sp, sp, #(%u * 4)\n",
OC[Offset + 0], OC[Offset + 1], OC[Offset + 2], OC[Offset + 3],
static_cast<const char *>(Prologue ? "sub" : "add"), Imm);
Offset += 4;
return false;
}
bool Decoder::opcode_11111011(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; nop\n", OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_11111100(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; nop.w\n", OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_11111101(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; b\n", OC[Offset]);
++Offset;
return true;
}
bool Decoder::opcode_11111110(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; b.w\n", OC[Offset]);
++Offset;
return true;
}
bool Decoder::opcode_11111111(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
++Offset;
return true;
}
// ARM64 unwind codes start here.
bool Decoder::opcode_alloc_s(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t NumBytes = (OC[Offset] & 0x1F) << 4;
SW.startLine() << format("0x%02x ; %s sp, #%u\n", OC[Offset],
static_cast<const char *>(Prologue ? "sub" : "add"),
NumBytes);
++Offset;
return false;
}
bool Decoder::opcode_save_r19r20_x(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Off = (OC[Offset] & 0x1F) << 3;
if (Prologue)
SW.startLine() << format(
"0x%02x ; stp x19, x20, [sp, #-%u]!\n", OC[Offset], Off);
else
SW.startLine() << format(
"0x%02x ; ldp x19, x20, [sp], #%u\n", OC[Offset], Off);
++Offset;
return false;
}
bool Decoder::opcode_save_fplr(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Off = (OC[Offset] & 0x3F) << 3;
SW.startLine() << format(
"0x%02x ; %s x29, x30, [sp, #%u]\n", OC[Offset],
static_cast<const char *>(Prologue ? "stp" : "ldp"), Off);
++Offset;
return false;
}
bool Decoder::opcode_save_fplr_x(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Off = ((OC[Offset] & 0x3F) + 1) << 3;
if (Prologue)
SW.startLine() << format(
"0x%02x ; stp x29, x30, [sp, #-%u]!\n", OC[Offset], Off);
else
SW.startLine() << format(
"0x%02x ; ldp x29, x30, [sp], #%u\n", OC[Offset], Off);
++Offset;
return false;
}
bool Decoder::opcode_alloc_m(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t NumBytes = ((OC[Offset] & 0x07) << 8);
NumBytes |= (OC[Offset + 1] & 0xFF);
NumBytes <<= 4;
SW.startLine() << format("0x%02x%02x ; %s sp, #%u\n",
OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "sub" : "add"),
NumBytes);
Offset += 2;
return false;
}
bool Decoder::opcode_save_regp(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = ((OC[Offset] & 0x03) << 8);
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg += 19;
uint32_t Off = (OC[Offset + 1] & 0x3F) << 3;
SW.startLine() << format(
"0x%02x%02x ; %s x%u, x%u, [sp, #%u]\n",
OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "stp" : "ldp"), Reg, Reg + 1, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_regp_x(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = ((OC[Offset] & 0x03) << 8);
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg += 19;
uint32_t Off = ((OC[Offset + 1] & 0x3F) + 1) << 3;
if (Prologue)
SW.startLine() << format(
"0x%02x%02x ; stp x%u, x%u, [sp, #-%u]!\n",
OC[Offset], OC[Offset + 1], Reg,
Reg + 1, Off);
else
SW.startLine() << format(
"0x%02x%02x ; ldp x%u, x%u, [sp], #%u\n",
OC[Offset], OC[Offset + 1], Reg,
Reg + 1, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_reg(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = (OC[Offset] & 0x03) << 8;
