//===- CodeGen/MachineInstrBuilder.h - Simplify creation of MIs --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file exposes a function named BuildMI, which is useful for dramatically // simplifying how MachineInstr's are created. It allows use of code like this: // // M = BuildMI(MBB, MI, DL, TII.get(X86::ADD8rr), Dst) // .addReg(argVal1) // .addReg(argVal2); // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEINSTRBUILDER_H #define LLVM_CODEGEN_MACHINEINSTRBUILDER_H #include "llvm/ADT/ArrayRef.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/ErrorHandling.h" #include #include #include namespace llvm { class MCInstrDesc; class MDNode; namespace RegState { enum { /// Register definition. Define = 0x2, /// Not emitted register (e.g. carry, or temporary result). Implicit = 0x4, /// The last use of a register. Kill = 0x8, /// Unused definition. Dead = 0x10, /// Value of the register doesn't matter. Undef = 0x20, /// Register definition happens before uses. EarlyClobber = 0x40, /// Register 'use' is for debugging purpose. Debug = 0x80, /// Register reads a value that is defined inside the same instruction or /// bundle. InternalRead = 0x100, /// Register that may be renamed. Renamable = 0x200, DefineNoRead = Define | Undef, ImplicitDefine = Implicit | Define, ImplicitKill = Implicit | Kill }; } // end namespace RegState class MachineInstrBuilder { MachineFunction *MF = nullptr; MachineInstr *MI = nullptr; public: MachineInstrBuilder() = default; /// Create a MachineInstrBuilder for manipulating an existing instruction. /// F must be the machine function that was used to allocate I. MachineInstrBuilder(MachineFunction &F, MachineInstr *I) : MF(&F), MI(I) {} MachineInstrBuilder(MachineFunction &F, MachineBasicBlock::iterator I) : MF(&F), MI(&*I) {} /// Allow automatic conversion to the machine instruction we are working on. operator MachineInstr*() const { return MI; } MachineInstr *operator->() const { return MI; } operator MachineBasicBlock::iterator() const { return MI; } /// If conversion operators fail, use this method to get the MachineInstr /// explicitly. MachineInstr *getInstr() const { return MI; } /// Get the register for the operand index. /// The operand at the index should be a register (asserted by /// MachineOperand). Register getReg(unsigned Idx) const { return MI->getOperand(Idx).getReg(); } /// Add a new virtual register operand. const MachineInstrBuilder &addReg(Register RegNo, unsigned flags = 0, unsigned SubReg = 0) const { assert((flags & 0x1) == 0 && "Passing in 'true' to addReg is forbidden! Use enums instead."); MI->addOperand(*MF, MachineOperand::CreateReg(RegNo, flags & RegState::Define, flags & RegState::Implicit, flags & RegState::Kill, flags & RegState::Dead, flags & RegState::Undef, flags & RegState::EarlyClobber, SubReg, flags & RegState::Debug, flags & RegState::InternalRead, flags & RegState::Renamable)); return *this; } /// Add a virtual register definition operand. const MachineInstrBuilder &addDef(Register RegNo, unsigned Flags = 0, unsigned SubReg = 0) const { return addReg(RegNo, Flags | RegState::Define, SubReg); } /// Add a virtual register use operand. It is an error for Flags to contain /// `RegState::Define` when calling this function. const MachineInstrBuilder &addUse(Register RegNo, unsigned Flags = 0, unsigned SubReg = 0) const { assert(!(Flags & RegState::Define) && "Misleading addUse defines register, use addReg instead."); return addReg(RegNo, Flags, SubReg); } /// Add a new immediate operand. const MachineInstrBuilder &addImm(int64_t Val) const { MI->addOperand(*MF, MachineOperand::CreateImm(Val)); return *this; } const MachineInstrBuilder &addCImm(const ConstantInt *Val) const { MI->addOperand(*MF, MachineOperand::CreateCImm(Val)); return *this; } const MachineInstrBuilder &addFPImm(const ConstantFP *Val) const { MI->addOperand(*MF, MachineOperand::CreateFPImm(Val)); return *this; } const MachineInstrBuilder &addMBB(MachineBasicBlock *MBB, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateMBB(MBB, TargetFlags)); return *this; } const MachineInstrBuilder &addFrameIndex(int Idx) const { MI->addOperand(*MF, MachineOperand::CreateFI(Idx)); return *this; } const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset = 0, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateCPI(Idx, Offset, TargetFlags)); return *this; } const MachineInstrBuilder &addTargetIndex(unsigned Idx, int64_t Offset = 0, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateTargetIndex(Idx, Offset, TargetFlags)); return *this; } const MachineInstrBuilder &addJumpTableIndex(unsigned Idx, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateJTI(Idx, TargetFlags)); return *this; } const MachineInstrBuilder &addGlobalAddress(const GlobalValue *GV, int64_t Offset = 0, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateGA(GV, Offset, TargetFlags)); return *this; } const MachineInstrBuilder &addExternalSymbol(const char *FnName, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateES(FnName, TargetFlags)); return *this; } const MachineInstrBuilder &addBlockAddress(const BlockAddress *BA, int64_t Offset = 0, unsigned TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateBA(BA, Offset, TargetFlags)); return *this; } const MachineInstrBuilder &addRegMask(const uint32_t *Mask) const { MI->addOperand(*MF, MachineOperand::CreateRegMask(Mask)); return *this; } const MachineInstrBuilder &addMemOperand(MachineMemOperand *MMO) const { MI->addMemOperand(*MF, MMO); return *this; } const MachineInstrBuilder & setMemRefs(ArrayRef MMOs) const { MI->setMemRefs(*MF, MMOs); return *this; } const MachineInstrBuilder &cloneMemRefs(const MachineInstr &OtherMI) const { MI->cloneMemRefs(*MF, OtherMI); return *this; } const MachineInstrBuilder & cloneMergedMemRefs(ArrayRef OtherMIs) const { MI->cloneMergedMemRefs(*MF, OtherMIs); return *this; } const MachineInstrBuilder &add(const MachineOperand &MO) const { MI->addOperand(*MF, MO); return *this; } const MachineInstrBuilder &add(ArrayRef MOs) const { for (const MachineOperand &MO : MOs) { MI->addOperand(*MF, MO); } return *this; } const MachineInstrBuilder &addMetadata(const MDNode *MD) const { MI->addOperand(*MF, MachineOperand::CreateMetadata(MD)); assert((MI->isDebugValue() ? static_cast(MI->getDebugVariable()) : true) && "first MDNode argument of a DBG_VALUE not a variable"); assert((MI->isDebugLabel() ? static_cast(MI->getDebugLabel()) : true) && "first MDNode argument of a DBG_LABEL not a label"); return *this; } const MachineInstrBuilder &addCFIIndex(unsigned CFIIndex) const { MI->addOperand(*MF, MachineOperand::CreateCFIIndex(CFIIndex)); return *this; } const MachineInstrBuilder &addIntrinsicID(Intrinsic::ID ID) const { MI->addOperand(*MF, MachineOperand::CreateIntrinsicID(ID)); return *this; } const MachineInstrBuilder &addPredicate(CmpInst::Predicate Pred) const { MI->addOperand(*MF, MachineOperand::CreatePredicate(Pred)); return *this; } const MachineInstrBuilder &addShuffleMask(ArrayRef Val) const { MI->addOperand(*MF, MachineOperand::CreateShuffleMask(Val)); return *this; } const MachineInstrBuilder &addSym(MCSymbol *Sym, unsigned char TargetFlags = 0) const { MI->addOperand(*MF, MachineOperand::CreateMCSymbol(Sym, TargetFlags)); return *this; } const MachineInstrBuilder &setMIFlags(unsigned Flags) const { MI->setFlags(Flags); return *this; } const MachineInstrBuilder &setMIFlag(MachineInstr::MIFlag Flag) const { MI->setFlag(Flag); return *this; } // Add a displacement from an existing MachineOperand with an added offset. const MachineInstrBuilder &addDisp(const MachineOperand &Disp, int64_t off, unsigned char TargetFlags = 0) const { // If caller specifies new TargetFlags then use it, otherwise the // default behavior is to copy the target flags from the existing // MachineOperand. This means if the caller wants to clear the // target flags it needs to do so explicitly. if (0 == TargetFlags) TargetFlags = Disp.getTargetFlags(); switch (Disp.getType()) { default: llvm_unreachable("Unhandled operand type in addDisp()"); case MachineOperand::MO_Immediate: return addImm(Disp.getImm() + off); case MachineOperand::MO_ConstantPoolIndex: return addConstantPoolIndex(Disp.getIndex(), Disp.getOffset() + off, TargetFlags); case MachineOperand::MO_GlobalAddress: return addGlobalAddress(Disp.getGlobal(), Disp.getOffset() + off, TargetFlags); case MachineOperand::MO_BlockAddress: return addBlockAddress(Disp.getBlockAddress(), Disp.getOffset() + off, TargetFlags); case MachineOperand::MO_JumpTableIndex: assert(off == 0 && "cannot create offset into jump tables"); return addJumpTableIndex(Disp.getIndex(), TargetFlags); } } /// Copy all the implicit operands from OtherMI onto this one. const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const { MI->copyImplicitOps(*MF, OtherMI); return *this; } bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const { return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI); } }; /// Builder interface. Specify how to create the initial instruction itself. inline MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID) { return MachineInstrBuilder(MF, MF.CreateMachineInstr(MCID, DL)); } /// This version of the builder sets up the first operand as a /// destination virtual register. inline MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID, Register DestReg) { return