llvm-for-llvmta/tools/clang/lib/Driver/ToolChains/Cuda.cpp

956 lines
37 KiB
C++
Raw Normal View History

2022-04-25 13:02:35 +02:00
//===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Cuda.h"
#include "CommonArgs.h"
#include "InputInfo.h"
#include "clang/Basic/Cuda.h"
#include "clang/Config/config.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Distro.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/VirtualFileSystem.h"
#include <system_error>
using namespace clang::driver;
using namespace clang::driver::toolchains;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;
namespace {
struct CudaVersionInfo {
std::string DetectedVersion;
CudaVersion Version;
};
// Parses the contents of version.txt in an CUDA installation. It should
// contain one line of the from e.g. "CUDA Version 7.5.2".
CudaVersionInfo parseCudaVersionFile(llvm::StringRef V) {
V = V.trim();
if (!V.startswith("CUDA Version "))
return {V.str(), CudaVersion::UNKNOWN};
V = V.substr(strlen("CUDA Version "));
SmallVector<StringRef,4> VersionParts;
V.split(VersionParts, '.');
return {"version.txt: " + V.str() + ".",
VersionParts.size() < 2
? CudaVersion::UNKNOWN
: CudaStringToVersion(
join_items(".", VersionParts[0], VersionParts[1]))};
}
CudaVersion getCudaVersion(uint32_t raw_version) {
if (raw_version < 7050)
return CudaVersion::CUDA_70;
if (raw_version < 8000)
return CudaVersion::CUDA_75;
if (raw_version < 9000)
return CudaVersion::CUDA_80;
if (raw_version < 9010)
return CudaVersion::CUDA_90;
if (raw_version < 9020)
return CudaVersion::CUDA_91;
if (raw_version < 10000)
return CudaVersion::CUDA_92;
if (raw_version < 10010)
return CudaVersion::CUDA_100;
if (raw_version < 10020)
return CudaVersion::CUDA_101;
if (raw_version < 11000)
return CudaVersion::CUDA_102;
if (raw_version < 11010)
return CudaVersion::CUDA_110;
return CudaVersion::LATEST;
}
CudaVersionInfo parseCudaHFile(llvm::StringRef Input) {
// Helper lambda which skips the words if the line starts with them or returns
// None otherwise.
auto StartsWithWords =
[](llvm::StringRef Line,
const SmallVector<StringRef, 3> words) -> llvm::Optional<StringRef> {
for (StringRef word : words) {
if (!Line.consume_front(word))
return {};
Line = Line.ltrim();
}
return Line;
};
Input = Input.ltrim();
while (!Input.empty()) {
if (auto Line =
StartsWithWords(Input.ltrim(), {"#", "define", "CUDA_VERSION"})) {
uint32_t RawVersion;
Line->consumeInteger(10, RawVersion);
return {"cuda.h: CUDA_VERSION=" + Twine(RawVersion).str() + ".",
getCudaVersion(RawVersion)};
}
// Find next non-empty line.
Input = Input.drop_front(Input.find_first_of("\n\r")).ltrim();
}
return {"cuda.h: CUDA_VERSION not found.", CudaVersion::UNKNOWN};
}
} // namespace
void CudaInstallationDetector::WarnIfUnsupportedVersion() {
if (DetectedVersionIsNotSupported)
D.Diag(diag::warn_drv_unknown_cuda_version)
<< DetectedVersion
<< CudaVersionToString(CudaVersion::LATEST_SUPPORTED);
}
CudaInstallationDetector::CudaInstallationDetector(
const Driver &D, const llvm::Triple &HostTriple,
const llvm::opt::ArgList &Args)
: D(D) {
struct Candidate {
std::string Path;
bool StrictChecking;
Candidate(std::string Path, bool StrictChecking = false)
: Path(Path), StrictChecking(StrictChecking) {}
};
SmallVector<Candidate, 4> Candidates;
// In decreasing order so we prefer newer versions to older versions.
std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"};
auto &FS = D.getVFS();
if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) {
Candidates.emplace_back(
Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str());
} else if (HostTriple.isOSWindows()) {
for (const char *Ver : Versions)
Candidates.emplace_back(
D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" +
Ver);
} else {
if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) {
// Try to find ptxas binary. If the executable is located in a directory
// called 'bin/', its parent directory might be a good guess for a valid
// CUDA installation.
