llvm-for-llvmta/lib/CodeGen/GlobalISel/GISelKnownBits.cpp

614 lines
22 KiB
C++
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===------------------
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#define DEBUG_TYPE "gisel-known-bits"
using namespace llvm;
char llvm::GISelKnownBitsAnalysis::ID = 0;
INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE,
"Analysis for ComputingKnownBits", false, true)
GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth)
: MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {}
Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) {
const MachineInstr *MI = MRI.getVRegDef(R);
switch (MI->getOpcode()) {
case TargetOpcode::COPY:
return computeKnownAlignment(MI->getOperand(1).getReg(), Depth);
case TargetOpcode::G_FRAME_INDEX: {
int FrameIdx = MI->getOperand(1).getIndex();
return MF.getFrameInfo().getObjectAlign(FrameIdx);
}
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
default:
return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1);
}
}
KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
assert(MI.getNumExplicitDefs() == 1 &&
"expected single return generic instruction");
return getKnownBits(MI.getOperand(0).getReg());
}
KnownBits GISelKnownBits::getKnownBits(Register R) {
const LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
return getKnownBits(R, DemandedElts);
}
KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts,
unsigned Depth) {
// For now, we only maintain the cache during one request.
assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");
KnownBits Known;
computeKnownBitsImpl(R, Known, DemandedElts);
ComputeKnownBitsCache.clear();
return Known;
}
bool GISelKnownBits::signBitIsZero(Register R) {
LLT Ty = MRI.getType(R);
unsigned BitWidth = Ty.getScalarSizeInBits();
return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}
APInt GISelKnownBits::getKnownZeroes(Register R) {
return getKnownBits(R).Zero;
}
APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
LLVM_ATTRIBUTE_UNUSED static void
dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
<< "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
<< (Known.Zero | Known.One).toString(16, false) << "\n"
<< "[" << Depth << "] Zero: 0x" << Known.Zero.toString(16, false)
<< "\n"
<< "[" << Depth << "] One: 0x" << Known.One.toString(16, false)
<< "\n";
}
/// Compute known bits for the intersection of \p Src0 and \p Src1
void GISelKnownBits::computeKnownBitsMin(Register Src0, Register Src1,
KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
// Test src1 first, since we canonicalize simpler expressions to the RHS.
computeKnownBitsImpl(Src1, Known, DemandedElts, Depth);
// If we don't know any bits, early out.
if (Known.isUnknown())
return;
KnownBits Known2;
computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth);
// Only known if known in both the LHS and RHS.
Known = KnownBits::commonBits(Known, Known2);
}
void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
LLT DstTy = MRI.getType(R);
// Handle the case where this is called on a register that does not have a
// type constraint (i.e. it has a register class constraint instead). This is
// unlikely to occur except by looking through copies but it is possible for
// the initial register being queried to be in this state.
if (!DstTy.isValid()) {
Known = KnownBits();
return;
}
unsigned BitWidth = DstTy.getSizeInBits();
auto CacheEntry = ComputeKnownBitsCache.find(R);
if (CacheEntry != ComputeKnownBitsCache.end()) {
Known = CacheEntry->second;
LLVM_DEBUG(dbgs() << "Cache hit at ");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
return;
}
Known = KnownBits(BitWidth); // Don't know anything
if (DstTy.isVector())
return; // TODO: Handle vectors.
// Depth may get bigger than max depth if it gets passed to a different
// GISelKnownBits object.
// This may happen when say a generic part uses a GISelKnownBits object
// with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
// which creates a new GISelKnownBits object with a different and smaller
// depth. If we just check for equality, we would never exit if the depth
// that is passed down to the target specific GISelKnownBits object is
// already bigger than its max depth.
if (Depth >= getMaxDepth())
return;
if (!DemandedElts)
return; // No demanded elts, better to assume we don't know anything.
KnownBits Known2;
switch (Opcode) {
default:
TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
Depth);
break;
case TargetOpcode::COPY:
case TargetOpcode::G_PHI:
case TargetOpcode::PHI: {
Known.One = APInt::getAllOnesValue(BitWidth);
Known.Zero = APInt::getAllOnesValue(BitWidth);
// Destination registers should not have subregisters at this
// point of the pipeline, otherwise the main live-range will be
// defined more than once, which is against SSA.
assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
// Record in the cache that we know nothing for MI.
// This will get updated later and in the meantime, if we reach that
// phi again, because of a loop, we will cut the search thanks to this
// cache entry.
// We could actually build up more information on the phi by not cutting
// the search, but that additional information is more a side effect
// than an intended choice.
