llvm-for-llvmta/lib/Support/Windows/Threading.inc

312 lines
10 KiB
PHP
Raw Normal View History

2022-04-25 10:02:23 +02:00
//===- Windows/Threading.inc - Win32 Threading Implementation - -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides the Win32 specific implementation of Threading functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Windows/WindowsSupport.h"
#include <process.h>
#include <bitset>
// Windows will at times define MemoryFence.
#ifdef MemoryFence
#undef MemoryFence
#endif
static unsigned __stdcall threadFuncSync(void *Arg) {
SyncThreadInfo *TI = static_cast<SyncThreadInfo *>(Arg);
TI->UserFn(TI->UserData);
return 0;
}
static unsigned __stdcall threadFuncAsync(void *Arg) {
std::unique_ptr<AsyncThreadInfo> Info(static_cast<AsyncThreadInfo *>(Arg));
(*Info)();
return 0;
}
static void
llvm_execute_on_thread_impl(unsigned (__stdcall *ThreadFunc)(void *), void *Arg,
llvm::Optional<unsigned> StackSizeInBytes,
JoiningPolicy JP) {
HANDLE hThread = (HANDLE)::_beginthreadex(
NULL, StackSizeInBytes.getValueOr(0), ThreadFunc, Arg, 0, NULL);
if (!hThread) {
ReportLastErrorFatal("_beginthreadex failed");
}
if (JP == JoiningPolicy::Join) {
if (::WaitForSingleObject(hThread, INFINITE) == WAIT_FAILED) {
ReportLastErrorFatal("WaitForSingleObject failed");
}
}
if (::CloseHandle(hThread) == FALSE) {
ReportLastErrorFatal("CloseHandle failed");
}
}
uint64_t llvm::get_threadid() {
return uint64_t(::GetCurrentThreadId());
}
uint32_t llvm::get_max_thread_name_length() { return 0; }
#if defined(_MSC_VER)
static void SetThreadName(DWORD Id, LPCSTR Name) {
constexpr DWORD MS_VC_EXCEPTION = 0x406D1388;
#pragma pack(push, 8)
struct THREADNAME_INFO {
DWORD dwType; // Must be 0x1000.
LPCSTR szName; // Pointer to thread name
DWORD dwThreadId; // Thread ID (-1 == current thread)
DWORD dwFlags; // Reserved. Do not use.
};
#pragma pack(pop)
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = Name;
info.dwThreadId = Id;
info.dwFlags = 0;
__try {
::RaiseException(MS_VC_EXCEPTION, 0, sizeof(info) / sizeof(ULONG_PTR),
(ULONG_PTR *)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER) {
}
}
#endif
void llvm::set_thread_name(const Twine &Name) {
#if defined(_MSC_VER)
// Make sure the input is null terminated.
SmallString<64> Storage;
StringRef NameStr = Name.toNullTerminatedStringRef(Storage);
SetThreadName(::GetCurrentThreadId(), NameStr.data());
#endif
}
void llvm::get_thread_name(SmallVectorImpl<char> &Name) {
// "Name" is not an inherent property of a thread on Windows. In fact, when
// you "set" the name, you are only firing a one-time message to a debugger
// which it interprets as a program setting its threads' name. We may be
// able to get fancy by creating a TLS entry when someone calls
// set_thread_name so that subsequent calls to get_thread_name return this
// value.
Name.clear();
}
SetThreadPriorityResult llvm::set_thread_priority(ThreadPriority Priority) {
// https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
// Begin background processing mode. The system lowers the resource scheduling
// priorities of the thread so that it can perform background work without
// significantly affecting activity in the foreground.
// End background processing mode. The system restores the resource scheduling
// priorities of the thread as they were before the thread entered background
// processing mode.
return SetThreadPriority(GetCurrentThread(),
Priority == ThreadPriority::Background
? THREAD_MODE_BACKGROUND_BEGIN
: THREAD_MODE_BACKGROUND_END)
? SetThreadPriorityResult::SUCCESS
: SetThreadPriorityResult::FAILURE;
}
struct ProcessorGroup {
unsigned ID;
unsigned AllThreads;
unsigned UsableThreads;
unsigned ThreadsPerCore;
uint64_t Affinity;
unsigned useableCores() const {
return std::max(1U, UsableThreads / ThreadsPerCore);
}
};
template <typename F>
static bool IterateProcInfo(LOGICAL_PROCESSOR_RELATIONSHIP Relationship, F Fn) {
DWORD Len = 0;
BOOL R = ::GetLogicalProcessorInformationEx(Relationship, NULL, &Len);
if (R || GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
return false;
}
auto *Info = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)calloc(1, Len);
R = ::GetLogicalProcessorInformationEx(Relationship, Info, &Len);
if (R) {
auto *End =
(SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((uint8_t *)Info + Len);
for (auto *Curr = Info; Curr < End;
Curr = (SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *)((uint8_t *)Curr +
Curr->Size)) {
if (Curr->Relationship != Relationship)
continue;
Fn(Curr);
}
}
free(Info);
return true;
}
static ArrayRef<ProcessorGroup> getProcessorGroups() {
auto computeGroups = []() {
SmallVector<ProcessorGroup, 4> Groups;
auto HandleGroup = [&](SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *ProcInfo) {
GROUP_RELATIONSHIP &El = ProcInfo->Group;
for (unsigned J = 0; J < El.ActiveGroupCount; ++J) {
ProcessorGroup G;
G.ID = Groups.size();
G.AllThreads = El.GroupInfo[J].MaximumProcessorCount;
G.UsableThreads = El.GroupInfo[J].ActiveProcessorCount;
assert(G.UsableThreads <= 64);
G.Affinity = El.GroupInfo[J].ActiveProcessorMask;
Groups.push_back(G);
}
};
if (!IterateProcInfo(RelationGroup, HandleGroup))
return std::vector<ProcessorGroup>();
auto HandleProc = [&](SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *ProcInfo) {
PROCESSOR_RELATIONSHIP &El = ProcInfo->Processor;
assert(El.GroupCount == 1);
unsigned NumHyperThreads = 1;
// If the flag is set, each core supports more than one hyper-thread.
