96 lines
3.4 KiB
LLVM
96 lines
3.4 KiB
LLVM
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
||
|
; RUN: opt -bdce %s -S | FileCheck %s
|
||
|
|
||
|
; The 'nuw' on the subtract allows us to deduce that %setbit is not demanded.
|
||
|
; But if we change that value to '0', then the 'nuw' is no longer valid. If we don't
|
||
|
; remove the 'nuw', another pass (-instcombine) may make a transform based on an
|
||
|
; that incorrect assumption and we can miscompile:
|
||
|
; https://bugs.llvm.org/show_bug.cgi?id=33695
|
||
|
|
||
|
define i1 @PR33695(i1 %b, i8 %x) {
|
||
|
; CHECK-LABEL: @PR33695(
|
||
|
; CHECK-NEXT: [[LITTLE_NUMBER:%.*]] = zext i1 [[B:%.*]] to i8
|
||
|
; CHECK-NEXT: [[BIG_NUMBER:%.*]] = shl i8 0, 1
|
||
|
; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
|
||
|
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i8 [[SUB]] to i1
|
||
|
; CHECK-NEXT: ret i1 [[TRUNC]]
|
||
|
;
|
||
|
%setbit = or i8 %x, 64
|
||
|
%little_number = zext i1 %b to i8
|
||
|
%big_number = shl i8 %setbit, 1
|
||
|
%sub = sub nuw i8 %big_number, %little_number
|
||
|
%trunc = trunc i8 %sub to i1
|
||
|
ret i1 %trunc
|
||
|
}
|
||
|
|
||
|
; Similar to above, but now with more no-wrap.
|
||
|
; https://bugs.llvm.org/show_bug.cgi?id=34037
|
||
|
|
||
|
define i64 @PR34037(i64 %m, i32 %r, i64 %j, i1 %b, i32 %k, i64 %p) {
|
||
|
; CHECK-LABEL: @PR34037(
|
||
|
; CHECK-NEXT: [[SHL:%.*]] = shl i64 0, 29
|
||
|
; CHECK-NEXT: [[CONV1:%.*]] = select i1 [[B:%.*]], i64 7, i64 0
|
||
|
; CHECK-NEXT: [[SUB:%.*]] = sub i64 [[SHL]], [[CONV1]]
|
||
|
; CHECK-NEXT: [[CONV2:%.*]] = zext i32 [[K:%.*]] to i64
|
||
|
; CHECK-NEXT: [[MUL:%.*]] = mul i64 [[SUB]], [[CONV2]]
|
||
|
; CHECK-NEXT: [[CONV4:%.*]] = and i64 [[P:%.*]], 65535
|
||
|
; CHECK-NEXT: [[AND5:%.*]] = and i64 [[MUL]], [[CONV4]]
|
||
|
; CHECK-NEXT: ret i64 [[AND5]]
|
||
|
;
|
||
|
%conv = zext i32 %r to i64
|
||
|
%and = and i64 %m, %conv
|
||
|
%neg = xor i64 %and, 34359738367
|
||
|
%or = or i64 %j, %neg
|
||
|
%shl = shl i64 %or, 29
|
||
|
%conv1 = select i1 %b, i64 7, i64 0
|
||
|
%sub = sub nuw nsw i64 %shl, %conv1
|
||
|
%conv2 = zext i32 %k to i64
|
||
|
%mul = mul nsw i64 %sub, %conv2
|
||
|
%conv4 = and i64 %p, 65535
|
||
|
%and5 = and i64 %mul, %conv4
|
||
|
ret i64 %and5
|
||
|
}
|
||
|
|
||
|
; This is a manufactured example based on the 1st test to prove that the
|
||
|
; assumption-killing algorithm stops at the call. Ie, it does not remove
|
||
|
; nsw/nuw from the 'add' because a call demands all bits of its argument.
|
||
|
|
||
|
declare i1 @foo(i1)
|
||
|
|
||
|
define i1 @poison_on_call_user_is_ok(i1 %b, i8 %x) {
|
||
|
; CHECK-LABEL: @poison_on_call_user_is_ok(
|
||
|
; CHECK-NEXT: [[LITTLE_NUMBER:%.*]] = zext i1 [[B:%.*]] to i8
|
||
|
; CHECK-NEXT: [[BIG_NUMBER:%.*]] = shl i8 0, 1
|
||
|
; CHECK-NEXT: [[SUB:%.*]] = sub i8 [[BIG_NUMBER]], [[LITTLE_NUMBER]]
|
||
|
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i8 [[SUB]] to i1
|
||
|
; CHECK-NEXT: [[CALL_RESULT:%.*]] = call i1 @foo(i1 [[TRUNC]])
|
||
|
; CHECK-NEXT: [[ADD:%.*]] = add nuw nsw i1 [[CALL_RESULT]], true
|
||
|
; CHECK-NEXT: [[MUL:%.*]] = mul i1 [[TRUNC]], [[ADD]]
|
||
|
; CHECK-NEXT: ret i1 [[MUL]]
|
||
|
;
|
||
|
%setbit = or i8 %x, 64
|
||
|
%little_number = zext i1 %b to i8
|
||
|
%big_number = shl i8 %setbit, 1
|
||
|
%sub = sub nuw i8 %big_number, %little_number
|
||
|
%trunc = trunc i8 %sub to i1
|
||
|
%call_result = call i1 @foo(i1 %trunc)
|
||
|
%add = add nsw nuw i1 %call_result, 1
|
||
|
%mul = mul i1 %trunc, %add
|
||
|
ret i1 %mul
|
||
|
}
|
||
|
|
||
|
|
||
|
; We were asserting that all users of a trivialized integer-type instruction were
|
||
|
; also integer-typed, but that's too strong. The alloca has a pointer-type result.
|
||
|
|
||
|
define void @PR34179(i32* %a) {
|
||
|
; CHECK-LABEL: @PR34179(
|
||
|
; CHECK-NEXT: [[T0:%.*]] = load volatile i32, i32* [[A:%.*]]
|
||
|
; CHECK-NEXT: ret void
|
||
|
;
|
||
|
%t0 = load volatile i32, i32* %a
|
||
|
%vla = alloca i32, i32 %t0
|
||
|
ret void
|
||
|
}
|
||
|
|