// Therefore, for now, save on compile time until we derive a proper way
// to derive known bits for PHIs within loops.
ComputeKnownBitsCache[R] = KnownBits(BitWidth);
// PHI's operand are a mix of registers and basic blocks interleaved.
// We only care about the register ones.
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
const MachineOperand &Src = MI.getOperand(Idx);
Register SrcReg = Src.getReg();
// Look through trivial copies and phis but don't look through trivial
// copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
// analysis is currently unable to determine the bit width of a
// register class.
//
// We can't use NoSubRegister by name as it's defined by each target but
// it's always defined to be 0 by tablegen.
if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
MRI.getType(SrcReg).isValid()) {
// For COPYs we don't do anything, don't increase the depth.
computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
Depth + (Opcode != TargetOpcode::COPY));
Known = KnownBits::commonBits(Known, Known2);
// If we reach a point where we don't know anything
// just stop looking through the operands.
if (Known.One == 0 && Known.Zero == 0)
break;
} else {
// We know nothing.
Known = KnownBits(BitWidth);
break;
}
}
break;
}
case TargetOpcode::G_CONSTANT: {
auto CstVal = getConstantVRegVal(R, MRI);
if (!CstVal)
break;
Known = KnownBits::makeConstant(*CstVal);
break;
}
case TargetOpcode::G_FRAME_INDEX: {
int FrameIdx = MI.getOperand(1).getIndex();
TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
break;
}
case TargetOpcode::G_SUB: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known,
Known2);
break;
}
case TargetOpcode::G_XOR: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known ^= Known2;
break;
}
case TargetOpcode::G_PTR_ADD: {
// G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
break;
LLVM_FALLTHROUGH;
}
case TargetOpcode::G_ADD: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known =
KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2);
break;
}
case TargetOpcode::G_AND: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known &= Known2;
break;
}
case TargetOpcode::G_OR: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known |= Known2;
break;
}
case TargetOpcode::G_MUL: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::computeForMul(Known, Known2);
break;
}
case TargetOpcode::G_SELECT: {
computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(),
Known, DemandedElts, Depth + 1);
break;
}
case TargetOpcode::G_SMIN: {
// TODO: Handle clamp pattern with number of sign bits
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::smin(Known, KnownRHS);
break;
}
case TargetOpcode::G_SMAX: {
// TODO: Handle clamp pattern with number of sign bits
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::smax(Known, KnownRHS);
break;
}
case TargetOpcode::G_UMIN: {
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
DemandedElts, Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
DemandedElts, Depth + 1);
Known = KnownBits::umin(Known, KnownRHS);
break;
}
case TargetOpcode::G_UMAX: {
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
DemandedElts, Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
DemandedElts, Depth + 1);
Known = KnownBits::umax(Known, KnownRHS);
break;
}
case TargetOpcode::G_FCMP:
case TargetOpcode::G_ICMP: {
if (TL.getBooleanContents(DstTy.isVector(),
Opcode == TargetOpcode::G_FCMP) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
case TargetOpcode::G_SEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
// If the sign bit is known to be zero or one, then sext will extend
// it to the top bits, else it will just zext.
Known = Known.sext(BitWidth);
break;
}
case TargetOpcode::G_SEXT_INREG: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.sextInReg(MI.getOperand(2).getImm());
break;
}
case TargetOpcode::G_ANYEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.anyext(BitWidth);
break;
}
case TargetOpcode::G_LOAD: {
const MachineMemOperand *MMO = *MI.memoperands_begin();
if (const MDNode *Ranges = MMO->getRanges()) {
computeKnownBitsFromRangeMetadata(*Ranges, Known);
}
break;
}
case TargetOpcode::G_ZEXTLOAD: {
// Everything above the retrieved bits is zero
Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
break;
}
case TargetOpcode::G_ASHR: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::ashr(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_LSHR: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::lshr(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_SHL: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::shl(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_INTTOPTR:
case TargetOpcode::G_PTRTOINT:
// Fall through and handle them the same as zext/trunc.
LLVM_FALLTHROUGH;
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_TRUNC: {
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
unsigned SrcBitWidth = SrcTy.isPointer()
? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
: SrcTy.getSizeInBits();
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.zextOrTrunc(SrcBitWidth);
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.zextOrTrunc(BitWidth);
if (BitWidth > SrcBitWidth)
Known.Zero.setBitsFrom(SrcBitWidth);
break;
}
case TargetOpcode::G_MERGE_VALUES: {
unsigned NumOps = MI.getNumOperands();
unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
for (unsigned I = 0; I != NumOps - 1; ++I) {
KnownBits SrcOpKnown;
computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown,
DemandedElts, Depth + 1);
Known.insertBits(SrcOpKnown, I * OpSize);
}
break;
}
case TargetOpcode::G_UNMERGE_VALUES: {
unsigned NumOps = MI.getNumOperands();
Register SrcReg = MI.getOperand(NumOps - 1).getReg();
if (MRI.getType(SrcReg).isVector())
return; // TODO: Handle vectors.
