llvm-for-llvmta/tools/clang/lib/Parse/ParseCXXInlineMethods.cpp

1367 lines
49 KiB
C++
Raw Normal View History

2022-04-25 13:02:35 +02:00
//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements parsing for C++ class inline methods.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Scope.h"
using namespace clang;
/// ParseCXXInlineMethodDef - We parsed and verified that the specified
/// Declarator is a well formed C++ inline method definition. Now lex its body
/// and store its tokens for parsing after the C++ class is complete.
NamedDecl *Parser::ParseCXXInlineMethodDef(
AccessSpecifier AS, ParsedAttributes &AccessAttrs, ParsingDeclarator &D,
const ParsedTemplateInfo &TemplateInfo, const VirtSpecifiers &VS,
SourceLocation PureSpecLoc) {
assert(D.isFunctionDeclarator() && "This isn't a function declarator!");
assert(Tok.isOneOf(tok::l_brace, tok::colon, tok::kw_try, tok::equal) &&
"Current token not a '{', ':', '=', or 'try'!");
MultiTemplateParamsArg TemplateParams(
TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->data()
: nullptr,
TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->size() : 0);
NamedDecl *FnD;
if (D.getDeclSpec().isFriendSpecified())
FnD = Actions.ActOnFriendFunctionDecl(getCurScope(), D,
TemplateParams);
else {
FnD = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, D,
TemplateParams, nullptr,
VS, ICIS_NoInit);
if (FnD) {
Actions.ProcessDeclAttributeList(getCurScope(), FnD, AccessAttrs);
if (PureSpecLoc.isValid())
Actions.ActOnPureSpecifier(FnD, PureSpecLoc);
}
}
if (FnD)
HandleMemberFunctionDeclDelays(D, FnD);
D.complete(FnD);
if (TryConsumeToken(tok::equal)) {
if (!FnD) {
SkipUntil(tok::semi);
return nullptr;
}
bool Delete = false;
SourceLocation KWLoc;
SourceLocation KWEndLoc = Tok.getEndLoc().getLocWithOffset(-1);
if (TryConsumeToken(tok::kw_delete, KWLoc)) {
Diag(KWLoc, getLangOpts().CPlusPlus11
? diag::warn_cxx98_compat_defaulted_deleted_function
: diag::ext_defaulted_deleted_function)
<< 1 /* deleted */;
Actions.SetDeclDeleted(FnD, KWLoc);
Delete = true;
if (auto *DeclAsFunction = dyn_cast<FunctionDecl>(FnD)) {
DeclAsFunction->setRangeEnd(KWEndLoc);
}
} else if (TryConsumeToken(tok::kw_default, KWLoc)) {
Diag(KWLoc, getLangOpts().CPlusPlus11
? diag::warn_cxx98_compat_defaulted_deleted_function
: diag::ext_defaulted_deleted_function)
<< 0 /* defaulted */;
Actions.SetDeclDefaulted(FnD, KWLoc);
if (auto *DeclAsFunction = dyn_cast<FunctionDecl>(FnD)) {
DeclAsFunction->setRangeEnd(KWEndLoc);
}
} else {
llvm_unreachable("function definition after = not 'delete' or 'default'");
}
if (Tok.is(tok::comma)) {
Diag(KWLoc, diag::err_default_delete_in_multiple_declaration)
<< Delete;
SkipUntil(tok::semi);
} else if (ExpectAndConsume(tok::semi, diag::err_expected_after,
Delete ? "delete" : "default")) {
SkipUntil(tok::semi);
}
return FnD;
}
if (SkipFunctionBodies && (!FnD || Actions.canSkipFunctionBody(FnD)) &&
trySkippingFunctionBody()) {
Actions.ActOnSkippedFunctionBody(FnD);
return FnD;
}
// In delayed template parsing mode, if we are within a class template
// or if we are about to parse function member template then consume
// the tokens and store them for parsing at the end of the translation unit.
if (getLangOpts().DelayedTemplateParsing &&
D.getFunctionDefinitionKind() == FunctionDefinitionKind::Definition &&
!D.getDeclSpec().hasConstexprSpecifier() &&
!(FnD && FnD->getAsFunction() &&
FnD->getAsFunction()->getReturnType()->getContainedAutoType()) &&
((Actions.CurContext->isDependentContext() ||
(TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
TemplateInfo.Kind != ParsedTemplateInfo::ExplicitSpecialization)) &&
!Actions.IsInsideALocalClassWithinATemplateFunction())) {
CachedTokens Toks;
LexTemplateFunctionForLateParsing(Toks);
if (FnD) {
FunctionDecl *FD = FnD->getAsFunction();
Actions.CheckForFunctionRedefinition(FD);
Actions.MarkAsLateParsedTemplate(FD, FnD, Toks);
}
return FnD;
}
// Consume the tokens and store them for later parsing.
LexedMethod* LM = new LexedMethod(this, FnD);
getCurrentClass().LateParsedDeclarations.push_back(LM);
CachedTokens &Toks = LM->Toks;
tok::TokenKind kind = Tok.getKind();
// Consume everything up to (and including) the left brace of the
// function body.
if (ConsumeAndStoreFunctionPrologue(Toks)) {
// We didn't find the left-brace we expected after the
// constructor initializer; we already printed an error, and it's likely
// impossible to recover, so don't try to parse this method later.
// Skip over the rest of the decl and back to somewhere that looks
// reasonable.
