69 lines
2.1 KiB
C++
69 lines
2.1 KiB
C++
|
//===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/FuzzMutate/Random.h"
|
||
|
#include "gtest/gtest.h"
|
||
|
#include <random>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
TEST(ReservoirSamplerTest, OneItem) {
|
||
|
std::mt19937 Rand;
|
||
|
auto Sampler = makeSampler(Rand, 7, 1);
|
||
|
ASSERT_FALSE(Sampler.isEmpty());
|
||
|
ASSERT_EQ(7, Sampler.getSelection());
|
||
|
}
|
||
|
|
||
|
TEST(ReservoirSamplerTest, NoWeight) {
|
||
|
std::mt19937 Rand;
|
||
|
auto Sampler = makeSampler(Rand, 7, 0);
|
||
|
ASSERT_TRUE(Sampler.isEmpty());
|
||
|
}
|
||
|
|
||
|
TEST(ReservoirSamplerTest, Uniform) {
|
||
|
std::mt19937 Rand;
|
||
|
|
||
|
// Run three chi-squared tests to check that the distribution is reasonably
|
||
|
// uniform.
|
||
|
std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||
|
|
||
|
int Failures = 0;
|
||
|
for (int Run = 0; Run < 3; ++Run) {
|
||
|
std::vector<int> Counts(Items.size(), 0);
|
||
|
|
||
|
// We need $np_s > 5$ at minimum, but we're better off going a couple of
|
||
|
// orders of magnitude larger.
|
||
|
int N = Items.size() * 5 * 100;
|
||
|
for (int I = 0; I < N; ++I) {
|
||
|
auto Sampler = makeSampler(Rand, Items);
|
||
|
Counts[Sampler.getSelection()] += 1;
|
||
|
}
|
||
|
|
||
|
// Knuth. TAOCP Vol. 2, 3.3.1 (8):
|
||
|
// $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$
|
||
|
double Ps = 1.0 / Items.size();
|
||
|
double Sum = 0.0;
|
||
|
for (int Ys : Counts)
|
||
|
Sum += Ys * Ys / Ps;
|
||
|
double V = (Sum / N) - N;
|
||
|
|
||
|
assert(Items.size() == 10 && "Our chi-squared values assume 10 items");
|
||
|
// Since we have 10 items, there are 9 degrees of freedom and the table of
|
||
|
// chi-squared values is as follows:
|
||
|
//
|
||
|
// | p=1% | 5% | 25% | 50% | 75% | 95% | 99% |
|
||
|
// v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 |
|
||
|
//
|
||
|
// Check that we're in the likely range of results.
|
||
|
//if (V < 2.088 || V > 21.67)
|
||
|
if (V < 2.088 || V > 21.67)
|
||
|
++Failures;
|
||
|
}
|
||
|
EXPECT_LT(Failures, 3) << "Non-uniform distribution?";
|
||
|
}
|