KnownBits SrcOpKnown;
computeKnownBitsImpl(SrcReg, SrcOpKnown, DemandedElts, Depth + 1);
// Figure out the result operand index
unsigned DstIdx = 0;
for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R;
++DstIdx)
;
Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx);
break;
}
case TargetOpcode::G_BSWAP: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known.byteSwap();
break;
}
case TargetOpcode::G_BITREVERSE: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known.reverseBits();
break;
}
}
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
// Update the cache.
ComputeKnownBitsCache[R] = Known;
}
/// Compute number of sign bits for the intersection of \p Src0 and \p Src1
unsigned GISelKnownBits::computeNumSignBitsMin(Register Src0, Register Src1,
const APInt &DemandedElts,
unsigned Depth) {
// Test src1 first, since we canonicalize simpler expressions to the RHS.
unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth);
if (Src1SignBits == 1)
return 1;
return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits);
}
unsigned GISelKnownBits::computeNumSignBits(Register R,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
if (Opcode == TargetOpcode::G_CONSTANT)
return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
if (Depth == getMaxDepth())
return 1;
if (!DemandedElts)
return 1; // No demanded elts, better to assume we don't know anything.
LLT DstTy = MRI.getType(R);
const unsigned TyBits = DstTy.getScalarSizeInBits();
// Handle the case where this is called on a register that does not have a
// type constraint. This is unlikely to occur except by looking through copies
// but it is possible for the initial register being queried to be in this
// state.
if (!DstTy.isValid())
return 1;
unsigned FirstAnswer = 1;
switch (Opcode) {
case TargetOpcode::COPY: {
MachineOperand &Src = MI.getOperand(1);
if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
MRI.getType(Src.getReg()).isValid()) {
// Don't increment Depth for this one since we didn't do any work.
return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
}
return 1;
}
case TargetOpcode::G_SEXT: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
}
case TargetOpcode::G_SEXT_INREG: {
// Max of the input and what this extends.
Register Src = MI.getOperand(1).getReg();
unsigned SrcBits = MI.getOperand(2).getImm();
unsigned InRegBits = TyBits - SrcBits + 1;
return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1), InRegBits);
}
case TargetOpcode::G_SEXTLOAD: {
// FIXME: We need an in-memory type representation.
if (DstTy.isVector())
return 1;
// e.g. i16->i32 = '17' bits known.
const MachineMemOperand *MMO = *MI.memoperands_begin();
return TyBits - MMO->getSizeInBits() + 1;
}
case TargetOpcode::G_ZEXTLOAD: {
// FIXME: We need an in-memory type representation.
if (DstTy.isVector())
return 1;
// e.g. i16->i32 = '16' bits known.
const MachineMemOperand *MMO = *MI.memoperands_begin();
return TyBits - MMO->getSizeInBits();
}
case TargetOpcode::G_TRUNC: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
// Check if the sign bits of source go down as far as the truncated value.
unsigned DstTyBits = DstTy.getScalarSizeInBits();
unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
if (NumSrcSignBits > (NumSrcBits - DstTyBits))
return NumSrcSignBits - (NumSrcBits - DstTyBits);
break;
}
case TargetOpcode::G_SELECT: {
return computeNumSignBitsMin(MI.getOperand(2).getReg(),
MI.getOperand(3).getReg(), DemandedElts,
Depth + 1);
}
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
default: {
unsigned NumBits =
TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth);
if (NumBits > 1)
FirstAnswer = std::max(FirstAnswer, NumBits);
break;
}
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
KnownBits Known = getKnownBits(R, DemandedElts, Depth);
APInt Mask;
if (Known.isNonNegative()) { // sign bit is 0
Mask = Known.Zero;
} else if (Known.isNegative()) { // sign bit is 1;
Mask = Known.One;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLO to determine
// the number of identical bits in the top of the input value.
Mask <<= Mask.getBitWidth() - TyBits;
return std::max(FirstAnswer, Mask.countLeadingOnes());
}
unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
LLT Ty = MRI.getType(R);
APInt DemandedElts = Ty.isVector()
? APInt::getAllOnesValue(Ty.getNumElements())
: APInt(1, 1);
return computeNumSignBits(R, DemandedElts, Depth);
}
void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
return false;
}