SkipMalformedDecl();
delete getCurrentClass().LateParsedDeclarations.back();
getCurrentClass().LateParsedDeclarations.pop_back();
return FnD;
} else {
// Consume everything up to (and including) the matching right brace.
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
}
// If we're in a function-try-block, we need to store all the catch blocks.
if (kind == tok::kw_try) {
while (Tok.is(tok::kw_catch)) {
ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false);
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
}
}
if (FnD) {
FunctionDecl *FD = FnD->getAsFunction();
// Track that this function will eventually have a body; Sema needs
// to know this.
Actions.CheckForFunctionRedefinition(FD);
FD->setWillHaveBody(true);
} else {
// If semantic analysis could not build a function declaration,
// just throw away the late-parsed declaration.
delete getCurrentClass().LateParsedDeclarations.back();
getCurrentClass().LateParsedDeclarations.pop_back();
}
return FnD;
}
/// ParseCXXNonStaticMemberInitializer - We parsed and verified that the
/// specified Declarator is a well formed C++ non-static data member
/// declaration. Now lex its initializer and store its tokens for parsing
/// after the class is complete.
void Parser::ParseCXXNonStaticMemberInitializer(Decl *VarD) {
assert(Tok.isOneOf(tok::l_brace, tok::equal) &&
"Current token not a '{' or '='!");
LateParsedMemberInitializer *MI =
new LateParsedMemberInitializer(this, VarD);
getCurrentClass().LateParsedDeclarations.push_back(MI);
CachedTokens &Toks = MI->Toks;
tok::TokenKind kind = Tok.getKind();
if (kind == tok::equal) {
Toks.push_back(Tok);
ConsumeToken();
}
if (kind == tok::l_brace) {
// Begin by storing the '{' token.
Toks.push_back(Tok);
ConsumeBrace();
// Consume everything up to (and including) the matching right brace.
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/true);
} else {
// Consume everything up to (but excluding) the comma or semicolon.
ConsumeAndStoreInitializer(Toks, CIK_DefaultInitializer);
}
// Store an artificial EOF token to ensure that we don't run off the end of
// the initializer when we come to parse it.
Token Eof;
Eof.startToken();
Eof.setKind(tok::eof);
Eof.setLocation(Tok.getLocation());
Eof.setEofData(VarD);
Toks.push_back(Eof);
}
Parser::LateParsedDeclaration::~LateParsedDeclaration() {}
void Parser::LateParsedDeclaration::ParseLexedMethodDeclarations() {}
void Parser::LateParsedDeclaration::ParseLexedMemberInitializers() {}
void Parser::LateParsedDeclaration::ParseLexedMethodDefs() {}
void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
void Parser::LateParsedDeclaration::ParseLexedPragmas() {}
Parser::LateParsedClass::LateParsedClass(Parser *P, ParsingClass *C)
: Self(P), Class(C) {}
Parser::LateParsedClass::~LateParsedClass() {
Self->DeallocateParsedClasses(Class);
}
void Parser::LateParsedClass::ParseLexedMethodDeclarations() {
Self->ParseLexedMethodDeclarations(*Class);
}
void Parser::LateParsedClass::ParseLexedMemberInitializers() {
Self->ParseLexedMemberInitializers(*Class);
}
void Parser::LateParsedClass::ParseLexedMethodDefs() {
Self->ParseLexedMethodDefs(*Class);
}
void Parser::LateParsedClass::ParseLexedAttributes() {
Self->ParseLexedAttributes(*Class);
}
void Parser::LateParsedClass::ParseLexedPragmas() {
Self->ParseLexedPragmas(*Class);
}
void Parser::LateParsedMethodDeclaration::ParseLexedMethodDeclarations() {
Self->ParseLexedMethodDeclaration(*this);
}
void Parser::LexedMethod::ParseLexedMethodDefs() {
Self->ParseLexedMethodDef(*this);
}
void Parser::LateParsedMemberInitializer::ParseLexedMemberInitializers() {
Self->ParseLexedMemberInitializer(*this);
}
void Parser::LateParsedAttribute::ParseLexedAttributes() {
Self->ParseLexedAttribute(*this, true, false);
}
void Parser::LateParsedPragma::ParseLexedPragmas() {
Self->ParseLexedPragma(*this);
}
/// Utility to re-enter a possibly-templated scope while parsing its
/// late-parsed components.
struct Parser::ReenterTemplateScopeRAII {
Parser &P;
MultiParseScope Scopes;
TemplateParameterDepthRAII CurTemplateDepthTracker;
ReenterTemplateScopeRAII(Parser &P, Decl *MaybeTemplated, bool Enter = true)
: P(P), Scopes(P), CurTemplateDepthTracker(P.TemplateParameterDepth) {
if (Enter) {
CurTemplateDepthTracker.addDepth(
P.ReenterTemplateScopes(Scopes, MaybeTemplated));
}
}
};
/// Utility to re-enter a class scope while parsing its late-parsed components.
struct Parser::ReenterClassScopeRAII : ReenterTemplateScopeRAII {
ParsingClass &Class;
ReenterClassScopeRAII(Parser &P, ParsingClass &Class)
: ReenterTemplateScopeRAII(P, Class.TagOrTemplate,
/*Enter=*/!Class.TopLevelClass),
Class(Class) {
// If this is the top-level class, we're still within its scope.
if (Class.TopLevelClass)
return;
// Re-enter the class scope itself.