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg += 19;
uint32_t Off = (OC[Offset + 1] & 0x3F) << 3;
SW.startLine() << format("0x%02x%02x ; %s x%u, [sp, #%u]\n",
OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "str" : "ldr"),
Reg, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_reg_x(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = (OC[Offset] & 0x01) << 8;
Reg |= (OC[Offset + 1] & 0xE0);
Reg >>= 5;
Reg += 19;
uint32_t Off = ((OC[Offset + 1] & 0x1F) + 1) << 3;
if (Prologue)
SW.startLine() << format("0x%02x%02x ; str x%u, [sp, #-%u]!\n",
OC[Offset], OC[Offset + 1], Reg, Off);
else
SW.startLine() << format("0x%02x%02x ; ldr x%u, [sp], #%u\n",
OC[Offset], OC[Offset + 1], Reg, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_lrpair(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = (OC[Offset] & 0x01) << 8;
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg *= 2;
Reg += 19;
uint32_t Off = (OC[Offset + 1] & 0x3F) << 3;
SW.startLine() << format("0x%02x%02x ; %s x%u, lr, [sp, #%u]\n",
OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "stp" : "ldp"),
Reg, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_fregp(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = (OC[Offset] & 0x01) << 8;
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg += 8;
uint32_t Off = (OC[Offset + 1] & 0x3F) << 3;
SW.startLine() << format("0x%02x%02x ; %s d%u, d%u, [sp, #%u]\n",
OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "stp" : "ldp"),
Reg, Reg + 1, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_fregp_x(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = (OC[Offset] & 0x01) << 8;
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg += 8;
uint32_t Off = ((OC[Offset + 1] & 0x3F) + 1) << 3;
if (Prologue)
SW.startLine() << format(
"0x%02x%02x ; stp d%u, d%u, [sp, #-%u]!\n", OC[Offset],
OC[Offset + 1], Reg, Reg + 1, Off);
else
SW.startLine() << format(
"0x%02x%02x ; ldp d%u, d%u, [sp], #%u\n", OC[Offset],
OC[Offset + 1], Reg, Reg + 1, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_freg(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = (OC[Offset] & 0x01) << 8;
Reg |= (OC[Offset + 1] & 0xC0);
Reg >>= 6;
Reg += 8;
uint32_t Off = (OC[Offset + 1] & 0x3F) << 3;
SW.startLine() << format("0x%02x%02x ; %s d%u, [sp, #%u]\n",
OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "str" : "ldr"),
Reg, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_save_freg_x(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
uint32_t Reg = ((OC[Offset + 1] & 0xE0) >> 5) + 8;
uint32_t Off = ((OC[Offset + 1] & 0x1F) + 1) << 3;
if (Prologue)
SW.startLine() << format(
"0x%02x%02x ; str d%u, [sp, #-%u]!\n", OC[Offset],
OC[Offset + 1], Reg, Off);
else
SW.startLine() << format(
"0x%02x%02x ; ldr d%u, [sp], #%u\n", OC[Offset],
OC[Offset + 1], Reg, Off);
Offset += 2;
return false;
}
bool Decoder::opcode_alloc_l(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
unsigned Off =
(OC[Offset + 1] << 16) | (OC[Offset + 2] << 8) | (OC[Offset + 3] << 0);
Off <<= 4;
SW.startLine() << format(
"0x%02x%02x%02x%02x ; %s sp, #%u\n", OC[Offset], OC[Offset + 1],
OC[Offset + 2], OC[Offset + 3],
static_cast<const char *>(Prologue ? "sub" : "add"), Off);
Offset += 4;
return false;
}
bool Decoder::opcode_setfp(const uint8_t *OC, unsigned &Offset, unsigned Length,
bool Prologue) {
SW.startLine() << format("0x%02x ; mov %s, %s\n", OC[Offset],
