575 lines
20 KiB
C++
575 lines
20 KiB
C++
|
//===- APFixedPoint.cpp - Fixed point constant handling ---------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
/// \file
|
||
|
/// Defines the implementation for the fixed point number interface.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/ADT/APFixedPoint.h"
|
||
|
#include "llvm/ADT/APFloat.h"
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
APFixedPoint APFixedPoint::convert(const FixedPointSemantics &DstSema,
|
||
|
bool *Overflow) const {
|
||
|
APSInt NewVal = Val;
|
||
|
unsigned DstWidth = DstSema.getWidth();
|
||
|
unsigned DstScale = DstSema.getScale();
|
||
|
bool Upscaling = DstScale > getScale();
|
||
|
if (Overflow)
|
||
|
*Overflow = false;
|
||
|
|
||
|
if (Upscaling) {
|
||
|
NewVal = NewVal.extend(NewVal.getBitWidth() + DstScale - getScale());
|
||
|
NewVal <<= (DstScale - getScale());
|
||
|
} else {
|
||
|
NewVal >>= (getScale() - DstScale);
|
||
|
}
|
||
|
|
||
|
auto Mask = APInt::getBitsSetFrom(
|
||
|
NewVal.getBitWidth(),
|
||
|
std::min(DstScale + DstSema.getIntegralBits(), NewVal.getBitWidth()));
|
||
|
APInt Masked(NewVal & Mask);
|
||
|
|
||
|
// Change in the bits above the sign
|
||
|
if (!(Masked == Mask || Masked == 0)) {
|
||
|
// Found overflow in the bits above the sign
|
||
|
if (DstSema.isSaturated())
|
||
|
NewVal = NewVal.isNegative() ? Mask : ~Mask;
|
||
|
else if (Overflow)
|
||
|
*Overflow = true;
|
||
|
}
|
||
|
|
||
|
// If the dst semantics are unsigned, but our value is signed and negative, we
|
||
|
// clamp to zero.
|
||
|
if (!DstSema.isSigned() && NewVal.isSigned() && NewVal.isNegative()) {
|
||
|
// Found negative overflow for unsigned result
|
||
|
if (DstSema.isSaturated())
|
||
|
NewVal = 0;
|
||
|
else if (Overflow)
|
||
|
*Overflow = true;
|
||
|
}
|
||
|
|
||
|
NewVal = NewVal.extOrTrunc(DstWidth);
|
||
|
NewVal.setIsSigned(DstSema.isSigned());
|
||
|
return APFixedPoint(NewVal, DstSema);
|
||
|
}
|
||
|
|
||
|
int APFixedPoint::compare(const APFixedPoint &Other) const {
|
||
|
APSInt ThisVal = getValue();
|
||
|
APSInt OtherVal = Other.getValue();
|
||
|
bool ThisSigned = Val.isSigned();
|
||
|
bool OtherSigned = OtherVal.isSigned();
|
||
|
unsigned OtherScale = Other.getScale();
|
||
|
unsigned OtherWidth = OtherVal.getBitWidth();
|
||
|
|
||
|
unsigned CommonWidth = std::max(Val.getBitWidth(), OtherWidth);
|
||
|
|
||
|
// Prevent overflow in the event the widths are the same but the scales differ
|
||
|
CommonWidth += getScale() >= OtherScale ? getScale() - OtherScale
|
||
|
: OtherScale - getScale();
|
||
|
|
||
|
ThisVal = ThisVal.extOrTrunc(CommonWidth);
|
||
|
OtherVal = OtherVal.extOrTrunc(CommonWidth);
|
||
|
|
||
|
unsigned CommonScale = std::max(getScale(), OtherScale);
|
||
|
ThisVal = ThisVal.shl(CommonScale - getScale());
|
||
|
OtherVal = OtherVal.shl(CommonScale - OtherScale);
|
||
|
|
||
|
if (ThisSigned && OtherSigned) {
|
||
|
if (ThisVal.sgt(OtherVal))
|
||
|
return 1;
|
||
|
else if (ThisVal.slt(OtherVal))
|
||
|
return -1;
|
||
|
} else if (!ThisSigned && !OtherSigned) {
