llvm-for-llvmta/lib/CodeGen/BranchRelaxation.cpp

577 lines
20 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- BranchRelaxation.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "branch-relaxation"
STATISTIC(NumSplit, "Number of basic blocks split");
STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
#define BRANCH_RELAX_NAME "Branch relaxation pass"
namespace {
class BranchRelaxation : public MachineFunctionPass {
/// BasicBlockInfo - Information about the offset and size of a single
/// basic block.
struct BasicBlockInfo {
/// Offset - Distance from the beginning of the function to the beginning
/// of this basic block.
///
/// The offset is always aligned as required by the basic block.
unsigned Offset = 0;
/// Size - Size of the basic block in bytes. If the block contains
/// inline assembly, this is a worst case estimate.
///
/// The size does not include any alignment padding whether from the
/// beginning of the block, or from an aligned jump table at the end.
unsigned Size = 0;
BasicBlockInfo() = default;
/// Compute the offset immediately following this block. \p MBB is the next
/// block.
unsigned postOffset(const MachineBasicBlock &MBB) const {
const unsigned PO = Offset + Size;
const Align Alignment = MBB.getAlignment();
const Align ParentAlign = MBB.getParent()->getAlignment();
if (Alignment <= ParentAlign)
return alignTo(PO, Alignment);
// The alignment of this MBB is larger than the function's alignment, so we
// can't tell whether or not it will insert nops. Assume that it will.
return alignTo(PO, Alignment) + Alignment.value() - ParentAlign.value();
}
};
SmallVector<BasicBlockInfo, 16> BlockInfo;
std::unique_ptr<RegScavenger> RS;
LivePhysRegs LiveRegs;
MachineFunction *MF;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
bool relaxBranchInstructions();
void scanFunction();
MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
MachineBasicBlock *DestBB);
void adjustBlockOffsets(MachineBasicBlock &Start);
bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
bool fixupConditionalBranch(MachineInstr &MI);
bool fixupUnconditionalBranch(MachineInstr &MI);
uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
unsigned getInstrOffset(const MachineInstr &MI) const;
void dumpBBs();
void verify();
public:
static char ID;
BranchRelaxation() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
};
} // end anonymous namespace
char BranchRelaxation::ID = 0;
char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
/// verify - check BBOffsets, BBSizes, alignment of islands
void BranchRelaxation::verify() {
#ifndef NDEBUG
unsigned PrevNum = MF->begin()->getNumber();
for (MachineBasicBlock &MBB : *MF) {
const unsigned Num = MBB.getNumber();
assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
assert(BlockInfo[Num].Size == computeBlockSize(MBB));
PrevNum = Num;
}
#endif
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// print block size and offset information - debugging
LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
for (auto &MBB : *MF) {
const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
dbgs() << format("%%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
<< format("size=%#x\n", BBI.Size);
}
}
#endif
/// scanFunction - Do the initial scan of the function, building up
/// information about each block.
void BranchRelaxation::scanFunction() {
BlockInfo.clear();
BlockInfo.resize(MF->getNumBlockIDs());
// First thing, compute the size of all basic blocks, and see if the function
// has any inline assembly in it. If so, we have to be conservative about
// alignment assumptions, as we don't know for sure the size of any
// instructions in the inline assembly.
for (MachineBasicBlock &MBB : *MF)
BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
// Compute block offsets and known bits.
adjustBlockOffsets(*MF->begin());
}
/// computeBlockSize - Compute the size for MBB.
uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
uint64_t Size = 0;
for (const MachineInstr &MI : MBB)
Size += TII->getInstSizeInBytes(MI);
return Size;
}
/// getInstrOffset - Return the current offset of the specified machine
/// instruction from the start of the function. This offset changes as stuff is
/// moved around inside the function.
unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
const MachineBasicBlock *MBB = MI.getParent();
// The offset is composed of two things: the sum of the sizes of all MBB's
// before this instruction's block, and the offset from the start of the block
// it is in.
unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
// Sum instructions before MI in MBB.
for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
Offset += TII->getInstSizeInBytes(*I);
}
return Offset;
}
void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
unsigned PrevNum = Start.getNumber();
for (auto &MBB :
make_range(std::next(MachineFunction::iterator(Start)), MF->end())) {
unsigned Num = MBB.getNumber();
// Get the offset and known bits at the end of the layout predecessor.
// Include the alignment of the current block.
BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
PrevNum = Num;
}
}
/// Insert a new empty basic block and insert it after \BB
MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(BB.getBasicBlock());
MF->insert(++BB.getIterator(), NewBB);
// Insert an entry into BlockInfo to align it properly with the block numbers.
BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
return NewBB;
}
/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch. Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
MachineBasicBlock *DestBB) {
MachineBasicBlock *OrigBB = MI.getParent();
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
MF->insert(++OrigBB->getIterator(), NewBB);
// Splice the instructions starting with MI over to NewBB.
NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
// Add an unconditional branch from OrigBB to NewBB.
// Note the new unconditional branch is not being recorded.
// There doesn't seem to be meaningful DebugInfo available; this doesn't
// correspond to anything in the source.
TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
// Insert an entry into BlockInfo to align it properly with the block numbers.
BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
NewBB->transferSuccessors(OrigBB);
OrigBB->addSuccessor(NewBB);
OrigBB->addSuccessor(DestBB);
// Cleanup potential unconditional branch to successor block.
// Note that updateTerminator may change the size of the blocks.
OrigBB->updateTerminator(NewBB);
// Figure out how large the OrigBB is. As the first half of the original
// block, it cannot contain a tablejump. The size includes
// the new jump we added. (It should be possible to do this without
// recounting everything, but it's very confusing, and this is rarely
// executed.)
BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
// Figure out how large the NewMBB is. As the second half of the original
// block, it may contain a tablejump.
BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
// All BBOffsets following these blocks must be modified.
adjustBlockOffsets(*OrigBB);
// Need to fix live-in lists if we track liveness.
if (TRI->trackLivenessAfterRegAlloc(*MF))
computeAndAddLiveIns(LiveRegs, *NewBB);
++NumSplit;
return NewBB;
}
/// isBlockInRange - Returns true if the distance between specific MI and
/// specific BB can fit in MI's displacement field.
bool BranchRelaxation::isBlockInRange(
const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
int64_t BrOffset = getInstrOffset(MI);
int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
return true;
LLVM_DEBUG(dbgs() << "Out of range branch to destination "
<< printMBBReference(DestBB) << " from "
<< printMBBReference(*MI.getParent()) << " to "
<< DestOffset << " offset " << DestOffset - BrOffset << '\t'
<< MI);
return false;
}
/// fixupConditionalBranch - Fix up a conditional branch whose destination is
/// too far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
MachineBasicBlock *NewBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
auto insertUncondBranch = [&](MachineBasicBlock *MBB,
MachineBasicBlock *DestBB) {
unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
int NewBrSize = 0;
TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
BBSize += NewBrSize;
};
auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
SmallVectorImpl<MachineOperand>& Cond) {
unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
int NewBrSize = 0;
TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
BBSize += NewBrSize;
};
auto removeBranch = [&](MachineBasicBlock *MBB) {
unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
int RemovedSize = 0;
TII->removeBranch(*MBB, &RemovedSize);
BBSize -= RemovedSize;
};
auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
MachineBasicBlock *NewBB) {
// Keep the block offsets up to date.
adjustBlockOffsets(*MBB);
// Need to fix live-in lists if we track liveness.
if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
computeAndAddLiveIns(LiveRegs, *NewBB);
};
bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
assert(!Fail && "branches to be relaxed must be analyzable");
(void)Fail;
// Add an unconditional branch to the destination and invert the branch
// condition to jump over it:
// tbz L1
// =>
// tbnz L2
// b L1
// L2:
bool ReversedCond = !TII->reverseBranchCondition(Cond);
if (ReversedCond) {
if (FBB && isBlockInRange(MI, *FBB)) {
// Last MI in the BB is an unconditional branch. We can simply invert the
// condition and swap destinations:
// beq L1
// b L2
// =>
// bne L2
// b L1
LLVM_DEBUG(dbgs() << " Invert condition and swap "
"its destination with "
<< MBB->back());
removeBranch(MBB);
insertBranch(MBB, FBB, TBB, Cond);
finalizeBlockChanges(MBB, nullptr);
return true;
}
if (FBB) {
// We need to split the basic block here to obtain two long-range
// unconditional branches.
NewBB = createNewBlockAfter(*MBB);
insertUncondBranch(NewBB, FBB);
// Update the succesor lists according to the transformation to follow.
// Do it here since if there's no split, no update is needed.
MBB->replaceSuccessor(FBB, NewBB);
NewBB->addSuccessor(FBB);
}
// We now have an appropriate fall-through block in place (either naturally or
// just created), so we can use the inverted the condition.
MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*TBB)
<< ", invert condition and change dest. to "
<< printMBBReference(NextBB) << '\n');
removeBranch(MBB);
// Insert a new conditional branch and a new unconditional branch.
insertBranch(MBB, &NextBB, TBB, Cond);
finalizeBlockChanges(MBB, NewBB);
return true;
}
// Branch cond can't be inverted.
// In this case we always add a block after the MBB.