Scopes.Enter(Scope::ClassScope|Scope::DeclScope);
P.Actions.ActOnStartDelayedMemberDeclarations(P.getCurScope(),
Class.TagOrTemplate);
}
~ReenterClassScopeRAII() {
if (Class.TopLevelClass)
return;
P.Actions.ActOnFinishDelayedMemberDeclarations(P.getCurScope(),
Class.TagOrTemplate);
}
};
/// ParseLexedMethodDeclarations - We finished parsing the member
/// specification of a top (non-nested) C++ class. Now go over the
/// stack of method declarations with some parts for which parsing was
/// delayed (such as default arguments) and parse them.
void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) {
ReenterClassScopeRAII InClassScope(*this, Class);
for (LateParsedDeclaration *LateD : Class.LateParsedDeclarations)
LateD->ParseLexedMethodDeclarations();
}
void Parser::ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM) {
// If this is a member template, introduce the template parameter scope.
ReenterTemplateScopeRAII InFunctionTemplateScope(*this, LM.Method);
// Start the delayed C++ method declaration
Actions.ActOnStartDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
// Introduce the parameters into scope and parse their default
// arguments.
InFunctionTemplateScope.Scopes.Enter(Scope::FunctionPrototypeScope |
Scope::FunctionDeclarationScope |
Scope::DeclScope);
for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) {
auto Param = cast<ParmVarDecl>(LM.DefaultArgs[I].Param);
// Introduce the parameter into scope.
bool HasUnparsed = Param->hasUnparsedDefaultArg();
Actions.ActOnDelayedCXXMethodParameter(getCurScope(), Param);
std::unique_ptr<CachedTokens> Toks = std::move(LM.DefaultArgs[I].Toks);
if (Toks) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
// Mark the end of the default argument so that we know when to stop when
// we parse it later on.
Token LastDefaultArgToken = Toks->back();
Token DefArgEnd;
DefArgEnd.startToken();
DefArgEnd.setKind(tok::eof);
DefArgEnd.setLocation(LastDefaultArgToken.getEndLoc());
DefArgEnd.setEofData(Param);
Toks->push_back(DefArgEnd);
// Parse the default argument from its saved token stream.
Toks->push_back(Tok); // So that the current token doesn't get lost
PP.EnterTokenStream(*Toks, true, /*IsReinject*/ true);
// Consume the previously-pushed token.
ConsumeAnyToken();
// Consume the '='.
assert(Tok.is(tok::equal) && "Default argument not starting with '='");
SourceLocation EqualLoc = ConsumeToken();
// The argument isn't actually potentially evaluated unless it is
// used.
EnterExpressionEvaluationContext Eval(
Actions,
Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed, Param);
ExprResult DefArgResult;
if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
DefArgResult = ParseBraceInitializer();
} else
DefArgResult = ParseAssignmentExpression();
DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
if (DefArgResult.isInvalid()) {
Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
} else {
if (Tok.isNot(tok::eof) || Tok.getEofData() != Param) {
// The last two tokens are the terminator and the saved value of
// Tok; the last token in the default argument is the one before
// those.
assert(Toks->size() >= 3 && "expected a token in default arg");
Diag(Tok.getLocation(), diag::err_default_arg_unparsed)
<< SourceRange(Tok.getLocation(),
(*Toks)[Toks->size() - 3].getLocation());
}
Actions.ActOnParamDefaultArgument(Param, EqualLoc,
DefArgResult.get());
}
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the 'end of default argument' token.
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
if (Tok.is(tok::eof) && Tok.getEofData() == Param)
ConsumeAnyToken();
} else if (HasUnparsed) {
assert(Param->hasInheritedDefaultArg());
const FunctionDecl *Old;
if (const auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(LM.Method))
Old =
cast<FunctionDecl>(FunTmpl->getTemplatedDecl())->getPreviousDecl();
else
Old = cast<FunctionDecl>(LM.Method)->getPreviousDecl();
if (Old) {
ParmVarDecl *OldParam = const_cast<ParmVarDecl*>(Old->getParamDecl(I));
assert(!OldParam->hasUnparsedDefaultArg());
if (OldParam->hasUninstantiatedDefaultArg())
Param->setUninstantiatedDefaultArg(
OldParam->getUninstantiatedDefaultArg());
else
Param->setDefaultArg(OldParam->getInit());
}
}
}
// Parse a delayed exception-specification, if there is one.
if (CachedTokens *Toks = LM.ExceptionSpecTokens) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
// Add the 'stop' token.
Token LastExceptionSpecToken = Toks->back();
Token ExceptionSpecEnd;
ExceptionSpecEnd.startToken();
ExceptionSpecEnd.setKind(tok::eof);
ExceptionSpecEnd.setLocation(LastExceptionSpecToken.getEndLoc());
ExceptionSpecEnd.setEofData(LM.Method);
Toks->push_back(ExceptionSpecEnd);
// Parse the default argument from its saved token stream.
Toks->push_back(Tok); // So that the current token doesn't get lost
PP.EnterTokenStream(*Toks, true, /*IsReinject*/true);
// Consume the previously-pushed token.
ConsumeAnyToken();
// C++11 [expr.prim.general]p3:
// If a declaration declares a member function or member function
// template of a class X, the expression this is a prvalue of type
// "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
// and the end of the function-definition, member-declarator, or
// declarator.
CXXMethodDecl *Method;
if (FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>(LM.Method))
Method = cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
else
Method = cast<CXXMethodDecl>(LM.Method);
Sema::CXXThisScopeRAII ThisScope(Actions, Method->getParent(),
Method->getMethodQualifiers(),
getLangOpts().CPlusPlus11);
// Parse the exception-specification.