|
||
|
if (ThisVal.ugt(OtherVal))
|
||
|
return 1;
|
||
|
else if (ThisVal.ult(OtherVal))
|
||
|
return -1;
|
||
|
} else if (ThisSigned && !OtherSigned) {
|
||
|
if (ThisVal.isSignBitSet())
|
||
|
return -1;
|
||
|
else if (ThisVal.ugt(OtherVal))
|
||
|
return 1;
|
||
|
else if (ThisVal.ult(OtherVal))
|
||
|
return -1;
|
||
|
} else {
|
||
|
// !ThisSigned && OtherSigned
|
||
|
if (OtherVal.isSignBitSet())
|
||
|
return 1;
|
||
|
else if (ThisVal.ugt(OtherVal))
|
||
|
return 1;
|
||
|
else if (ThisVal.ult(OtherVal))
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::getMax(const FixedPointSemantics &Sema) {
|
||
|
bool IsUnsigned = !Sema.isSigned();
|
||
|
auto Val = APSInt::getMaxValue(Sema.getWidth(), IsUnsigned);
|
||
|
if (IsUnsigned && Sema.hasUnsignedPadding())
|
||
|
Val = Val.lshr(1);
|
||
|
return APFixedPoint(Val, Sema);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::getMin(const FixedPointSemantics &Sema) {
|
||
|
auto Val = APSInt::getMinValue(Sema.getWidth(), !Sema.isSigned());
|
||
|
return APFixedPoint(Val, Sema);
|
||
|
}
|
||
|
|
||
|
bool FixedPointSemantics::fitsInFloatSemantics(
|
||
|
const fltSemantics &FloatSema) const {
|
||
|
// A fixed point semantic fits in a floating point semantic if the maximum
|
||
|
// and minimum values as integers of the fixed point semantic can fit in the
|
||
|
// floating point semantic.
|
||
|
|
||
|
// If these values do not fit, then a floating point rescaling of the true
|
||
|
// maximum/minimum value will not fit either, so the floating point semantic
|
||
|
// cannot be used to perform such a rescaling.
|
||
|
|
||
|
APSInt MaxInt = APFixedPoint::getMax(*this).getValue();
|
||
|
APFloat F(FloatSema);
|
||
|
APFloat::opStatus Status = F.convertFromAPInt(MaxInt, MaxInt.isSigned(),
|
||
|
APFloat::rmNearestTiesToAway);
|
||
|
if ((Status & APFloat::opOverflow) || !isSigned())
|
||
|
return !(Status & APFloat::opOverflow);
|
||
|
|
||
|
APSInt MinInt = APFixedPoint::getMin(*this).getValue();
|
||
|
Status = F.convertFromAPInt(MinInt, MinInt.isSigned(),
|
||
|
APFloat::rmNearestTiesToAway);
|
||
|
return !(Status & APFloat::opOverflow);
|
||
|
}
|
||
|
|
||
|
FixedPointSemantics FixedPointSemantics::getCommonSemantics(
|
||
|
const FixedPointSemantics &Other) const {
|
||
|
unsigned CommonScale = std::max(getScale(), Other.getScale());
|
||
|
unsigned CommonWidth =
|
||
|
std::max(getIntegralBits(), Other.getIntegralBits()) + CommonScale;
|
||
|
|
||
|
bool ResultIsSigned = isSigned() || Other.isSigned();
|
||
|
bool ResultIsSaturated = isSaturated() || Other.isSaturated();
|
||
|
bool ResultHasUnsignedPadding = false;
|
||
|
if (!ResultIsSigned) {
|
||
|
// Both are unsigned.
|
||
|
ResultHasUnsignedPadding = hasUnsignedPadding() &&
|
||
|
Other.hasUnsignedPadding() && !ResultIsSaturated;
|
||
|
}
|
||
|
|
||
|
// If the result is signed, add an extra bit for the sign. Otherwise, if it is
|
||
|
// unsigned and has unsigned padding, we only need to add the extra padding
|
||
|
// bit back if we are not saturating.