// However, some distributions might installs 'ptxas' to /usr/bin. In that
// case the candidate would be '/usr' which passes the following checks
// because '/usr/include' exists as well. To avoid this case, we always
// check for the directory potentially containing files for libdevice,
// even if the user passes -nocudalib.
if (llvm::ErrorOr<std::string> ptxas =
llvm::sys::findProgramByName("ptxas")) {
SmallString<256> ptxasAbsolutePath;
llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath);
StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath);
if (llvm::sys::path::filename(ptxasDir) == "bin")
Candidates.emplace_back(
std::string(llvm::sys::path::parent_path(ptxasDir)),
/*StrictChecking=*/true);
}
}
Candidates.emplace_back(D.SysRoot + "/usr/local/cuda");
for (const char *Ver : Versions)
Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver);
Distro Dist(FS, llvm::Triple(llvm::sys::getProcessTriple()));
if (Dist.IsDebian() || Dist.IsUbuntu())
// Special case for Debian to have nvidia-cuda-toolkit work
// out of the box. More info on http://bugs.debian.org/882505
Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda");
}
bool NoCudaLib = Args.hasArg(options::OPT_nogpulib);
for (const auto &Candidate : Candidates) {
InstallPath = Candidate.Path;
if (InstallPath.empty() || !FS.exists(InstallPath))
continue;
BinPath = InstallPath + "/bin";
IncludePath = InstallPath + "/include";
LibDevicePath = InstallPath + "/nvvm/libdevice";
if (!(FS.exists(IncludePath) && FS.exists(BinPath)))
continue;
bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking);
if (CheckLibDevice && !FS.exists(LibDevicePath))
continue;
// On Linux, we have both lib and lib64 directories, and we need to choose
// based on our triple. On MacOS, we have only a lib directory.
//
// It's sufficient for our purposes to be flexible: If both lib and lib64
// exist, we choose whichever one matches our triple. Otherwise, if only
// lib exists, we use it.
if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64"))
LibPath = InstallPath + "/lib64";
else if (FS.exists(InstallPath + "/lib"))
LibPath = InstallPath + "/lib";
else
continue;
CudaVersionInfo VersionInfo = {"", CudaVersion::UNKNOWN};
if (auto VersionFile = FS.getBufferForFile(InstallPath + "/version.txt"))
VersionInfo = parseCudaVersionFile((*VersionFile)->getBuffer());
// If version file didn't give us the version, try to find it in cuda.h
if (VersionInfo.Version == CudaVersion::UNKNOWN)
if (auto CudaHFile = FS.getBufferForFile(InstallPath + "/include/cuda.h"))
VersionInfo = parseCudaHFile((*CudaHFile)->getBuffer());
// As the last resort, make an educated guess between CUDA-7.0, (which had
// no version.txt file and had old-style libdevice bitcode ) and an unknown
// recent CUDA version (no version.txt, new style bitcode).
if (VersionInfo.Version == CudaVersion::UNKNOWN) {
VersionInfo.Version = (FS.exists(LibDevicePath + "/libdevice.10.bc"))
? Version = CudaVersion::LATEST
: Version = CudaVersion::CUDA_70;
VersionInfo.DetectedVersion =
"No version found in version.txt or cuda.h.";
}
Version = VersionInfo.Version;
DetectedVersion = VersionInfo.DetectedVersion;
// TODO(tra): remove the warning once we have all features of 10.2
// and 11.0 implemented.