static_cast<const char *>(Prologue ? "fp" : "sp"),
static_cast<const char *>(Prologue ? "sp" : "fp"));
++Offset;
return false;
}
bool Decoder::opcode_addfp(const uint8_t *OC, unsigned &Offset, unsigned Length,
bool Prologue) {
unsigned NumBytes = OC[Offset + 1] << 3;
SW.startLine() << format(
"0x%02x%02x ; %s %s, %s, #%u\n", OC[Offset], OC[Offset + 1],
static_cast<const char *>(Prologue ? "add" : "sub"),
static_cast<const char *>(Prologue ? "fp" : "sp"),
static_cast<const char *>(Prologue ? "sp" : "fp"), NumBytes);
Offset += 2;
return false;
}
bool Decoder::opcode_nop(const uint8_t *OC, unsigned &Offset, unsigned Length,
bool Prologue) {
SW.startLine() << format("0x%02x ; nop\n", OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_end(const uint8_t *OC, unsigned &Offset, unsigned Length,
bool Prologue) {
SW.startLine() << format("0x%02x ; end\n", OC[Offset]);
++Offset;
return true;
}
bool Decoder::opcode_end_c(const uint8_t *OC, unsigned &Offset, unsigned Length,
bool Prologue) {
SW.startLine() << format("0x%02x ; end_c\n", OC[Offset]);
++Offset;
return true;
}
bool Decoder::opcode_save_next(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
if (Prologue)
SW.startLine() << format("0x%02x ; save next\n", OC[Offset]);
else
SW.startLine() << format("0x%02x ; restore next\n",
OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_trap_frame(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; trap frame\n", OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_machine_frame(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; machine frame\n",
OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_context(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; context\n", OC[Offset]);
++Offset;
return false;
}
bool Decoder::opcode_clear_unwound_to_call(const uint8_t *OC, unsigned &Offset,
unsigned Length, bool Prologue) {
SW.startLine() << format("0x%02x ; clear unwound to call\n",
OC[Offset]);
++Offset;
return false;
}
void Decoder::decodeOpcodes(ArrayRef<uint8_t> Opcodes, unsigned Offset,
bool Prologue) {
assert((!Prologue || Offset == 0) && "prologue should always use offset 0");
const RingEntry* DecodeRing = isAArch64 ? Ring64 : Ring;
bool Terminated = false;
for (unsigned OI = Offset, OE = Opcodes.size(); !Terminated && OI < OE; ) {
for (unsigned DI = 0;; ++DI) {
if ((isAArch64 && (DI >= array_lengthof(Ring64))) ||
(!isAArch64 && (DI >= array_lengthof(Ring)))) {
SW.startLine() << format("0x%02x ; Bad opcode!\n",
Opcodes.data()[OI]);
++OI;
break;
}
if ((Opcodes[OI] & DecodeRing[DI].Mask) == DecodeRing[DI].Value) {
if (OI + DecodeRing[DI].Length > OE) {
SW.startLine() << format("Opcode 0x%02x goes past the unwind data\n",
Opcodes[OI]);
OI += DecodeRing[DI].Length;
break;
}
Terminated =
(this->*DecodeRing[DI].Routine)(Opcodes.data(), OI, 0, Prologue);
break;
}
}
}
}
bool Decoder::dumpXDataRecord(const COFFObjectFile &COFF,
const SectionRef &Section,
uint64_t FunctionAddress, uint64_t VA) {
ArrayRef<uint8_t> Contents;
if (COFF.getSectionContents(COFF.getCOFFSection(Section), Contents))
return false;
uint64_t SectionVA = Section.getAddress();
uint64_t Offset = VA - SectionVA;
const ulittle32_t *Data =
reinterpret_cast<const ulittle32_t *>(Contents.data() + Offset);
// Sanity check to ensure that the .xdata header is present.
// A header is one or two words, followed by at least one word to describe
// the unwind codes. Applicable to both ARM and AArch64.