MachineInstrBuilder(MF, MF.CreateMachineInstr(MCID, DL)) .addReg(DestReg, RegState::Define); } /// This version of the builder inserts the newly-built instruction before /// the given position in the given MachineBasicBlock, and sets up the first /// operand as a destination virtual register. inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const DebugLoc &DL, const MCInstrDesc &MCID, Register DestReg) { MachineFunction &MF = *BB.getParent(); MachineInstr *MI = MF.CreateMachineInstr(MCID, DL); BB.insert(I, MI); return MachineInstrBuilder(MF, MI).addReg(DestReg, RegState::Define); } /// This version of the builder inserts the newly-built instruction before /// the given position in the given MachineBasicBlock, and sets up the first /// operand as a destination virtual register. /// /// If \c I is inside a bundle, then the newly inserted \a MachineInstr is /// added to the same bundle. inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineBasicBlock::instr_iterator I, const DebugLoc &DL, const MCInstrDesc &MCID, Register DestReg) { MachineFunction &MF = *BB.getParent(); MachineInstr *MI = MF.CreateMachineInstr(MCID, DL); BB.insert(I, MI); return MachineInstrBuilder(MF, MI).addReg(DestReg, RegState::Define); } inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineInstr &I, const DebugLoc &DL, const MCInstrDesc &MCID, Register DestReg) { // Calling the overload for instr_iterator is always correct. However, the // definition is not available in headers, so inline the check. if (I.isInsideBundle()) return BuildMI(BB, MachineBasicBlock::instr_iterator(I), DL, MCID, DestReg); return BuildMI(BB, MachineBasicBlock::iterator(I), DL, MCID, DestReg); } inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineInstr *I, const DebugLoc &DL, const MCInstrDesc &MCID, Register DestReg) { return BuildMI(BB, *I, DL, MCID, DestReg); } /// This version of the builder inserts the newly-built instruction before the /// given position in the given MachineBasicBlock, and does NOT take a /// destination register. inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const DebugLoc &DL, const MCInstrDesc &MCID) { MachineFunction &MF = *BB.getParent(); MachineInstr *MI = MF.CreateMachineInstr(MCID, DL); BB.insert(I, MI); return MachineInstrBuilder(MF, MI); } inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineBasicBlock::instr_iterator I, const DebugLoc &DL, const MCInstrDesc &MCID) { MachineFunction &MF = *BB.getParent(); MachineInstr *MI = MF.CreateMachineInstr(MCID, DL); BB.insert(I, MI); return MachineInstrBuilder(MF, MI); } inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineInstr &I, const DebugLoc &DL, const MCInstrDesc &MCID) { // Calling the overload for instr_iterator is always correct. However, the // definition is not available in headers, so inline the check. if (I.isInsideBundle()) return BuildMI(BB, MachineBasicBlock::instr_iterator(I), DL, MCID); return BuildMI(BB, MachineBasicBlock::iterator(I), DL, MCID); } inline MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineInstr *I, const DebugLoc &DL, const MCInstrDesc &MCID) { return BuildMI(BB, *I, DL, MCID); } /// This version of the builder inserts the newly-built instruction at the end /// of the given MachineBasicBlock, and does NOT take a destination register. inline MachineInstrBuilder BuildMI(MachineBasicBlock *BB, const DebugLoc &DL, const MCInstrDesc &MCID) { return BuildMI(*BB, BB->end(), DL, MCID); } /// This version of the builder inserts the newly-built instruction at the /// end of the given MachineBasicBlock, and sets up the first operand as a /// destination virtual register. inline MachineInstrBuilder BuildMI(MachineBasicBlock *BB, const DebugLoc &DL, const MCInstrDesc &MCID, Register DestReg) { return BuildMI(*BB, BB->end(), DL, MCID, DestReg); } /// This version of the builder builds a DBG_VALUE intrinsic /// for either a value in a register or a register-indirect /// address. The convention is that a DBG_VALUE is indirect iff the /// second operand is an immediate. MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, Register Reg, const MDNode *Variable, const MDNode *Expr); /// This version of the builder builds a DBG_VALUE intrinsic /// for a MachineOperand. MachineInstrBuilder BuildMI(MachineFunction &MF, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, MachineOperand &MO, const MDNode *Variable, const MDNode *Expr); /// This version of the builder builds a DBG_VALUE intrinsic /// for either a value in a register or a register-indirect /// address and inserts it at position I. MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, Register Reg, const MDNode *Variable, const MDNode *Expr); /// This version of the builder builds a DBG_VALUE