DetectedVersionIsNotSupported = Version > CudaVersion::LATEST_SUPPORTED;
if (Version >= CudaVersion::CUDA_90) {
// CUDA-9+ uses single libdevice file for all GPU variants.
std::string FilePath = LibDevicePath + "/libdevice.10.bc";
if (FS.exists(FilePath)) {
for (int Arch = (int)CudaArch::SM_30, E = (int)CudaArch::LAST; Arch < E;
++Arch) {
CudaArch GpuArch = static_cast<CudaArch>(Arch);
if (!IsNVIDIAGpuArch(GpuArch))
continue;
std::string GpuArchName(CudaArchToString(GpuArch));
LibDeviceMap[GpuArchName] = FilePath;
}
}
} else {
std::error_code EC;
for (llvm::vfs::directory_iterator LI = FS.dir_begin(LibDevicePath, EC),
LE;
!EC && LI != LE; LI = LI.increment(EC)) {
StringRef FilePath = LI->path();
StringRef FileName = llvm::sys::path::filename(FilePath);
// Process all bitcode filenames that look like
// libdevice.compute_XX.YY.bc
const StringRef LibDeviceName = "libdevice.";
if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc")))
continue;
StringRef GpuArch = FileName.slice(
LibDeviceName.size(), FileName.find('.', LibDeviceName.size()));
LibDeviceMap[GpuArch] = FilePath.str();
// Insert map entries for specific devices with this compute
// capability. NVCC's choice of the libdevice library version is
// rather peculiar and depends on the CUDA version.
if (GpuArch == "compute_20") {
LibDeviceMap["sm_20"] = std::string(FilePath);
LibDeviceMap["sm_21"] = std::string(FilePath);
LibDeviceMap["sm_32"] = std::string(FilePath);
} else if (GpuArch == "compute_30") {
LibDeviceMap["sm_30"] = std::string(FilePath);
if (Version < CudaVersion::CUDA_80) {
LibDeviceMap["sm_50"] = std::string(FilePath);
LibDeviceMap["sm_52"] = std::string(FilePath);
LibDeviceMap["sm_53"] = std::string(FilePath);
}
LibDeviceMap["sm_60"] = std::string(FilePath);
LibDeviceMap["sm_61"] = std::string(FilePath);
LibDeviceMap["sm_62"] = std::string(FilePath);
} else if (GpuArch == "compute_35") {
LibDeviceMap["sm_35"] = std::string(FilePath);
LibDeviceMap["sm_37"] = std::string(FilePath);
} else if (GpuArch == "compute_50") {
if (Version >= CudaVersion::CUDA_80) {
LibDeviceMap["sm_50"] = std::string(FilePath);
LibDeviceMap["sm_52"] = std::string(FilePath);
LibDeviceMap["sm_53"] = std::string(FilePath);
}
}
}
}
// Check that we have found at least one libdevice that we can link in if
// -nocudalib hasn't been specified.
if (LibDeviceMap.empty() && !NoCudaLib)
continue;
IsValid = true;
break;
}
}
void CudaInstallationDetector::AddCudaIncludeArgs(
const ArgList &DriverArgs, ArgStringList &CC1Args) const {
if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
// Add cuda_wrappers/* to our system include path. This lets us wrap
// standard library headers.
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "include");
llvm::sys::path::append(P, "cuda_wrappers");
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(P));
}
if (DriverArgs.hasArg(options::OPT_nogpuinc))
return;
if (!isValid()) {
D.Diag(diag::err_drv_no_cuda_installation);
return;
}
CC1Args.push_back("-internal-isystem");
CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath()));
CC1Args.push_back("-include");
CC1Args.push_back("__clang_cuda_runtime_wrapper.h");
}
void CudaInstallationDetector::CheckCudaVersionSupportsArch(
CudaArch Arch) const {
if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN ||
ArchsWithBadVersion[(int)Arch])
return;
auto MinVersion = MinVersionForCudaArch(Arch);
auto MaxVersion = MaxVersionForCudaArch(Arch);
if (Version < MinVersion || Version > MaxVersion) {
ArchsWithBadVersion[(int)Arch] = true;
D.Diag(diag::err_drv_cuda_version_unsupported)
<< CudaArchToString(Arch) << CudaVersionToString(MinVersion)
<< CudaVersionToString(MaxVersion) << InstallPath
<< CudaVersionToString(Version);
}
}
void CudaInstallationDetector::print(raw_ostream &OS) const {
if (isValid())
OS << "Found CUDA installation: " << InstallPath << ", version "
<< CudaVersionToString(Version) << "\n";
}
namespace {
/// Debug info level for the NVPTX devices. We may need to emit different debug
/// info level for the host and for the device itselfi. This type controls
/// emission of the debug info for the devices. It either prohibits disable info
/// emission completely, or emits debug directives only, or emits same debug
/// info as for the host.
enum DeviceDebugInfoLevel {
DisableDebugInfo, /// Do not emit debug info for the devices.