SourceRange SpecificationRange;
SmallVector<ParsedType, 4> DynamicExceptions;
SmallVector<SourceRange, 4> DynamicExceptionRanges;
ExprResult NoexceptExpr;
CachedTokens *ExceptionSpecTokens;
ExceptionSpecificationType EST
= tryParseExceptionSpecification(/*Delayed=*/false, SpecificationRange,
DynamicExceptions,
DynamicExceptionRanges, NoexceptExpr,
ExceptionSpecTokens);
if (Tok.isNot(tok::eof) || Tok.getEofData() != LM.Method)
Diag(Tok.getLocation(), diag::err_except_spec_unparsed);
// Attach the exception-specification to the method.
Actions.actOnDelayedExceptionSpecification(LM.Method, EST,
SpecificationRange,
DynamicExceptions,
DynamicExceptionRanges,
NoexceptExpr.isUsable()?
NoexceptExpr.get() : nullptr);
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the original token position.
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
// Clean up the remaining EOF token.
if (Tok.is(tok::eof) && Tok.getEofData() == LM.Method)
ConsumeAnyToken();
delete Toks;
LM.ExceptionSpecTokens = nullptr;
}
InFunctionTemplateScope.Scopes.Exit();
// Finish the delayed C++ method declaration.
Actions.ActOnFinishDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
}
/// ParseLexedMethodDefs - We finished parsing the member specification of a top
/// (non-nested) C++ class. Now go over the stack of lexed methods that were
/// collected during its parsing and parse them all.
void Parser::ParseLexedMethodDefs(ParsingClass &Class) {
ReenterClassScopeRAII InClassScope(*this, Class);
for (LateParsedDeclaration *D : Class.LateParsedDeclarations)
D->ParseLexedMethodDefs();
}
void Parser::ParseLexedMethodDef(LexedMethod &LM) {
// If this is a member template, introduce the template parameter scope.
ReenterTemplateScopeRAII InFunctionTemplateScope(*this, LM.D);
ParenBraceBracketBalancer BalancerRAIIObj(*this);
assert(!LM.Toks.empty() && "Empty body!");
Token LastBodyToken = LM.Toks.back();
Token BodyEnd;
BodyEnd.startToken();
BodyEnd.setKind(tok::eof);
BodyEnd.setLocation(LastBodyToken.getEndLoc());
BodyEnd.setEofData(LM.D);
LM.Toks.push_back(BodyEnd);
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
LM.Toks.push_back(Tok);
PP.EnterTokenStream(LM.Toks, true, /*IsReinject*/true);
// Consume the previously pushed token.
ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
assert(Tok.isOneOf(tok::l_brace, tok::colon, tok::kw_try)
&& "Inline method not starting with '{', ':' or 'try'");
// Parse the method body. Function body parsing code is similar enough
// to be re-used for method bodies as well.
ParseScope FnScope(this, Scope::FnScope | Scope::DeclScope |
Scope::CompoundStmtScope);
Actions.ActOnStartOfFunctionDef(getCurScope(), LM.D);
if (Tok.is(tok::kw_try)) {
ParseFunctionTryBlock(LM.D, FnScope);
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
if (Tok.is(tok::eof) && Tok.getEofData() == LM.D)
ConsumeAnyToken();
return;
}
if (Tok.is(tok::colon)) {
ParseConstructorInitializer(LM.D);
// Error recovery.
if (!Tok.is(tok::l_brace)) {
FnScope.Exit();
Actions.ActOnFinishFunctionBody(LM.D, nullptr);
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
if (Tok.is(tok::eof) && Tok.getEofData() == LM.D)
ConsumeAnyToken();
return;
}
} else
Actions.ActOnDefaultCtorInitializers(LM.D);
assert((Actions.getDiagnostics().hasErrorOccurred() ||
!isa<FunctionTemplateDecl>(LM.D) ||
cast<FunctionTemplateDecl>(LM.D)->getTemplateParameters()->getDepth()
< TemplateParameterDepth) &&
"TemplateParameterDepth should be greater than the depth of "
"current template being instantiated!");
ParseFunctionStatementBody(LM.D, FnScope);
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
if (Tok.is(tok::eof) && Tok.getEofData() == LM.D)
ConsumeAnyToken();
if (auto *FD = dyn_cast_or_null<FunctionDecl>(LM.D))
if (isa<CXXMethodDecl>(FD) ||
FD->isInIdentifierNamespace(Decl::IDNS_OrdinaryFriend))
Actions.ActOnFinishInlineFunctionDef(FD);
}
/// ParseLexedMemberInitializers - We finished parsing the member specification
/// of a top (non-nested) C++ class. Now go over the stack of lexed data member
/// initializers that were collected during its parsing and parse them all.
void Parser::ParseLexedMemberInitializers(ParsingClass &Class) {
ReenterClassScopeRAII InClassScope(*this, Class);
if (!Class.LateParsedDeclarations.empty()) {
// C++11 [expr.prim.general]p4:
// Otherwise, if a member-declarator declares a non-static data member
// (9.2) of a class X, the expression this is a prvalue of type "pointer
// to X" within the optional brace-or-equal-initializer. It shall not
// appear elsewhere in the member-declarator.
// FIXME: This should be done in ParseLexedMemberInitializer, not here.
Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate,
Qualifiers());
for (LateParsedDeclaration *D : Class.LateParsedDeclarations)
D->ParseLexedMemberInitializers();
}
Actions.ActOnFinishDelayedMemberInitializers(Class.TagOrTemplate);
}
void Parser::ParseLexedMemberInitializer(LateParsedMemberInitializer &MI) {
if (!MI.Field || MI.Field->isInvalidDecl())
return;
ParenBraceBracketBalancer BalancerRAIIObj(*this);
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
MI.Toks.push_back(Tok);
PP.EnterTokenStream(MI.Toks, true, /*IsReinject*/true);
// Consume the previously pushed token.
ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
SourceLocation EqualLoc;
Actions.ActOnStartCXXInClassMemberInitializer();
ExprResult Init = ParseCXXMemberInitializer(MI.Field, /*IsFunction=*/false,
EqualLoc);
Actions.ActOnFinishCXXInClassMemberInitializer(MI.Field, EqualLoc,
Init.get());
// The next token should be our artificial terminating EOF token.
if (Tok.isNot(tok::eof)) {
if (!Init.isInvalid()) {
SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation);
if (!EndLoc.isValid())
EndLoc = Tok.getLocation();
// No fixit; we can't recover as if there were a semicolon here.
Diag(EndLoc, diag::err_expected_semi_decl_list);
}
// Consume tokens until we hit the artificial EOF.
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
}
// Make sure this is *our* artificial EOF token.
if (Tok.getEofData() == MI.Field)
ConsumeAnyToken();
}
/// Wrapper class which calls ParseLexedAttribute, after setting up the
/// scope appropriately.
void Parser::ParseLexedAttributes(ParsingClass &Class) {
ReenterClassScopeRAII InClassScope(*this, Class);
for (LateParsedDeclaration *LateD : Class.LateParsedDeclarations)
LateD->ParseLexedAttributes();
}
/// Parse all attributes in LAs, and attach them to Decl D.
void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
bool EnterScope, bool OnDefinition) {
assert(LAs.parseSoon() &&
"Attribute list should be marked for immediate parsing.");
for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
if (D)
LAs[i]->addDecl(D);
ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
delete LAs[i];
}
LAs.clear();
}
/// Finish parsing an attribute for which parsing was delayed.
/// This will be called at the end of parsing a class declaration
/// for each LateParsedAttribute. We consume the saved tokens and
/// create an attribute with the arguments filled in. We add this
/// to the Attribute list for the decl.
void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
bool EnterScope, bool OnDefinition) {
// Create a fake EOF so that attribute parsing won't go off the end of the
// attribute.
Token AttrEnd;
AttrEnd.startToken();
AttrEnd.setKind(tok::eof);
AttrEnd.setLocation(Tok.getLocation());
AttrEnd.setEofData(LA.Toks.data());
LA.Toks.push_back(AttrEnd);
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
LA.Toks.push_back(Tok);
PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true);
// Consume the previously pushed token.
ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
ParsedAttributes Attrs(AttrFactory);
SourceLocation endLoc;
if (LA.Decls.size() > 0) {
Decl *D = LA.Decls[0];
NamedDecl *ND = dyn_cast<NamedDecl>(D);
RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
// Allow 'this' within late-parsed attributes.
Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(),
ND && ND->isCXXInstanceMember());
if (LA.Decls.size() == 1) {
// If the Decl is templatized, add template parameters to scope.
ReenterTemplateScopeRAII InDeclScope(*this, D, EnterScope);
// If the Decl is on a function, add function parameters to the scope.
bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
if (HasFunScope) {
InDeclScope.Scopes.Enter(Scope::FnScope | Scope::DeclScope |
Scope::CompoundStmtScope);
Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
}
ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
nullptr, SourceLocation(), ParsedAttr::AS_GNU,
nullptr);
if (HasFunScope)
Actions.ActOnExitFunctionContext();
} else {
// If there are multiple decls, then the decl cannot be within the
// function scope.
ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
nullptr, SourceLocation(), ParsedAttr::AS_GNU,
nullptr);
}
} else {
Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
}
if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() &&
Attrs.begin()->isKnownToGCC())
Diag(Tok, diag::warn_attribute_on_function_definition)
<< &LA.AttrName;
for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
// Due to a parsing error, we either went over the cached tokens or
// there are still cached tokens left, so we skip the leftover tokens.
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
ConsumeAnyToken();
}
void Parser::ParseLexedPragmas(ParsingClass &Class) {
ReenterClassScopeRAII InClassScope(*this, Class);
for (LateParsedDeclaration *D : Class.LateParsedDeclarations)
D->ParseLexedPragmas();
}
void Parser::ParseLexedPragma(LateParsedPragma &LP) {
PP.EnterToken(Tok, /*IsReinject=*/true);
PP.EnterTokenStream(LP.toks(), /*DisableMacroExpansion=*/true,
/*IsReinject=*/true);
// Consume the previously pushed token.
ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
assert(Tok.isAnnotation() && "Expected annotation token.");
switch (Tok.getKind()) {
case tok::annot_pragma_openmp: {
AccessSpecifier AS = LP.getAccessSpecifier();
ParsedAttributesWithRange Attrs(AttrFactory);
(void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
break;
}
default:
llvm_unreachable("Unexpected token.");
}
}
/// ConsumeAndStoreUntil - Consume and store the token at the passed token
/// container until the token 'T' is reached (which gets
/// consumed/stored too, if ConsumeFinalToken).
/// If StopAtSemi is true, then we will stop early at a ';' character.
/// Returns true if token 'T1' or 'T2' was found.