intrinsic /// for a machine operand and inserts it at position I. MachineInstrBuilder BuildMI(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const DebugLoc &DL, const MCInstrDesc &MCID, bool IsIndirect, MachineOperand &MO, const MDNode *Variable, const MDNode *Expr); /// Clone a DBG_VALUE whose value has been spilled to FrameIndex. MachineInstr *buildDbgValueForSpill(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const MachineInstr &Orig, int FrameIndex); /// Update a DBG_VALUE whose value has been spilled to FrameIndex. Useful when /// modifying an instruction in place while iterating over a basic block. void updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex); inline unsigned getDefRegState(bool B) { return B ? RegState::Define : 0; } inline unsigned getImplRegState(bool B) { return B ? RegState::Implicit : 0; } inline unsigned getKillRegState(bool B) { return B ? RegState::Kill : 0; } inline unsigned getDeadRegState(bool B) { return B ? RegState::Dead : 0; } inline unsigned getUndefRegState(bool B) { return B ? RegState::Undef : 0; } inline unsigned getInternalReadRegState(bool B) { return B ? RegState::InternalRead : 0; } inline unsigned getDebugRegState(bool B) { return B ? RegState::Debug : 0; } inline unsigned getRenamableRegState(bool B) { return B ? RegState::Renamable : 0; } /// Get all register state flags from machine operand \p RegOp. inline unsigned getRegState(const MachineOperand &RegOp) { assert(RegOp.isReg() && "Not a register operand"); return getDefRegState(RegOp.isDef()) | getImplRegState(RegOp.isImplicit()) | getKillRegState(RegOp.isKill()) | getDeadRegState(RegOp.isDead()) | getUndefRegState(RegOp.isUndef()) | getInternalReadRegState(RegOp.isInternalRead()) | getDebugRegState(RegOp.isDebug()) | getRenamableRegState(Register::isPhysicalRegister(RegOp.getReg()) && RegOp.isRenamable()); } /// Helper class for constructing bundles of MachineInstrs. /// /// MIBundleBuilder can create a bundle from scratch by inserting new /// MachineInstrs one at a time, or it can create a bundle from a sequence of /// existing MachineInstrs in a basic block. class MIBundleBuilder { MachineBasicBlock &MBB; MachineBasicBlock::instr_iterator Begin; MachineBasicBlock::instr_iterator End; public: /// Create an MIBundleBuilder that inserts instructions into a new bundle in /// BB above the bundle or instruction at Pos. MIBundleBuilder(MachineBasicBlock &BB, MachineBasicBlock::iterator Pos) : MBB(BB), Begin(Pos.getInstrIterator()), End(Begin) {} /// Create a bundle from the sequence of instructions between B and E. MIBundleBuilder(MachineBasicBlock &BB, MachineBasicBlock::iterator B, MachineBasicBlock::iterator E) : MBB(BB), Begin(B.getInstrIterator()), End(E.getInstrIterator()) { assert(B != E && "No instructions to bundle"); ++B; while (B != E) { MachineInstr &MI = *B; ++B; MI.bundleWithPred(); } } /// Create an MIBundleBuilder representing an existing instruction or bundle /// that has MI as its head. explicit MIBundleBuilder(MachineInstr *MI) : MBB(*MI->getParent()), Begin(MI), End(getBundleEnd(MI->getIterator())) {} /// Return a reference to the basic block containing this bundle. MachineBasicBlock &getMBB() const { return MBB; } /// Return true if no instructions have been inserted in this bundle yet. /// Empty bundles aren't representable in a MachineBasicBlock. bool empty() const { return Begin == End; } /// Return an iterator to the first bundled instruction. MachineBasicBlock::instr_iterator begin() const { return Begin; } /// Return an iterator beyond the last bundled instruction. MachineBasicBlock::instr_iterator end() const { return End; } /// Insert MI into this bundle before I which must point to an instruction in /// the bundle, or end(). MIBundleBuilder &insert(MachineBasicBlock::instr_iterator I, MachineInstr *MI) { MBB.insert(I, MI); if (I == Begin) { if (!empty()) MI->bundleWithSucc(); Begin = MI->getIterator(); return *this; } if (I == End) { MI->bundleWithPred(); return *this; } // MI was inserted in the middle of the bundle, so its neighbors' flags are // already fine. Update MI's bundle flags manually. MI->setFlag(MachineInstr::BundledPred); MI->setFlag(MachineInstr::BundledSucc); return *this; } /// Insert MI into MBB by prepending it to the instructions in the bundle. /// MI will become the first instruction in the bundle. MIBundleBuilder &prepend(MachineInstr *MI) { return insert(begin(), MI); } /// Insert MI into MBB by appending it to the instructions in the bundle. /// MI will become the last instruction in the bundle. MIBundleBuilder &append(MachineInstr *MI) { return insert(end(), MI); } }; } // end namespace llvm #endif // LLVM_CODEGEN_MACHINEINSTRBUILDER_H