DebugDirectivesOnly, /// Emit only debug directives.
EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the
/// host.
};
} // anonymous namespace
/// Define debug info level for the NVPTX devices. If the debug info for both
/// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If
/// only debug directives are requested for the both host and device
/// (-gline-directvies-only), or the debug info only for the device is disabled
/// (optimization is on and --cuda-noopt-device-debug was not specified), the
/// debug directves only must be emitted for the device. Otherwise, use the same
/// debug info level just like for the host (with the limitations of only
/// supported DWARF2 standard).
static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) {
const Arg *A = Args.getLastArg(options::OPT_O_Group);
bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) ||
Args.hasFlag(options::OPT_cuda_noopt_device_debug,
options::OPT_no_cuda_noopt_device_debug,
/*Default=*/false);
if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
const Option &Opt = A->getOption();
if (Opt.matches(options::OPT_gN_Group)) {
if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0))
return DisableDebugInfo;
if (Opt.matches(options::OPT_gline_directives_only))
return DebugDirectivesOnly;
}
return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly;
}
return willEmitRemarks(Args) ? DebugDirectivesOnly : DisableDebugInfo;
}
void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
const auto &TC =
static_cast<const toolchains::CudaToolChain &>(getToolChain());
assert(TC.getTriple().isNVPTX() && "Wrong platform");
StringRef GPUArchName;
// If this is an OpenMP action we need to extract the device architecture
// from the -march=arch option. This option may come from -Xopenmp-target
// flag or the default value.
if (JA.isDeviceOffloading(Action::OFK_OpenMP)) {
GPUArchName = Args.getLastArgValue(options::OPT_march_EQ);
assert(!GPUArchName.empty() && "Must have an architecture passed in.");
} else
GPUArchName = JA.getOffloadingArch();
// Obtain architecture from the action.
CudaArch gpu_arch = StringToCudaArch(GPUArchName);
assert(gpu_arch != CudaArch::UNKNOWN &&
"Device action expected to have an architecture.");
// Check that our installation's ptxas supports gpu_arch.
if (!Args.hasArg(options::OPT_no_cuda_version_check)) {
TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch);
}
ArgStringList CmdArgs;
CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32");
DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args);
if (DIKind == EmitSameDebugInfoAsHost) {
// ptxas does not accept -g option if optimization is enabled, so
// we ignore the compiler's -O* options if we want debug info.
CmdArgs.push_back("-g");
CmdArgs.push_back("--dont-merge-basicblocks");
CmdArgs.push_back("--return-at-end");
} else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
// Map the -O we received to -O{0,1,2,3}.
//
// TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's
// default, so it may correspond more closely to the spirit of clang -O2.
// -O3 seems like the least-bad option when -Osomething is specified to
// clang but it isn't handled below.
StringRef OOpt = "3";
if (A->getOption().matches(options::OPT_O4) ||
A->getOption().matches(options::OPT_Ofast))
OOpt = "3";
else if (A->getOption().matches(options::OPT_O0))
OOpt = "0";
else if (A->getOption().matches(options::OPT_O)) {
// -Os, -Oz, and -O(anything else) map to -O2, for lack of better options.
OOpt = llvm::StringSwitch<const char *>(A->getValue())
.Case("1", "1")
.Case("2", "2")
.Case("3", "3")
.Case("s", "2")
.Case("z", "2")
.Default("2");
}
CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt));
} else {
// If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond
// to no optimizations, but ptxas's default is -O3.