/// NOTE: This is a specialized version of Parser::SkipUntil.
bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
CachedTokens &Toks,
bool StopAtSemi, bool ConsumeFinalToken) {
// We always want this function to consume at least one token if the first
// token isn't T and if not at EOF.
bool isFirstTokenConsumed = true;
while (1) {
// If we found one of the tokens, stop and return true.
if (Tok.is(T1) || Tok.is(T2)) {
if (ConsumeFinalToken) {
Toks.push_back(Tok);
ConsumeAnyToken();
}
return true;
}
switch (Tok.getKind()) {
case tok::eof:
case tok::annot_module_begin:
case tok::annot_module_end:
case tok::annot_module_include:
// Ran out of tokens.
return false;
case tok::l_paren:
// Recursively consume properly-nested parens.
Toks.push_back(Tok);
ConsumeParen();
ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
break;
case tok::l_square:
// Recursively consume properly-nested square brackets.
Toks.push_back(Tok);
ConsumeBracket();
ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false);
break;
case tok::l_brace:
// Recursively consume properly-nested braces.
Toks.push_back(Tok);
ConsumeBrace();
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we skip.
case tok::r_paren:
if (ParenCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeParen();
break;
case tok::r_square:
if (BracketCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBracket();
break;
case tok::r_brace:
if (BraceCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBrace();
break;
case tok::semi:
if (StopAtSemi)
return false;
LLVM_FALLTHROUGH;
default:
// consume this token.
Toks.push_back(Tok);
ConsumeAnyToken(/*ConsumeCodeCompletionTok*/true);
break;
}
isFirstTokenConsumed = false;
}
}
/// Consume tokens and store them in the passed token container until
/// we've passed the try keyword and constructor initializers and have consumed
/// the opening brace of the function body. The opening brace will be consumed
/// if and only if there was no error.
///
/// \return True on error.
bool Parser::ConsumeAndStoreFunctionPrologue(CachedTokens &Toks) {
if (Tok.is(tok::kw_try)) {
Toks.push_back(Tok);
ConsumeToken();
}
if (Tok.isNot(tok::colon)) {
// Easy case, just a function body.
// Grab any remaining garbage to be diagnosed later. We stop when we reach a
// brace: an opening one is the function body, while a closing one probably
// means we've reached the end of the class.
ConsumeAndStoreUntil(tok::l_brace, tok::r_brace, Toks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false);
if (Tok.isNot(tok::l_brace))
return Diag(Tok.getLocation(), diag::err_expected) << tok::l_brace;
Toks.push_back(Tok);
ConsumeBrace();
return false;
}
Toks.push_back(Tok);
ConsumeToken();
// We can't reliably skip over a mem-initializer-id, because it could be
// a template-id involving not-yet-declared names. Given:
//
// S ( ) : a < b < c > ( e )
//
// 'e' might be an initializer or part of a template argument, depending
// on whether 'b' is a template.
// Track whether we might be inside a template argument. We can give
// significantly better diagnostics if we know that we're not.
bool MightBeTemplateArgument = false;
while (true) {
// Skip over the mem-initializer-id, if possible.
if (Tok.is(tok::kw_decltype)) {
Toks.push_back(Tok);
SourceLocation OpenLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren))
return Diag(Tok.getLocation(), diag::err_expected_lparen_after)
<< "decltype";
Toks.push_back(Tok);
ConsumeParen();
if (!ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/true)) {
Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
Diag(OpenLoc, diag::note_matching) << tok::l_paren;
return true;
}
}
do {
// Walk over a component of a nested-name-specifier.
if (Tok.is(tok::coloncolon)) {
Toks.push_back(Tok);
ConsumeToken();
if (Tok.is(tok::kw_template)) {
Toks.push_back(Tok);
ConsumeToken();
}
}
if (Tok.is(tok::identifier)) {
Toks.push_back(Tok);
ConsumeToken();
} else {
break;
}
} while (Tok.is(tok::coloncolon));
if (Tok.is(tok::code_completion)) {
Toks.push_back(Tok);
ConsumeCodeCompletionToken();
if (Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype)) {
// Could be the start of another member initializer (the ',' has not
// been written yet)
continue;
}
}
if (Tok.is(tok::comma)) {
// The initialization is missing, we'll diagnose it later.
Toks.push_back(Tok);
ConsumeToken();
continue;
}
if (Tok.is(tok::less))
MightBeTemplateArgument = true;
if (MightBeTemplateArgument) {
// We may be inside a template argument list. Grab up to the start of the
// next parenthesized initializer or braced-init-list. This *might* be the
// initializer, or it might be a subexpression in the template argument
// list.
// FIXME: Count angle brackets, and clear MightBeTemplateArgument
// if all angles are closed.
if (!ConsumeAndStoreUntil(tok::l_paren, tok::l_brace, Toks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false)) {
// We're not just missing the initializer, we're also missing the
// function body!
return Diag(Tok.getLocation(), diag::err_expected) << tok::l_brace;
}
} else if (Tok.isNot(tok::l_paren) && Tok.isNot(tok::l_brace)) {
// We found something weird in a mem-initializer-id.
if (getLangOpts().CPlusPlus11)
return Diag(Tok.getLocation(), diag::err_expected_either)
<< tok::l_paren << tok::l_brace;
else
return Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
}
tok::TokenKind kind = Tok.getKind();
Toks.push_back(Tok);
bool IsLParen = (kind == tok::l_paren);
SourceLocation OpenLoc = Tok.getLocation();
if (IsLParen) {
ConsumeParen();
} else {
assert(kind == tok::l_brace && "Must be left paren or brace here.");
ConsumeBrace();
// In C++03, this has to be the start of the function body, which
// means the initializer is malformed; we'll diagnose it later.
if (!getLangOpts().CPlusPlus11)
return false;
const Token &PreviousToken = Toks[Toks.size() - 2];
if (!MightBeTemplateArgument &&
!PreviousToken.isOneOf(tok::identifier, tok::greater,
tok::greatergreater)) {
// If the opening brace is not preceded by one of these tokens, we are
// missing the mem-initializer-id. In order to recover better, we need
// to use heuristics to determine if this '{' is most likely the
// beginning of a brace-init-list or the function body.