|
||
|
if (ResultIsSigned || ResultHasUnsignedPadding)
|
||
|
CommonWidth++;
|
||
|
|
||
|
return FixedPointSemantics(CommonWidth, CommonScale, ResultIsSigned,
|
||
|
ResultIsSaturated, ResultHasUnsignedPadding);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
|
||
|
bool *Overflow) const {
|
||
|
auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
|
||
|
APFixedPoint ConvertedThis = convert(CommonFXSema);
|
||
|
APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
|
||
|
APSInt ThisVal = ConvertedThis.getValue();
|
||
|
APSInt OtherVal = ConvertedOther.getValue();
|
||
|
bool Overflowed = false;
|
||
|
|
||
|
APSInt Result;
|
||
|
if (CommonFXSema.isSaturated()) {
|
||
|
Result = CommonFXSema.isSigned() ? ThisVal.sadd_sat(OtherVal)
|
||
|
: ThisVal.uadd_sat(OtherVal);
|
||
|
} else {
|
||
|
Result = ThisVal.isSigned() ? ThisVal.sadd_ov(OtherVal, Overflowed)
|
||
|
: ThisVal.uadd_ov(OtherVal, Overflowed);
|
||
|
}
|
||
|
|
||
|
if (Overflow)
|
||
|
*Overflow = Overflowed;
|
||
|
|
||
|
return APFixedPoint(Result, CommonFXSema);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::sub(const APFixedPoint &Other,
|
||
|
bool *Overflow) const {
|
||
|
auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
|
||
|
APFixedPoint ConvertedThis = convert(CommonFXSema);
|
||
|
APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
|
||
|
APSInt ThisVal = ConvertedThis.getValue();
|
||
|
APSInt OtherVal = ConvertedOther.getValue();
|
||
|
bool Overflowed = false;
|
||
|
|
||
|
APSInt Result;
|
||
|
if (CommonFXSema.isSaturated()) {
|
||
|
Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal)
|
||
|
: ThisVal.usub_sat(OtherVal);
|
||
|
} else {
|
||
|
Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed)
|
||
|
: ThisVal.usub_ov(OtherVal, Overflowed);
|
||
|
}
|
||
|
|
||
|
if (Overflow)
|
||
|
*Overflow = Overflowed;
|
||
|
|
||
|
return APFixedPoint(Result, CommonFXSema);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::mul(const APFixedPoint &Other,
|
||
|
bool *Overflow) const {
|
||
|
auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
|
||
|
APFixedPoint ConvertedThis = convert(CommonFXSema);
|
||
|
APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
|
||
|
APSInt ThisVal = ConvertedThis.getValue();
|
||
|
APSInt OtherVal = ConvertedOther.getValue();
|
||
|
bool Overflowed = false;
|
||
|
|
||
|
// Widen the LHS and RHS so we can perform a full multiplication.
|
||
|
unsigned Wide = CommonFXSema.getWidth() * 2;
|
||
|
if (CommonFXSema.isSigned()) {
|
||
|
ThisVal = ThisVal.sextOrSelf(Wide);
|
||
|
OtherVal = OtherVal.sextOrSelf(Wide);
|
||
|
} else {
|
||
|
ThisVal = ThisVal.zextOrSelf(Wide);
|
||
|
OtherVal = OtherVal.zextOrSelf(Wide);
|
||
|
}
|
||
|
|
||
|
// Perform the full multiplication and downscale to get the same scale.
|
||
|
//
|
||
|
// Note that the right shifts here perform an implicit downwards rounding.
|
||
|
// This rounding could discard bits that would technically place the result
|
||
|
// outside the representable range. We interpret the spec as allowing us to
|
||
|
// perform the rounding step first, avoiding the overflow case that would
|
||
|
// arise.