CmdArgs.push_back("-O0");
}
if (DIKind == DebugDirectivesOnly)
CmdArgs.push_back("-lineinfo");
// Pass -v to ptxas if it was passed to the driver.
if (Args.hasArg(options::OPT_v))
CmdArgs.push_back("-v");
CmdArgs.push_back("--gpu-name");
CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch)));
CmdArgs.push_back("--output-file");
CmdArgs.push_back(Args.MakeArgString(TC.getInputFilename(Output)));
for (const auto& II : Inputs)
CmdArgs.push_back(Args.MakeArgString(II.getFilename()));
for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_ptxas))
CmdArgs.push_back(Args.MakeArgString(A));
bool Relocatable = false;
if (JA.isOffloading(Action::OFK_OpenMP))
// In OpenMP we need to generate relocatable code.
Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target,
options::OPT_fnoopenmp_relocatable_target,
/*Default=*/true);
else if (JA.isOffloading(Action::OFK_Cuda))
Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
options::OPT_fno_gpu_rdc, /*Default=*/false);
if (Relocatable)
CmdArgs.push_back("-c");
const char *Exec;
if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ))
Exec = A->getValue();
else
Exec = Args.MakeArgString(TC.GetProgramPath("ptxas"));
C.addCommand(std::make_unique<Command>(
JA, *this,
ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8,
"--options-file"},
Exec, CmdArgs, Inputs, Output));
}
static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) {
bool includePTX = true;
for (Arg *A : Args) {
if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) ||
A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ)))
continue;
A->claim();
const StringRef ArchStr = A->getValue();
if (ArchStr == "all" || ArchStr == gpu_arch) {
includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ);
continue;
}
}
return includePTX;
}
// All inputs to this linker must be from CudaDeviceActions, as we need to look
// at the Inputs' Actions in order to figure out which GPU architecture they
// correspond to.
void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
const auto &TC =
static_cast<const toolchains::CudaToolChain &>(getToolChain());
assert(TC.getTriple().isNVPTX() && "Wrong platform");
ArgStringList CmdArgs;
if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100)
CmdArgs.push_back("--cuda");
CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32");
CmdArgs.push_back(Args.MakeArgString("--create"));
CmdArgs.push_back(Args.MakeArgString(Output.getFilename()));
if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost)
CmdArgs.push_back("-g");
for (const auto& II : Inputs) {
auto *A = II.getAction();
assert(A->getInputs().size() == 1 &&
"Device offload action is expected to have a single input");
const char *gpu_arch_str = A->getOffloadingArch();
assert(gpu_arch_str &&
"Device action expected to have associated a GPU architecture!");
CudaArch gpu_arch = StringToCudaArch(gpu_arch_str);
if (II.getType() == types::TY_PP_Asm &&
!shouldIncludePTX(Args, gpu_arch_str))
continue;
// We need to pass an Arch of the form "sm_XX" for cubin files and
// "compute_XX" for ptx.
const char *Arch = (II.getType() == types::TY_PP_Asm)
? CudaArchToVirtualArchString(gpu_arch)
: gpu_arch_str;
CmdArgs.push_back(Args.MakeArgString(llvm::Twine("--image=profile=") +
Arch + ",file=" + II.getFilename()));
}
for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary))
CmdArgs.push_back(Args.MakeArgString(A));
const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary"));
C.addCommand(std::make_unique<Command>(
JA, *this,
ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8,
"--options-file"},
Exec, CmdArgs, Inputs, Output));
}
void NVPTX::OpenMPLinker::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
const auto &TC =
static_cast<const toolchains::CudaToolChain &>(getToolChain());
assert(TC.getTriple().isNVPTX() && "Wrong platform");
ArgStringList CmdArgs;
// OpenMP uses nvlink to link cubin files. The result will be embedded in the
// host binary by the host linker.
assert(!JA.isHostOffloading(Action::OFK_OpenMP) &&
"CUDA toolchain not expected for an OpenMP host device.");
if (Output.isFilename()) {
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
} else
assert(Output.isNothing() && "Invalid output.");
if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost)
CmdArgs.push_back("-g");
if (Args.hasArg(options::OPT_v))
CmdArgs.push_back("-v");
StringRef GPUArch =
Args.getLastArgValue(options::OPT_march_EQ);
assert(!GPUArch.empty() && "At least one GPU Arch required for ptxas.");
CmdArgs.push_back("-arch");
CmdArgs.push_back(Args.MakeArgString(GPUArch));
// Add paths specified in LIBRARY_PATH environment variable as -L options.
addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH");
// Add paths for the default clang library path.