// Check the token after the corresponding '}'.
TentativeParsingAction PA(*this);
if (SkipUntil(tok::r_brace) &&
!Tok.isOneOf(tok::comma, tok::ellipsis, tok::l_brace)) {
// Consider there was a malformed initializer and this is the start
// of the function body. We'll diagnose it later.
PA.Revert();
return false;
}
PA.Revert();
}
}
// Grab the initializer (or the subexpression of the template argument).
// FIXME: If we support lambdas here, we'll need to set StopAtSemi to false
// if we might be inside the braces of a lambda-expression.
tok::TokenKind CloseKind = IsLParen ? tok::r_paren : tok::r_brace;
if (!ConsumeAndStoreUntil(CloseKind, Toks, /*StopAtSemi=*/true)) {
Diag(Tok, diag::err_expected) << CloseKind;
Diag(OpenLoc, diag::note_matching) << kind;
return true;
}
// Grab pack ellipsis, if present.
if (Tok.is(tok::ellipsis)) {
Toks.push_back(Tok);
ConsumeToken();
}
// If we know we just consumed a mem-initializer, we must have ',' or '{'
// next.
if (Tok.is(tok::comma)) {
Toks.push_back(Tok);
ConsumeToken();
} else if (Tok.is(tok::l_brace)) {
// This is the function body if the ')' or '}' is immediately followed by
// a '{'. That cannot happen within a template argument, apart from the
// case where a template argument contains a compound literal:
//
// S ( ) : a < b < c > ( d ) { }
// // End of declaration, or still inside the template argument?
//
// ... and the case where the template argument contains a lambda:
//
// S ( ) : a < 0 && b < c > ( d ) + [ ] ( ) { return 0; }
// ( ) > ( ) { }
//
// FIXME: Disambiguate these cases. Note that the latter case is probably
// going to be made ill-formed by core issue 1607.
Toks.push_back(Tok);
ConsumeBrace();
return false;
} else if (!MightBeTemplateArgument) {
return Diag(Tok.getLocation(), diag::err_expected_either) << tok::l_brace
<< tok::comma;
}
}
}
/// Consume and store tokens from the '?' to the ':' in a conditional
/// expression.
bool Parser::ConsumeAndStoreConditional(CachedTokens &Toks) {
// Consume '?'.
assert(Tok.is(tok::question));
Toks.push_back(Tok);
ConsumeToken();
while (Tok.isNot(tok::colon)) {
if (!ConsumeAndStoreUntil(tok::question, tok::colon, Toks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false))
return false;
// If we found a nested conditional, consume it.
if (Tok.is(tok::question) && !ConsumeAndStoreConditional(Toks))
return false;
}
// Consume ':'.
Toks.push_back(Tok);
ConsumeToken();
return true;
}
/// A tentative parsing action that can also revert token annotations.
class Parser::UnannotatedTentativeParsingAction : public TentativeParsingAction {
public:
explicit UnannotatedTentativeParsingAction(Parser &Self,
tok::TokenKind EndKind)
: TentativeParsingAction(Self), Self(Self), EndKind(EndKind) {
// Stash away the old token stream, so we can restore it once the
// tentative parse is complete.
TentativeParsingAction Inner(Self);
Self.ConsumeAndStoreUntil(EndKind, Toks, true, /*ConsumeFinalToken*/false);
Inner.Revert();
}
void RevertAnnotations() {
Revert();
// Put back the original tokens.
Self.SkipUntil(EndKind, StopAtSemi | StopBeforeMatch);
if (Toks.size()) {
auto Buffer = std::make_unique<Token[]>(Toks.size());
std::copy(Toks.begin() + 1, Toks.end(), Buffer.get());
Buffer[Toks.size() - 1] = Self.Tok;
Self.PP.EnterTokenStream(std::move(Buffer), Toks.size(), true,
/*IsReinject*/ true);
Self.Tok = Toks.front();
}
}
private:
Parser &Self;
CachedTokens Toks;
tok::TokenKind EndKind;
};
/// ConsumeAndStoreInitializer - Consume and store the token at the passed token
/// container until the end of the current initializer expression (either a
/// default argument or an in-class initializer for a non-static data member).
///
/// Returns \c true if we reached the end of something initializer-shaped,
/// \c false if we bailed out.
bool Parser::ConsumeAndStoreInitializer(CachedTokens &Toks,
CachedInitKind CIK) {
// We always want this function to consume at least one token if not at EOF.
bool IsFirstToken = true;
// Number of possible unclosed <s we've seen so far. These might be templates,
// and might not, but if there were none of them (or we know for sure that
// we're within a template), we can avoid a tentative parse.
unsigned AngleCount = 0;
unsigned KnownTemplateCount = 0;
while (1) {
switch (Tok.getKind()) {
case tok::comma:
// If we might be in a template, perform a tentative parse to check.
if (!AngleCount)
// Not a template argument: this is the end of the initializer.
return true;
if (KnownTemplateCount)
goto consume_token;
// We hit a comma inside angle brackets. This is the hard case. The
// rule we follow is:
// * For a default argument, if the tokens after the comma form a
// syntactically-valid parameter-declaration-clause, in which each
// parameter has an initializer, then this comma ends the default
// argument.