|
||
|
APSInt Result;
|
||
|
if (CommonFXSema.isSigned())
|
||
|
Result = ThisVal.smul_ov(OtherVal, Overflowed)
|
||
|
.ashr(CommonFXSema.getScale());
|
||
|
else
|
||
|
Result = ThisVal.umul_ov(OtherVal, Overflowed)
|
||
|
.lshr(CommonFXSema.getScale());
|
||
|
assert(!Overflowed && "Full multiplication cannot overflow!");
|
||
|
Result.setIsSigned(CommonFXSema.isSigned());
|
||
|
|
||
|
// If our result lies outside of the representative range of the common
|
||
|
// semantic, we either have overflow or saturation.
|
||
|
APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
|
||
|
.extOrTrunc(Wide);
|
||
|
APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
|
||
|
.extOrTrunc(Wide);
|
||
|
if (CommonFXSema.isSaturated()) {
|
||
|
if (Result < Min)
|
||
|
Result = Min;
|
||
|
else if (Result > Max)
|
||
|
Result = Max;
|
||
|
} else
|
||
|
Overflowed = Result < Min || Result > Max;
|
||
|
|
||
|
if (Overflow)
|
||
|
*Overflow = Overflowed;
|
||
|
|
||
|
return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
|
||
|
CommonFXSema);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::div(const APFixedPoint &Other,
|
||
|
bool *Overflow) const {
|
||
|
auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
|
||
|
APFixedPoint ConvertedThis = convert(CommonFXSema);
|
||
|
APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
|
||
|
APSInt ThisVal = ConvertedThis.getValue();
|
||
|
APSInt OtherVal = ConvertedOther.getValue();
|
||
|
bool Overflowed = false;
|
||
|
|
||
|
// Widen the LHS and RHS so we can perform a full division.
|
||
|
unsigned Wide = CommonFXSema.getWidth() * 2;
|
||
|
if (CommonFXSema.isSigned()) {
|
||
|
ThisVal = ThisVal.sextOrSelf(Wide);
|
||
|
OtherVal = OtherVal.sextOrSelf(Wide);
|
||
|
} else {
|
||
|
ThisVal = ThisVal.zextOrSelf(Wide);
|
||
|
OtherVal = OtherVal.zextOrSelf(Wide);
|
||
|
}
|
||
|
|
||
|
// Upscale to compensate for the loss of precision from division, and
|
||
|
// perform the full division.
|
||
|
ThisVal = ThisVal.shl(CommonFXSema.getScale());
|
||
|
APSInt Result;
|
||
|
if (CommonFXSema.isSigned()) {
|
||
|
APInt Rem;
|
||
|
APInt::sdivrem(ThisVal, OtherVal, Result, Rem);
|
||
|
// If the quotient is negative and the remainder is nonzero, round
|
||
|
// towards negative infinity by subtracting epsilon from the result.
|
||
|
if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isNullValue())
|
||
|
Result = Result - 1;
|
||
|
} else
|
||
|
Result = ThisVal.udiv(OtherVal);
|
||
|
Result.setIsSigned(CommonFXSema.isSigned());
|
||
|
|
||
|
// If our result lies outside of the representative range of the common
|
||
|
// semantic, we either have overflow or saturation.
|
||
|
APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
|
||
|
.extOrTrunc(Wide);
|
||
|
APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
|
||
|
.extOrTrunc(Wide);
|
||
|
if (CommonFXSema.isSaturated()) {
|
||
|
if (Result < Min)
|
||
|
Result = Min;
|
||
|
else if (Result > Max)
|
||
|
Result = Max;
|
||
|
} else
|
||
|
Overflowed = Result < Min || Result > Max;
|
||
|
|
||
|
if (Overflow)
|
||
|
*Overflow = Overflowed;
|
||
|
|
||
|
return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
|
||
|
CommonFXSema);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::shl(unsigned Amt, bool *Overflow) const {
|
||
|
APSInt ThisVal = Val;
|
||
|
bool Overflowed = false;
|
||
|
|
||
|
// Widen the LHS.