SmallString<256> DefaultLibPath =
llvm::sys::path::parent_path(TC.getDriver().Dir);
llvm::sys::path::append(DefaultLibPath, "lib" CLANG_LIBDIR_SUFFIX);
CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath));
for (const auto &II : Inputs) {
if (II.getType() == types::TY_LLVM_IR ||
II.getType() == types::TY_LTO_IR ||
II.getType() == types::TY_LTO_BC ||
II.getType() == types::TY_LLVM_BC) {
C.getDriver().Diag(diag::err_drv_no_linker_llvm_support)
<< getToolChain().getTripleString();
continue;
}
// Currently, we only pass the input files to the linker, we do not pass
// any libraries that may be valid only for the host.
if (!II.isFilename())
continue;
const char *CubinF = C.addTempFile(
C.getArgs().MakeArgString(getToolChain().getInputFilename(II)));
CmdArgs.push_back(CubinF);
}
const char *Exec =
Args.MakeArgString(getToolChain().GetProgramPath("nvlink"));
C.addCommand(std::make_unique<Command>(
JA, *this,
ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8,
"--options-file"},
Exec, CmdArgs, Inputs, Output));
}
/// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary,
/// which isn't properly a linker but nonetheless performs the step of stitching
/// together object files from the assembler into a single blob.
CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple,
const ToolChain &HostTC, const ArgList &Args,
const Action::OffloadKind OK)
: ToolChain(D, Triple, Args), HostTC(HostTC),
CudaInstallation(D, HostTC.getTriple(), Args), OK(OK) {
if (CudaInstallation.isValid()) {
CudaInstallation.WarnIfUnsupportedVersion();
getProgramPaths().push_back(std::string(CudaInstallation.getBinPath()));
}
// Lookup binaries into the driver directory, this is used to
// discover the clang-offload-bundler executable.
getProgramPaths().push_back(getDriver().Dir);
}
std::string CudaToolChain::getInputFilename(const InputInfo &Input) const {
// Only object files are changed, for example assembly files keep their .s
// extensions. CUDA also continues to use .o as they don't use nvlink but
// fatbinary.
if (!(OK == Action::OFK_OpenMP && Input.getType() == types::TY_Object))
return ToolChain::getInputFilename(Input);
// Replace extension for object files with cubin because nvlink relies on
// these particular file names.
SmallString<256> Filename(ToolChain::getInputFilename(Input));
llvm::sys::path::replace_extension(Filename, "cubin");
return std::string(Filename.str());
}
void CudaToolChain::addClangTargetOptions(
const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args,
Action::OffloadKind DeviceOffloadingKind) const {
HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);
StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
DeviceOffloadingKind == Action::OFK_Cuda) &&
"Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");
if (DeviceOffloadingKind == Action::OFK_Cuda) {
CC1Args.push_back("-fcuda-is-device");
if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
options::OPT_fno_cuda_approx_transcendentals, false))
CC1Args.push_back("-fcuda-approx-transcendentals");
if (DriverArgs.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
false))
CC1Args.push_back("-fgpu-rdc");
}
if (DriverArgs.hasArg(options::OPT_nogpulib))
return;
std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);
if (LibDeviceFile.empty()) {
if (DeviceOffloadingKind == Action::OFK_OpenMP &&
DriverArgs.hasArg(options::OPT_S))
return;
getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
return;
}
CC1Args.push_back("-mlink-builtin-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));
std::string CudaVersionStr;
// New CUDA versions often introduce new instructions that are only supported
// by new PTX version, so we need to raise PTX level to enable them in NVPTX
// back-end.