if (Contents.size() - Offset < 8)
report_fatal_error(".xdata must be at least 8 bytes in size");
const ExceptionDataRecord XData(Data, isAArch64);
DictScope XRS(SW, "ExceptionData");
SW.printNumber("FunctionLength",
isAArch64 ? XData.FunctionLengthInBytesAArch64() :
XData.FunctionLengthInBytesARM());
SW.printNumber("Version", XData.Vers());
SW.printBoolean("ExceptionData", XData.X());
SW.printBoolean("EpiloguePacked", XData.E());
if (!isAArch64)
SW.printBoolean("Fragment", XData.F());
SW.printNumber(XData.E() ? "EpilogueOffset" : "EpilogueScopes",
XData.EpilogueCount());
uint64_t ByteCodeLength = XData.CodeWords() * sizeof(uint32_t);
SW.printNumber("ByteCodeLength", ByteCodeLength);
if ((int64_t)(Contents.size() - Offset - 4 * HeaderWords(XData) -
(XData.E() ? 0 : XData.EpilogueCount() * 4) -
(XData.X() ? 8 : 0)) < (int64_t)ByteCodeLength) {
SW.flush();
report_fatal_error("Malformed unwind data");
}
if (XData.E()) {
ArrayRef<uint8_t> UC = XData.UnwindByteCode();
if (isAArch64 || !XData.F()) {
ListScope PS(SW, "Prologue");
decodeOpcodes(UC, 0, /*Prologue=*/true);
}
if (XData.EpilogueCount()) {
ListScope ES(SW, "Epilogue");
decodeOpcodes(UC, XData.EpilogueCount(), /*Prologue=*/false);
}
} else {
{
ListScope PS(SW, "Prologue");
decodeOpcodes(XData.UnwindByteCode(), 0, /*Prologue=*/true);
}
ArrayRef<ulittle32_t> EpilogueScopes = XData.EpilogueScopes();
ListScope ESS(SW, "EpilogueScopes");
for (const EpilogueScope ES : EpilogueScopes) {
DictScope ESES(SW, "EpilogueScope");
SW.printNumber("StartOffset", ES.EpilogueStartOffset());
if (!isAArch64)
SW.printNumber("Condition", ES.Condition());
SW.printNumber("EpilogueStartIndex",
isAArch64 ? ES.EpilogueStartIndexAArch64()
: ES.EpilogueStartIndexARM());
if (ES.ES & ~0xffc3ffff)
SW.printNumber("ReservedBits", (ES.ES >> 18) & 0xF);
ListScope Opcodes(SW, "Opcodes");
decodeOpcodes(XData.UnwindByteCode(),
isAArch64 ? ES.EpilogueStartIndexAArch64()
: ES.EpilogueStartIndexARM(),
/*Prologue=*/false);
}
}
if (XData.X()) {
const uint64_t Address = COFF.getImageBase() + XData.ExceptionHandlerRVA();
const uint32_t Parameter = XData.ExceptionHandlerParameter();
const size_t HandlerOffset = HeaderWords(XData)
+ (XData.E() ? 0 : XData.EpilogueCount())
+ XData.CodeWords();
ErrorOr<SymbolRef> Symbol = getRelocatedSymbol(
COFF, Section, Offset + HandlerOffset * sizeof(uint32_t));
if (!Symbol)
Symbol = getSymbol(COFF, Address, /*FunctionOnly=*/true);
if (!Symbol) {
ListScope EHS(SW, "ExceptionHandler");
SW.printHex("Routine", Address);
SW.printHex("Parameter", Parameter);
return true;
}
Expected<StringRef> Name = Symbol->getName();
if (!Name) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(Name.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
ListScope EHS(SW, "ExceptionHandler");
SW.printString("Routine", formatSymbol(*Name, Address));
SW.printHex("Parameter", Parameter);
}
return true;
}
bool Decoder::dumpUnpackedEntry(const COFFObjectFile &COFF,
const SectionRef Section, uint64_t Offset,
unsigned Index, const RuntimeFunction &RF) {
assert(RF.Flag() == RuntimeFunctionFlag::RFF_Unpacked &&
"packed entry cannot be treated as an unpacked entry");
ErrorOr<SymbolRef> Function = getRelocatedSymbol(COFF, Section, Offset);
if (!Function)
Function = getSymbol(COFF, COFF.getImageBase() + RF.BeginAddress,
/*FunctionOnly=*/true);