|
||
|
unsigned Wide = Sema.getWidth() * 2;
|
||
|
if (Sema.isSigned())
|
||
|
ThisVal = ThisVal.sextOrSelf(Wide);
|
||
|
else
|
||
|
ThisVal = ThisVal.zextOrSelf(Wide);
|
||
|
|
||
|
// Clamp the shift amount at the original width, and perform the shift.
|
||
|
Amt = std::min(Amt, ThisVal.getBitWidth());
|
||
|
APSInt Result = ThisVal << Amt;
|
||
|
Result.setIsSigned(Sema.isSigned());
|
||
|
|
||
|
// If our result lies outside of the representative range of the
|
||
|
// semantic, we either have overflow or saturation.
|
||
|
APSInt Max = APFixedPoint::getMax(Sema).getValue().extOrTrunc(Wide);
|
||
|
APSInt Min = APFixedPoint::getMin(Sema).getValue().extOrTrunc(Wide);
|
||
|
if (Sema.isSaturated()) {
|
||
|
if (Result < Min)
|
||
|
Result = Min;
|
||
|
else if (Result > Max)
|
||
|
Result = Max;
|
||
|
} else
|
||
|
Overflowed = Result < Min || Result > Max;
|
||
|
|
||
|
if (Overflow)
|
||
|
*Overflow = Overflowed;
|
||
|
|
||
|
return APFixedPoint(Result.sextOrTrunc(Sema.getWidth()), Sema);
|
||
|
}
|
||
|
|
||
|
void APFixedPoint::toString(SmallVectorImpl<char> &Str) const {
|
||
|
APSInt Val = getValue();
|
||
|
unsigned Scale = getScale();
|
||
|
|
||
|
if (Val.isSigned() && Val.isNegative() && Val != -Val) {
|
||
|
Val = -Val;
|
||
|
Str.push_back('-');
|
||
|
}
|
||
|
|
||
|
APSInt IntPart = Val >> Scale;
|
||
|
|
||
|
// Add 4 digits to hold the value after multiplying 10 (the radix)
|
||
|
unsigned Width = Val.getBitWidth() + 4;
|
||
|
APInt FractPart = Val.zextOrTrunc(Scale).zext(Width);
|
||
|
APInt FractPartMask = APInt::getAllOnesValue(Scale).zext(Width);
|
||
|
APInt RadixInt = APInt(Width, 10);
|
||
|
|
||
|
IntPart.toString(Str, /*Radix=*/10);
|
||
|
Str.push_back('.');
|
||
|
do {
|
||
|
(FractPart * RadixInt)
|
||
|
.lshr(Scale)
|
||
|
.toString(Str, /*Radix=*/10, Val.isSigned());
|
||
|
FractPart = (FractPart * RadixInt) & FractPartMask;
|
||
|
} while (FractPart != 0);
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::negate(bool *Overflow) const {
|
||
|
if (!isSaturated()) {
|
||
|
if (Overflow)
|
||
|
*Overflow =
|
||
|
(!isSigned() && Val != 0) || (isSigned() && Val.isMinSignedValue());
|
||
|
return APFixedPoint(-Val, Sema);
|
||
|
}
|
||
|
|
||
|
// We never overflow for saturation
|
||
|
if (Overflow)
|
||
|
*Overflow = false;
|
||
|
|
||
|
if (isSigned())
|
||
|
return Val.isMinSignedValue() ? getMax(Sema) : APFixedPoint(-Val, Sema);
|
||
|
else
|
||
|
return APFixedPoint(Sema);
|
||
|
}
|
||
|
|
||
|
APSInt APFixedPoint::convertToInt(unsigned DstWidth, bool DstSign,
|
||
|
bool *Overflow) const {
|
||
|
APSInt Result = getIntPart();
|
||
|
unsigned SrcWidth = getWidth();
|
||
|
|
||
|
APSInt DstMin = APSInt::getMinValue(DstWidth, !DstSign);
|
||
|
APSInt DstMax = APSInt::getMaxValue(DstWidth, !DstSign);
|
||
|
|
||
|
if (SrcWidth < DstWidth) {
|
||
|
Result = Result.extend(DstWidth);
|
||
|
} else if (SrcWidth > DstWidth) {
|
||
|
DstMin = DstMin.extend(SrcWidth);
|
||
|
DstMax = DstMax.extend(SrcWidth);
|
||
|
}
|
||
|
|
||
|
if (Overflow) {
|
||
|
if (Result.isSigned() && !DstSign) {