const char *PtxFeature = nullptr;
switch (CudaInstallation.version()) {
#define CASE_CUDA_VERSION(CUDA_VER, PTX_VER) \
case CudaVersion::CUDA_##CUDA_VER: \
CudaVersionStr = #CUDA_VER; \
PtxFeature = "+ptx" #PTX_VER; \
break;
CASE_CUDA_VERSION(110, 70);
CASE_CUDA_VERSION(102, 65);
CASE_CUDA_VERSION(101, 64);
CASE_CUDA_VERSION(100, 63);
CASE_CUDA_VERSION(92, 61);
CASE_CUDA_VERSION(91, 61);
CASE_CUDA_VERSION(90, 60);
#undef CASE_CUDA_VERSION
default:
// If unknown CUDA version, we take it as CUDA 8.0. Same assumption is also
// made in libomptarget/deviceRTLs.
CudaVersionStr = "80";
PtxFeature = "+ptx42";
}
CC1Args.append({"-target-feature", PtxFeature});
if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr,
options::OPT_fno_cuda_short_ptr, false))
CC1Args.append({"-mllvm", "--nvptx-short-ptr"});
if (CudaInstallation.version() >= CudaVersion::UNKNOWN)
CC1Args.push_back(DriverArgs.MakeArgString(
Twine("-target-sdk-version=") +
CudaVersionToString(CudaInstallation.version())));
if (DeviceOffloadingKind == Action::OFK_OpenMP) {
SmallVector<StringRef, 8> LibraryPaths;
// Add user defined library paths from LIBRARY_PATH.
llvm::Optional<std::string> LibPath =
llvm::sys::Process::GetEnv("LIBRARY_PATH");
if (LibPath) {
SmallVector<StringRef, 8> Frags;
const char EnvPathSeparatorStr[] = {llvm::sys::EnvPathSeparator, '\0'};
llvm::SplitString(*LibPath, Frags, EnvPathSeparatorStr);
for (StringRef Path : Frags)
LibraryPaths.emplace_back(Path.trim());
}
// Add path to lib / lib64 folder.
SmallString<256> DefaultLibPath =
llvm::sys::path::parent_path(getDriver().Dir);
llvm::sys::path::append(DefaultLibPath, Twine("lib") + CLANG_LIBDIR_SUFFIX);
LibraryPaths.emplace_back(DefaultLibPath.c_str());
// First check whether user specifies bc library
if (const Arg *A =
DriverArgs.getLastArg(options::OPT_libomptarget_nvptx_bc_path_EQ)) {
std::string LibOmpTargetName(A->getValue());
if (llvm::sys::fs::exists(LibOmpTargetName)) {
CC1Args.push_back("-mlink-builtin-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetName));
} else {
getDriver().Diag(diag::err_drv_omp_offload_target_bcruntime_not_found)
<< LibOmpTargetName;
}
} else {
bool FoundBCLibrary = false;
std::string LibOmpTargetName = "libomptarget-nvptx-cuda_" +
CudaVersionStr + "-" + GpuArch.str() +
".bc";
for (StringRef LibraryPath : LibraryPaths) {
SmallString<128> LibOmpTargetFile(LibraryPath);
llvm::sys::path::append(LibOmpTargetFile, LibOmpTargetName);
if (llvm::sys::fs::exists(LibOmpTargetFile)) {
CC1Args.push_back("-mlink-builtin-bitcode");
CC1Args.push_back(DriverArgs.MakeArgString(LibOmpTargetFile));
FoundBCLibrary = true;
break;
}
}
if (!FoundBCLibrary)
getDriver().Diag(diag::err_drv_omp_offload_target_missingbcruntime)
<< LibOmpTargetName;
}
}
}
llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType(
const llvm::opt::ArgList &DriverArgs, const JobAction &JA,
const llvm::fltSemantics *FPType) const {
if (JA.getOffloadingDeviceKind() == Action::OFK_Cuda) {
if (FPType && FPType == &llvm::APFloat::IEEEsingle() &&
DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
options::OPT_fno_cuda_flush_denormals_to_zero,
false))
return llvm::DenormalMode::getPreserveSign();
}
assert(JA.getOffloadingDeviceKind() != Action::OFK_Host);
return llvm::DenormalMode::getIEEE();
}
bool CudaToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const {
const Option &O = A->getOption();
return (O.matches(options::OPT_gN_Group) &&
!O.matches(options::OPT_gmodules)) ||
O.matches(options::OPT_g_Flag) ||
O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) ||
O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) ||
O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) ||
O.matches(options::OPT_gdwarf_5) ||
O.matches(options::OPT_gcolumn_info);
}
void CudaToolChain::adjustDebugInfoKind(
codegenoptions::DebugInfoKind &DebugInfoKind, const ArgList &Args) const {
switch (mustEmitDebugInfo(Args)) {
case DisableDebugInfo:
DebugInfoKind = codegenoptions::NoDebugInfo;
break;
case DebugDirectivesOnly:
DebugInfoKind = codegenoptions::DebugDirectivesOnly;
break;
case EmitSameDebugInfoAsHost:
// Use same debug info level as the host.