ErrorOr<SymbolRef> XDataRecord = getRelocatedSymbol(COFF, Section, Offset + 4);
if (!XDataRecord)
XDataRecord = getSymbol(COFF, RF.ExceptionInformationRVA());
if (!RF.BeginAddress && !Function)
return false;
if (!RF.UnwindData && !XDataRecord)
return false;
StringRef FunctionName;
uint64_t FunctionAddress;
if (Function) {
Expected<StringRef> FunctionNameOrErr = Function->getName();
if (!FunctionNameOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(FunctionNameOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
FunctionName = *FunctionNameOrErr;
Expected<uint64_t> FunctionAddressOrErr = Function->getAddress();
if (!FunctionAddressOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(FunctionAddressOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
FunctionAddress = *FunctionAddressOrErr;
} else {
FunctionAddress = COFF.getImageBase() + RF.BeginAddress;
}
SW.printString("Function", formatSymbol(FunctionName, FunctionAddress));
if (XDataRecord) {
Expected<StringRef> Name = XDataRecord->getName();
if (!Name) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(Name.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
Expected<uint64_t> AddressOrErr = XDataRecord->getAddress();
if (!AddressOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(AddressOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
uint64_t Address = *AddressOrErr;
SW.printString("ExceptionRecord", formatSymbol(*Name, Address));
Expected<section_iterator> SIOrErr = XDataRecord->getSection();
if (!SIOrErr) {
// TODO: Actually report errors helpfully.
consumeError(SIOrErr.takeError());
return false;
}
section_iterator SI = *SIOrErr;
// FIXME: Do we need to add an offset from the relocation?
return dumpXDataRecord(COFF, *SI, FunctionAddress,
RF.ExceptionInformationRVA());
} else {
uint64_t Address = COFF.getImageBase() + RF.ExceptionInformationRVA();
SW.printString("ExceptionRecord", formatSymbol("", Address));
ErrorOr<SectionRef> Section = getSectionContaining(COFF, Address);
if (!Section)
return false;
return dumpXDataRecord(COFF, *Section, FunctionAddress, Address);
}
}
bool Decoder::dumpPackedEntry(const object::COFFObjectFile &COFF,
const SectionRef Section, uint64_t Offset,
unsigned Index, const RuntimeFunction &RF) {
assert((RF.Flag() == RuntimeFunctionFlag::RFF_Packed ||
RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
"unpacked entry cannot be treated as a packed entry");
ErrorOr<SymbolRef> Function = getRelocatedSymbol(COFF, Section, Offset);
if (!Function)
Function = getSymbol(COFF, RF.BeginAddress, /*FunctionOnly=*/true);
StringRef FunctionName;
uint64_t FunctionAddress;
if (Function) {
Expected<StringRef> FunctionNameOrErr = Function->getName();
if (!FunctionNameOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(FunctionNameOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
FunctionName = *FunctionNameOrErr;
Expected<uint64_t> FunctionAddressOrErr = Function->getAddress();
if (!FunctionAddressOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(FunctionAddressOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
FunctionAddress = *FunctionAddressOrErr;
} else {
FunctionAddress = COFF.getPE32Header()->ImageBase + RF.BeginAddress;
}
SW.printString("Function", formatSymbol(FunctionName, FunctionAddress));
if (!isAArch64)
SW.printBoolean("Fragment",
RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment);