if (El.Flags & LTP_PC_SMT)
NumHyperThreads = std::bitset<64>(El.GroupMask[0].Mask).count();
unsigned I = El.GroupMask[0].Group;
Groups[I].ThreadsPerCore = NumHyperThreads;
};
if (!IterateProcInfo(RelationProcessorCore, HandleProc))
return std::vector<ProcessorGroup>();
// If there's an affinity mask set, assume the user wants to constrain the
// current process to only a single CPU group. On Windows, it is not
// possible for affinity masks to cross CPU group boundaries.
DWORD_PTR ProcessAffinityMask = 0, SystemAffinityMask = 0;
if (::GetProcessAffinityMask(GetCurrentProcess(), &ProcessAffinityMask,
&SystemAffinityMask) &&
ProcessAffinityMask != SystemAffinityMask) {
// We don't expect more that 4 CPU groups on Windows (256 processors).
USHORT GroupCount = 4;
USHORT GroupArray[4]{};
if (::GetProcessGroupAffinity(GetCurrentProcess(), &GroupCount,
GroupArray)) {
assert(GroupCount == 1 &&
"On startup, a program is expected to be assigned only to "
"one processor group!");
unsigned CurrentGroupID = GroupArray[0];
ProcessorGroup NewG{Groups[CurrentGroupID]};
NewG.Affinity = ProcessAffinityMask;
NewG.UsableThreads = countPopulation(ProcessAffinityMask);
Groups.clear();
Groups.push_back(NewG);
}
}
return std::vector<ProcessorGroup>(Groups.begin(), Groups.end());
};
static auto Groups = computeGroups();
return ArrayRef<ProcessorGroup>(Groups);
}
template <typename R, typename UnaryPredicate>
static unsigned aggregate(R &&Range, UnaryPredicate P) {
unsigned I{};
for (const auto &It : Range)
I += P(It);
return I;
}
// for sys::getHostNumPhysicalCores
int computeHostNumPhysicalCores() {
static unsigned Cores =
aggregate(getProcessorGroups(), [](const ProcessorGroup &G) {
return G.UsableThreads / G.ThreadsPerCore;
});
return Cores;
}
int computeHostNumHardwareThreads() {
static unsigned Threads =
aggregate(getProcessorGroups(),
[](const ProcessorGroup &G) { return G.UsableThreads; });
return Threads;
}
// Finds the proper CPU socket where a thread number should go. Returns 'None'
// if the thread shall remain on the actual CPU socket.
Optional<unsigned>
llvm::ThreadPoolStrategy::compute_cpu_socket(unsigned ThreadPoolNum) const {
ArrayRef<ProcessorGroup> Groups = getProcessorGroups();
// Only one CPU socket in the system or process affinity was set, no need to
// move the thread(s) to another CPU socket.
if (Groups.size() <= 1)
return None;
// We ask for less threads than there are hardware threads per CPU socket, no
// need to dispatch threads to other CPU sockets.
unsigned MaxThreadsPerSocket =
UseHyperThreads ? Groups[0].UsableThreads : Groups[0].useableCores();
if (compute_thread_count() <= MaxThreadsPerSocket)
return None;
assert(ThreadPoolNum < compute_thread_count() &&
"The thread index is not within thread strategy's range!");
// Assumes the same number of hardware threads per CPU socket.
return (ThreadPoolNum * Groups.size()) / compute_thread_count();
}
// Assign the current thread to a more appropriate CPU socket or CPU group
void llvm::ThreadPoolStrategy::apply_thread_strategy(
unsigned ThreadPoolNum) const {
Optional<unsigned> Socket = compute_cpu_socket(ThreadPoolNum);
if (!Socket)
return;
ArrayRef<ProcessorGroup> Groups = getProcessorGroups();
GROUP_AFFINITY Affinity{};
Affinity.Group = Groups[*Socket].ID;
Affinity.Mask = Groups[*Socket].Affinity;
SetThreadGroupAffinity(GetCurrentThread(), &Affinity, nullptr);
}
llvm::BitVector llvm::get_thread_affinity_mask() {
GROUP_AFFINITY Affinity{};
GetThreadGroupAffinity(GetCurrentThread(), &Affinity);
static unsigned All =
aggregate(getProcessorGroups(),
[](const ProcessorGroup &G) { return G.AllThreads; });
unsigned StartOffset =
aggregate(getProcessorGroups(), [&](const ProcessorGroup &G) {
return G.ID < Affinity.Group ? G.AllThreads : 0;
});
llvm::BitVector V;
V.resize(All);
for (unsigned I = 0; I < sizeof(KAFFINITY) * 8; ++I) {
if ((Affinity.Mask >> I) & 1)
V.set(StartOffset + I);
}
return V;
}
unsigned llvm::get_cpus() { return getProcessorGroups().size(); }