break;
}
}
void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
// Check our CUDA version if we're going to include the CUDA headers.
if (!DriverArgs.hasArg(options::OPT_nogpuinc) &&
!DriverArgs.hasArg(options::OPT_no_cuda_version_check)) {
StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
assert(!Arch.empty() && "Must have an explicit GPU arch.");
CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch));
}
CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args);
}
llvm::opt::DerivedArgList *
CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args,
StringRef BoundArch,
Action::OffloadKind DeviceOffloadKind) const {
DerivedArgList *DAL =
HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind);
if (!DAL)
DAL = new DerivedArgList(Args.getBaseArgs());
const OptTable &Opts = getDriver().getOpts();
// For OpenMP device offloading, append derived arguments. Make sure
// flags are not duplicated.
// Also append the compute capability.
if (DeviceOffloadKind == Action::OFK_OpenMP) {
for (Arg *A : Args) {
bool IsDuplicate = false;
for (Arg *DALArg : *DAL) {
if (A == DALArg) {
IsDuplicate = true;
break;
}
}
if (!IsDuplicate)
DAL->append(A);
}
StringRef Arch = DAL->getLastArgValue(options::OPT_march_EQ);
if (Arch.empty())
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ),
CLANG_OPENMP_NVPTX_DEFAULT_ARCH);
return DAL;
}
for (Arg *A : Args) {
DAL->append(A);
}
if (!BoundArch.empty()) {
DAL->eraseArg(options::OPT_march_EQ);
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch);
}
return DAL;
}
Tool *CudaToolChain::buildAssembler() const {
return new tools::NVPTX::Assembler(*this);
}
Tool *CudaToolChain::buildLinker() const {
if (OK == Action::OFK_OpenMP)
return new tools::NVPTX::OpenMPLinker(*this);
return new tools::NVPTX::Linker(*this);
}
void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {
HostTC.addClangWarningOptions(CC1Args);
}
ToolChain::CXXStdlibType
CudaToolChain::GetCXXStdlibType(const ArgList &Args) const {
return HostTC.GetCXXStdlibType(Args);
}
void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
ArgStringList &CC1Args) const {
HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args);
}
void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args,
ArgStringList &CC1Args) const {
HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args);
}
void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args,
ArgStringList &CC1Args) const {
HostTC.AddIAMCUIncludeArgs(Args, CC1Args);
}
SanitizerMask CudaToolChain::getSupportedSanitizers() const {
// The CudaToolChain only supports sanitizers in the sense that it allows
// sanitizer arguments on the command line if they are supported by the host
// toolchain. The CudaToolChain will actually ignore any command line
// arguments for any of these "supported" sanitizers. That means that no
// sanitization of device code is actually supported at this time.
//
// This behavior is necessary because the host and device toolchains
// invocations often share the command line, so the device toolchain must
// tolerate flags meant only for the host toolchain.
return HostTC.getSupportedSanitizers();
}
VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D,
const ArgList &Args) const {
return HostTC.computeMSVCVersion(D, Args);
}