SW.printNumber("FunctionLength", RF.FunctionLength());
SW.startLine() << "ReturnType: " << RF.Ret() << '\n';
SW.printBoolean("HomedParameters", RF.H());
SW.startLine() << "SavedRegisters: ";
printRegisters(SavedRegisterMask(RF));
OS << '\n';
SW.printNumber("StackAdjustment", StackAdjustment(RF) << 2);
return true;
}
bool Decoder::dumpPackedARM64Entry(const object::COFFObjectFile &COFF,
const SectionRef Section, uint64_t Offset,
unsigned Index,
const RuntimeFunctionARM64 &RF) {
assert((RF.Flag() == RuntimeFunctionFlag::RFF_Packed ||
RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
"unpacked entry cannot be treated as a packed entry");
ErrorOr<SymbolRef> Function = getRelocatedSymbol(COFF, Section, Offset);
if (!Function)
Function = getSymbol(COFF, RF.BeginAddress, /*FunctionOnly=*/true);
StringRef FunctionName;
uint64_t FunctionAddress;
if (Function) {
Expected<StringRef> FunctionNameOrErr = Function->getName();
if (!FunctionNameOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(FunctionNameOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
FunctionName = *FunctionNameOrErr;
Expected<uint64_t> FunctionAddressOrErr = Function->getAddress();
if (!FunctionAddressOrErr) {
std::string Buf;
llvm::raw_string_ostream OS(Buf);
logAllUnhandledErrors(FunctionAddressOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
FunctionAddress = *FunctionAddressOrErr;
} else {
FunctionAddress = COFF.getPE32PlusHeader()->ImageBase + RF.BeginAddress;
}
SW.printString("Function", formatSymbol(FunctionName, FunctionAddress));
SW.printBoolean("Fragment",
RF.Flag() == RuntimeFunctionFlag::RFF_PackedFragment);
SW.printNumber("FunctionLength", RF.FunctionLength());
SW.printNumber("RegF", RF.RegF());
SW.printNumber("RegI", RF.RegI());
SW.printBoolean("HomedParameters", RF.H());
SW.printNumber("CR", RF.CR());
SW.printNumber("FrameSize", RF.FrameSize() << 4);
ListScope PS(SW, "Prologue");
// Synthesize the equivalent prologue according to the documentation
// at https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling,
// printed in reverse order compared to the docs, to match how prologues
// are printed for the non-packed case.
int IntSZ = 8 * RF.RegI();
if (RF.CR() == 1)
IntSZ += 8;
int FpSZ = 8 * RF.RegF();
if (RF.RegF())
FpSZ += 8;
int SavSZ = (IntSZ + FpSZ + 8 * 8 * RF.H() + 0xf) & ~0xf;
int LocSZ = (RF.FrameSize() << 4) - SavSZ;
if (RF.CR() == 3) {
SW.startLine() << "mov x29, sp\n";
if (LocSZ <= 512) {
SW.startLine() << format("stp x29, lr, [sp, #-%d]!\n", LocSZ);
} else {
SW.startLine() << "stp x29, lr, [sp, #0]\n";
}
}
if (LocSZ > 4080) {
SW.startLine() << format("sub sp, sp, #%d\n", LocSZ - 4080);
SW.startLine() << "sub sp, sp, #4080\n";
} else if ((RF.CR() != 3 && LocSZ > 0) || LocSZ > 512) {
SW.startLine() << format("sub sp, sp, #%d\n", LocSZ);
}
if (RF.H()) {
SW.startLine() << format("stp x6, x7, [sp, #%d]\n", IntSZ + FpSZ + 48);
SW.startLine() << format("stp x4, x5, [sp, #%d]\n", IntSZ + FpSZ + 32);
SW.startLine() << format("stp x2, x3, [sp, #%d]\n", IntSZ + FpSZ + 16);
if (RF.RegI() > 0 || RF.RegF() > 0 || RF.CR() == 1) {
SW.startLine() << format("stp x0, x1, [sp, #%d]\n", IntSZ + FpSZ);
} else {
// This case isn't documented; if neither RegI nor RegF nor CR=1
// have decremented the stack pointer by SavSZ, we need to do it here
// (as the final stack adjustment of LocSZ excludes SavSZ).