// * For a default initializer, if the tokens after the comma form a
// syntactically-valid init-declarator-list, then this comma ends
// the default initializer.
{
UnannotatedTentativeParsingAction PA(*this,
CIK == CIK_DefaultInitializer
? tok::semi : tok::r_paren);
Sema::TentativeAnalysisScope Scope(Actions);
TPResult Result = TPResult::Error;
ConsumeToken();
switch (CIK) {
case CIK_DefaultInitializer:
Result = TryParseInitDeclaratorList();
// If we parsed a complete, ambiguous init-declarator-list, this
// is only syntactically-valid if it's followed by a semicolon.
if (Result == TPResult::Ambiguous && Tok.isNot(tok::semi))
Result = TPResult::False;
break;
case CIK_DefaultArgument:
bool InvalidAsDeclaration = false;
Result = TryParseParameterDeclarationClause(
&InvalidAsDeclaration, /*VersusTemplateArg=*/true);
// If this is an expression or a declaration with a missing
// 'typename', assume it's not a declaration.
if (Result == TPResult::Ambiguous && InvalidAsDeclaration)
Result = TPResult::False;
break;
}
// Put the token stream back and undo any annotations we performed
// after the comma. They may reflect a different parse than the one
// we will actually perform at the end of the class.
PA.RevertAnnotations();
// If what follows could be a declaration, it is a declaration.
if (Result != TPResult::False && Result != TPResult::Error)
return true;
}
// Keep going. We know we're inside a template argument list now.
++KnownTemplateCount;
goto consume_token;
case tok::eof:
case tok::annot_module_begin:
case tok::annot_module_end:
case tok::annot_module_include:
// Ran out of tokens.
return false;
case tok::less:
// FIXME: A '<' can only start a template-id if it's preceded by an
// identifier, an operator-function-id, or a literal-operator-id.
++AngleCount;
goto consume_token;
case tok::question:
// In 'a ? b : c', 'b' can contain an unparenthesized comma. If it does,
// that is *never* the end of the initializer. Skip to the ':'.
if (!ConsumeAndStoreConditional(Toks))
return false;
break;
case tok::greatergreatergreater:
if (!getLangOpts().CPlusPlus11)
goto consume_token;
if (AngleCount) --AngleCount;
if (KnownTemplateCount) --KnownTemplateCount;
LLVM_FALLTHROUGH;
case tok::greatergreater:
if (!getLangOpts().CPlusPlus11)
goto consume_token;
if (AngleCount) --AngleCount;
if (KnownTemplateCount) --KnownTemplateCount;
LLVM_FALLTHROUGH;
case tok::greater:
if (AngleCount) --AngleCount;
if (KnownTemplateCount) --KnownTemplateCount;
goto consume_token;
case tok::kw_template:
// 'template' identifier '<' is known to start a template argument list,
// and can be used to disambiguate the parse.
// FIXME: Support all forms of 'template' unqualified-id '<'.
Toks.push_back(Tok);
ConsumeToken();
if (Tok.is(tok::identifier)) {
Toks.push_back(Tok);
ConsumeToken();
if (Tok.is(tok::less)) {
++AngleCount;
++KnownTemplateCount;
Toks.push_back(Tok);
ConsumeToken();
}
}
break;
case tok::kw_operator:
// If 'operator' precedes other punctuation, that punctuation loses
// its special behavior.
Toks.push_back(Tok);
ConsumeToken();
switch (Tok.getKind()) {
case tok::comma:
case tok::greatergreatergreater:
case tok::greatergreater:
case tok::greater:
case tok::less:
Toks.push_back(Tok);
ConsumeToken();
break;
default:
break;
}
break;
case tok::l_paren:
// Recursively consume properly-nested parens.
Toks.push_back(Tok);
ConsumeParen();
ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
break;
case tok::l_square:
// Recursively consume properly-nested square brackets.
Toks.push_back(Tok);
ConsumeBracket();
ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false);
break;
case tok::l_brace:
// Recursively consume properly-nested braces.
Toks.push_back(Tok);
ConsumeBrace();
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we
// consume and pass on to downstream code to diagnose.
case tok::r_paren:
if (CIK == CIK_DefaultArgument)
return true; // End of the default argument.
if (ParenCount && !IsFirstToken)
return false;
Toks.push_back(Tok);
ConsumeParen();
continue;
case tok::r_square:
if (BracketCount && !IsFirstToken)
return false;
Toks.push_back(Tok);
ConsumeBracket();
continue;
case tok::r_brace:
if (BraceCount && !IsFirstToken)
return false;
Toks.push_back(Tok);
ConsumeBrace();
continue;
case tok::code_completion:
Toks.push_back(Tok);
ConsumeCodeCompletionToken();
break;
case tok::string_literal:
case tok::wide_string_literal:
case tok::utf8_string_literal:
case tok::utf16_string_literal:
case tok::utf32_string_literal:
Toks.push_back(Tok);
ConsumeStringToken();
break;
case tok::semi:
if (CIK == CIK_DefaultInitializer)
return true; // End of the default initializer.
LLVM_FALLTHROUGH;
default:
consume_token:
Toks.push_back(Tok);
ConsumeToken();
break;
}
IsFirstToken = false;
}
}