|
||
|
*Overflow = Result.isNegative() || Result.ugt(DstMax);
|
||
|
} else if (Result.isUnsigned() && DstSign) {
|
||
|
*Overflow = Result.ugt(DstMax);
|
||
|
} else {
|
||
|
*Overflow = Result < DstMin || Result > DstMax;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Result.setIsSigned(DstSign);
|
||
|
return Result.extOrTrunc(DstWidth);
|
||
|
}
|
||
|
|
||
|
const fltSemantics *APFixedPoint::promoteFloatSemantics(const fltSemantics *S) {
|
||
|
if (S == &APFloat::BFloat())
|
||
|
return &APFloat::IEEEdouble();
|
||
|
else if (S == &APFloat::IEEEhalf())
|
||
|
return &APFloat::IEEEsingle();
|
||
|
else if (S == &APFloat::IEEEsingle())
|
||
|
return &APFloat::IEEEdouble();
|
||
|
else if (S == &APFloat::IEEEdouble())
|
||
|
return &APFloat::IEEEquad();
|
||
|
llvm_unreachable("Could not promote float type!");
|
||
|
}
|
||
|
|
||
|
APFloat APFixedPoint::convertToFloat(const fltSemantics &FloatSema) const {
|
||
|
// For some operations, rounding mode has an effect on the result, while
|
||
|
// other operations are lossless and should never result in rounding.
|
||
|
// To signify which these operations are, we define two rounding modes here.
|
||
|
APFloat::roundingMode RM = APFloat::rmNearestTiesToEven;
|
||
|
APFloat::roundingMode LosslessRM = APFloat::rmTowardZero;
|
||
|
|
||
|
// Make sure that we are operating in a type that works with this fixed-point
|
||
|
// semantic.
|
||
|
const fltSemantics *OpSema = &FloatSema;
|
||
|
while (!Sema.fitsInFloatSemantics(*OpSema))
|
||
|
OpSema = promoteFloatSemantics(OpSema);
|
||
|
|
||
|
// Convert the fixed point value bits as an integer. If the floating point
|
||
|
// value does not have the required precision, we will round according to the
|
||
|
// given mode.
|
||
|
APFloat Flt(*OpSema);
|
||
|
APFloat::opStatus S = Flt.convertFromAPInt(Val, Sema.isSigned(), RM);
|
||
|
|
||
|
// If we cared about checking for precision loss, we could look at this
|
||
|
// status.
|
||
|
(void)S;
|
||
|
|
||
|
// Scale down the integer value in the float to match the correct scaling
|
||
|
// factor.
|
||
|
APFloat ScaleFactor(std::pow(2, -(int)Sema.getScale()));
|
||
|
bool Ignored;
|
||
|
ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
|
||
|
Flt.multiply(ScaleFactor, LosslessRM);
|
||
|
|
||
|
if (OpSema != &FloatSema)
|
||
|
Flt.convert(FloatSema, RM, &Ignored);
|
||
|
|
||
|
return Flt;
|
||
|
}
|
||
|
|
||
|
APFixedPoint APFixedPoint::getFromIntValue(const APSInt &Value,
|
||
|
const FixedPointSemantics &DstFXSema,
|
||
|
bool *Overflow) {
|
||
|
FixedPointSemantics IntFXSema = FixedPointSemantics::GetIntegerSemantics(
|
||
|
Value.getBitWidth(), Value.isSigned());
|
||
|
return APFixedPoint(Value, IntFXSema).convert(DstFXSema, Overflow);
|
||
|
}
|
||
|
|
||
|
APFixedPoint
|
||
|
APFixedPoint::getFromFloatValue(const APFloat &Value,
|
||
|
const FixedPointSemantics &DstFXSema,
|
||
|
bool *Overflow) {
|
||
|
// For some operations, rounding mode has an effect on the result, while
|
||
|
// other operations are lossless and should never result in rounding.