LLVM_DEBUG(dbgs() << " The branch condition can't be inverted. "
<< " Insert a new BB after " << MBB->back());
if (!FBB)
FBB = &(*std::next(MachineFunction::iterator(MBB)));
// This is the block with cond. branch and the distance to TBB is too long.
// beq L1
// L2:
// We do the following transformation:
// beq NewBB
// b L2
// NewBB:
// b L1
// L2:
NewBB = createNewBlockAfter(*MBB);
insertUncondBranch(NewBB, TBB);
LLVM_DEBUG(dbgs() << " Insert cond B to the new BB "
<< printMBBReference(*NewBB)
<< " Keep the exiting condition.\n"
<< " Insert B to " << printMBBReference(*FBB) << ".\n"
<< " In the new BB: Insert B to "
<< printMBBReference(*TBB) << ".\n");
// Update the successor lists according to the transformation to follow.
MBB->replaceSuccessor(TBB, NewBB);
NewBB->addSuccessor(TBB);
// Replace branch in the current (MBB) block.
removeBranch(MBB);
insertBranch(MBB, NewBB, FBB, Cond);
finalizeBlockChanges(MBB, NewBB);
return true;
}
bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
MachineBasicBlock *MBB = MI.getParent();
unsigned OldBrSize = TII->getInstSizeInBytes(MI);
MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
int64_t SrcOffset = getInstrOffset(MI);
assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
BlockInfo[MBB->getNumber()].Size -= OldBrSize;
MachineBasicBlock *BranchBB = MBB;
// If this was an expanded conditional branch, there is already a single
// unconditional branch in a block.
if (!MBB->empty()) {
BranchBB = createNewBlockAfter(*MBB);
// Add live outs.
for (const MachineBasicBlock *Succ : MBB->successors()) {
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
BranchBB->addLiveIn(LiveIn);
}
BranchBB->sortUniqueLiveIns();
BranchBB->addSuccessor(DestBB);
MBB->replaceSuccessor(DestBB, BranchBB);
}
DebugLoc DL = MI.getDebugLoc();
MI.eraseFromParent();
BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
*BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
adjustBlockOffsets(*MBB);
return true;
}
bool BranchRelaxation::relaxBranchInstructions() {
bool Changed = false;
// Relaxing branches involves creating new basic blocks, so re-eval
// end() for termination.
for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
MachineBasicBlock &MBB = *I;
// Empty block?
MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
if (Last == MBB.end())
continue;
// Expand the unconditional branch first if necessary. If there is a
// conditional branch, this will end up changing the branch destination of
// it to be over the newly inserted indirect branch block, which may avoid
// the need to try expanding the conditional branch first, saving an extra
// jump.
if (Last->isUnconditionalBranch()) {
// Unconditional branch destination might be unanalyzable, assume these
// are OK.
if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
if (!isBlockInRange(*Last, *DestBB)) {
fixupUnconditionalBranch(*Last);
++NumUnconditionalRelaxed;
Changed = true;
}
}
}
// Loop over the conditional branches.
MachineBasicBlock::iterator Next;
for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
J != MBB.end(); J = Next) {
Next = std::next(J);
MachineInstr &MI = *J;
if (!MI.isConditionalBranch())
continue;
if (MI.getOpcode() == TargetOpcode::FAULTING_OP)
// FAULTING_OP's destination is not encoded in the instruction stream
// and thus never needs relaxed.
continue;
MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
if (!isBlockInRange(MI, *DestBB)) {
if (Next != MBB.end() && Next->isConditionalBranch()) {
// If there are multiple conditional branches, this isn't an
// analyzable block. Split later terminators into a new block so
// each one will be analyzable.
splitBlockBeforeInstr(*Next, DestBB);
} else {
fixupConditionalBranch(MI);
++NumConditionalRelaxed;
}
Changed = true;
// This may have modified all of the terminators, so start over.
Next = MBB.getFirstTerminator();
}
}
}
return Changed;
}
bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
LLVM_DEBUG(dbgs() << "***** BranchRelaxation *****\n");
const TargetSubtargetInfo &ST = MF->getSubtarget();
TII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
if (TRI->trackLivenessAfterRegAlloc(*MF))
RS.reset(new RegScavenger());
// Renumber all of the machine basic blocks in the function, guaranteeing that
// the numbers agree with the position of the block in the function.
MF->RenumberBlocks();
// Do the initial scan of the function, building up information about the
// sizes of each block.
scanFunction();
LLVM_DEBUG(dbgs() << " Basic blocks before relaxation\n"; dumpBBs(););
bool MadeChange = false;
while (relaxBranchInstructions())
MadeChange = true;
// After a while, this might be made debug-only, but it is not expensive.
verify();
LLVM_DEBUG(dbgs() << " Basic blocks after relaxation\n\n"; dumpBBs());
BlockInfo.clear();
return MadeChange;
}