SW.startLine() << format("stp x0, x1, [sp, #-%d]!\n", SavSZ);
}
}
int FloatRegs = RF.RegF() > 0 ? RF.RegF() + 1 : 0;
for (int I = (FloatRegs + 1) / 2 - 1; I >= 0; I--) {
if (I == (FloatRegs + 1) / 2 - 1 && FloatRegs % 2 == 1) {
// The last register, an odd register without a pair
SW.startLine() << format("str d%d, [sp, #%d]\n", 8 + 2 * I,
IntSZ + 16 * I);
} else if (I == 0 && RF.RegI() == 0 && RF.CR() != 1) {
SW.startLine() << format("stp d%d, d%d, [sp, #-%d]!\n", 8 + 2 * I,
8 + 2 * I + 1, SavSZ);
} else {
SW.startLine() << format("stp d%d, d%d, [sp, #%d]\n", 8 + 2 * I,
8 + 2 * I + 1, IntSZ + 16 * I);
}
}
if (RF.CR() == 1 && (RF.RegI() % 2) == 0) {
if (RF.RegI() == 0)
SW.startLine() << format("str lr, [sp, #-%d]!\n", SavSZ);
else
SW.startLine() << format("str lr, [sp, #%d]\n", IntSZ - 8);
}
for (int I = (RF.RegI() + 1) / 2 - 1; I >= 0; I--) {
if (I == (RF.RegI() + 1) / 2 - 1 && RF.RegI() % 2 == 1) {
// The last register, an odd register without a pair
if (RF.CR() == 1) {
if (I == 0) { // If this is the only register pair
// CR=1 combined with RegI=1 doesn't map to a documented case;
// it doesn't map to any regular unwind info opcode, and the
// actual unwinder doesn't support it.
SW.startLine() << "INVALID!\n";
} else
SW.startLine() << format("stp x%d, lr, [sp, #%d]\n", 19 + 2 * I,
16 * I);
} else {
if (I == 0)
SW.startLine() << format("str x%d, [sp, #-%d]!\n", 19 + 2 * I, SavSZ);
else
SW.startLine() << format("str x%d, [sp, #%d]\n", 19 + 2 * I, 16 * I);
}
} else if (I == 0) {
// The first register pair
SW.startLine() << format("stp x19, x20, [sp, #-%d]!\n", SavSZ);
} else {
SW.startLine() << format("stp x%d, x%d, [sp, #%d]\n", 19 + 2 * I,
19 + 2 * I + 1, 16 * I);
}
}
SW.startLine() << "end\n";
return true;
}
bool Decoder::dumpProcedureDataEntry(const COFFObjectFile &COFF,
const SectionRef Section, unsigned Index,
ArrayRef<uint8_t> Contents) {
uint64_t Offset = PDataEntrySize * Index;
const ulittle32_t *Data =
reinterpret_cast<const ulittle32_t *>(Contents.data() + Offset);
const RuntimeFunction Entry(Data);
DictScope RFS(SW, "RuntimeFunction");
if (Entry.Flag() == RuntimeFunctionFlag::RFF_Unpacked)
return dumpUnpackedEntry(COFF, Section, Offset, Index, Entry);
if (isAArch64) {
const RuntimeFunctionARM64 EntryARM64(Data);
return dumpPackedARM64Entry(COFF, Section, Offset, Index, EntryARM64);
}
return dumpPackedEntry(COFF, Section, Offset, Index, Entry);
}
void Decoder::dumpProcedureData(const COFFObjectFile &COFF,
const SectionRef Section) {
ArrayRef<uint8_t> Contents;
if (COFF.getSectionContents(COFF.getCOFFSection(Section), Contents))
return;
if (Contents.size() % PDataEntrySize) {
errs() << ".pdata content is not " << PDataEntrySize << "-byte aligned\n";
return;
}
for (unsigned EI = 0, EE = Contents.size() / PDataEntrySize; EI < EE; ++EI)
if (!dumpProcedureDataEntry(COFF, Section, EI, Contents))
break;
}
Error Decoder::dumpProcedureData(const COFFObjectFile &COFF) {
for (const auto &Section : COFF.sections()) {
Expected<StringRef> NameOrErr =
COFF.getSectionName(COFF.getCOFFSection(Section));
if (!NameOrErr)
return NameOrErr.takeError();
if (NameOrErr->startswith(".pdata"))
dumpProcedureData(COFF, Section);
}
return Error::success();
}
}
}
}