|
||
|
// To signify which these operations are, we define two rounding modes here,
|
||
|
// even though they are the same mode.
|
||
|
APFloat::roundingMode RM = APFloat::rmTowardZero;
|
||
|
APFloat::roundingMode LosslessRM = APFloat::rmTowardZero;
|
||
|
|
||
|
const fltSemantics &FloatSema = Value.getSemantics();
|
||
|
|
||
|
if (Value.isNaN()) {
|
||
|
// Handle NaN immediately.
|
||
|
if (Overflow)
|
||
|
*Overflow = true;
|
||
|
return APFixedPoint(DstFXSema);
|
||
|
}
|
||
|
|
||
|
// Make sure that we are operating in a type that works with this fixed-point
|
||
|
// semantic.
|
||
|
const fltSemantics *OpSema = &FloatSema;
|
||
|
while (!DstFXSema.fitsInFloatSemantics(*OpSema))
|
||
|
OpSema = promoteFloatSemantics(OpSema);
|
||
|
|
||
|
APFloat Val = Value;
|
||
|
|
||
|
bool Ignored;
|
||
|
if (&FloatSema != OpSema)
|
||
|
Val.convert(*OpSema, LosslessRM, &Ignored);
|
||
|
|
||
|
// Scale up the float so that the 'fractional' part of the mantissa ends up in
|
||
|
// the integer range instead. Rounding mode is irrelevant here.
|
||
|
// It is fine if this overflows to infinity even for saturating types,
|
||
|
// since we will use floating point comparisons to check for saturation.
|
||
|
APFloat ScaleFactor(std::pow(2, DstFXSema.getScale()));
|
||
|
ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
|
||
|
Val.multiply(ScaleFactor, LosslessRM);
|
||
|
|
||
|
// Convert to the integral representation of the value. This rounding mode
|
||
|
// is significant.
|
||
|
APSInt Res(DstFXSema.getWidth(), !DstFXSema.isSigned());
|
||
|
Val.convertToInteger(Res, RM, &Ignored);
|
||
|
|
||
|
// Round the integral value and scale back. This makes the
|
||
|
// overflow calculations below work properly. If we do not round here,
|
||
|
// we risk checking for overflow with a value that is outside the
|
||
|
// representable range of the fixed-point semantic even though no overflow
|
||
|
// would occur had we rounded first.
|
||
|
ScaleFactor = APFloat(std::pow(2, -(int)DstFXSema.getScale()));
|
||
|
ScaleFactor.convert(*OpSema, LosslessRM, &Ignored);
|
||
|
Val.roundToIntegral(RM);
|
||
|
Val.multiply(ScaleFactor, LosslessRM);
|
||
|
|
||
|
// Check for overflow/saturation by checking if the floating point value
|
||
|
// is outside the range representable by the fixed-point value.
|
||
|
APFloat FloatMax = getMax(DstFXSema).convertToFloat(*OpSema);
|
||
|
APFloat FloatMin = getMin(DstFXSema).convertToFloat(*OpSema);
|
||
|
bool Overflowed = false;
|
||
|
if (DstFXSema.isSaturated()) {
|
||
|
if (Val > FloatMax)
|
||
|
Res = getMax(DstFXSema).getValue();
|
||
|
else if (Val < FloatMin)
|
||
|
Res = getMin(DstFXSema).getValue();
|
||
|
} else
|
||
|
Overflowed = Val > FloatMax || Val < FloatMin;
|
||
|
|
||
|
if (Overflow)
|
||
|
*Overflow = Overflowed;
|
||
|
|
||
|
return APFixedPoint(Res, DstFXSema);
|
||
|
}
|
||
|
|
||
|
} // namespace llvm
|