//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This implements the TargetLoweringBase class. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include #include #include #include #include #include #include #include #include using namespace llvm; static cl::opt JumpIsExpensiveOverride( "jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden); static cl::opt MinimumJumpTableEntries ("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table.")); static cl::opt MaximumJumpTableSize ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables.")); /// Minimum jump table density for normal functions. static cl::opt JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function")); /// Minimum jump table density for -Os or -Oz functions. static cl::opt OptsizeJumpTableDensity( "optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function")); // FIXME: This option is only to test if the strict fp operation processed // correctly by preventing mutating strict fp operation to normal fp operation // during development. When the backend supports strict float operation, this // option will be meaningless. static cl::opt DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden); static bool darwinHasSinCos(const Triple &TT) { assert(TT.isOSDarwin() && "should be called with darwin triple"); // Don't bother with 32 bit x86. if (TT.getArch() == Triple::x86) return false; // Macos < 10.9 has no sincos_stret. if (TT.isMacOSX()) return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); // iOS < 7.0 has no sincos_stret. if (TT.isiOS()) return !TT.isOSVersionLT(7, 0); // Any other darwin such as WatchOS/TvOS is new enough. return true; } // Although this default value is arbitrary, it is not random. It is assumed // that a condition that evaluates the same way by a higher percentage than this // is best represented as control flow. Therefore, the default value N should be // set such that the win from N% correct executions is greater than the loss // from (100 - N)% mispredicted executions for the majority of intended targets. static cl::opt MinPercentageForPredictableBranch( "min-predictable-branch", cl::init(99), cl::desc("Minimum percentage (0-100) that a condition must be either true " "or false to assume that the condition is predictable"), cl::Hidden); void TargetLoweringBase::InitLibcalls(const Triple &TT) { #define HANDLE_LIBCALL(code, name) \ setLibcallName(RTLIB::code, name); #include "llvm/IR/RuntimeLibcalls.def" #undef HANDLE_LIBCALL // Initialize calling conventions to their default. for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". if (TT.isPPC()) { setLibcallName(RTLIB::ADD_F128, "__addkf3"); setLibcallName(RTLIB::SUB_F128, "__subkf3"); setLibcallName(RTLIB::MUL_F128, "__mulkf3"); setLibcallName(RTLIB::DIV_F128, "__divkf3"); setLibcallName(RTLIB::POWI_F128, "__powikf2"); setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); setLibcallName(RTLIB::UNE_F128, "__nekf2"); setLibcallName(RTLIB::OGE_F128, "__gekf2"); setLibcallName(RTLIB::OLT_F128, "__ltkf2"); setLibcallName(RTLIB::OLE_F128, "__lekf2"); setLibcallName(RTLIB::OGT_F128, "__gtkf2"); setLibcallName(RTLIB::UO_F128, "__unordkf2"); } // A few names are different on particular architectures or environments. if (TT.isOSDarwin()) { // For f16/f32 conversions, Darwin uses the standard naming scheme, instead // of the gnueabi-style __gnu_*_ieee. // FIXME: What about other targets? setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); // Some darwins have an optimized __bzero/bzero function. switch (TT.getArch()) { case Triple::x86: case Triple::x86_64: if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) setLibcallName(RTLIB::BZERO, "__bzero"); break; case Triple::aarch64: case Triple::aarch64_32: setLibcallName(RTLIB::BZERO, "bzero"); break; default: break; } if (darwinHasSinCos(TT)) { setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); if (TT.isWatchABI()) { setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, CallingConv::ARM_AAPCS_VFP); setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, CallingConv::ARM_AAPCS_VFP); } } } else { setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); } if (TT.isGNUEnvironment() || TT.isOSFuchsia() || (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { setLibcallName(RTLIB::SINCOS_F32, "sincosf"); setLibcallName(RTLIB::SINCOS_F64, "sincos"); setLibcallName(RTLIB::SINCOS_F80, "sincosl"); setLibcallName(RTLIB::SINCOS_F128, "sincosl"); setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); } if (TT.isPS4CPU()) { setLibcallName(RTLIB::SINCOS_F32, "sincosf"); setLibcallName(RTLIB::SINCOS_F64, "sincos"); } if (TT.isOSOpenBSD()) { setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); } } /// getFPEXT - Return the FPEXT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f16) { if (RetVT == MVT::f32) return FPEXT_F16_F32; if (RetVT == MVT::f64) return FPEXT_F16_F64; if (RetVT == MVT::f128) return FPEXT_F16_F128; } else if (OpVT == MVT::f32) { if (RetVT == MVT::f64) return FPEXT_F32_F64; if (RetVT == MVT::f128) return FPEXT_F32_F128; if (RetVT == MVT::ppcf128) return FPEXT_F32_PPCF128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::f128) return FPEXT_F64_F128; else if (RetVT == MVT::ppcf128) return FPEXT_F64_PPCF128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::f128) return FPEXT_F80_F128; } return UNKNOWN_LIBCALL; } /// getFPROUND - Return the FPROUND_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { if (RetVT == MVT::f16) { if (OpVT == MVT::f32) return FPROUND_F32_F16; if (OpVT == MVT::f64) return FPROUND_F64_F16; if (OpVT == MVT::f80) return FPROUND_F80_F16; if (OpVT == MVT::f128) return FPROUND_F128_F16; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F16; } else if (RetVT == MVT::f32) { if (OpVT == MVT::f64) return FPROUND_F64_F32; if (OpVT == MVT::f80) return FPROUND_F80_F32; if (OpVT == MVT::f128) return FPROUND_F128_F32; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F32; } else if (RetVT == MVT::f64) { if (OpVT == MVT::f80) return FPROUND_F80_F64; if (OpVT == MVT::f128) return FPROUND_F128_F64; if (OpVT == MVT::ppcf128) return FPROUND_PPCF128_F64; } else if (RetVT == MVT::f80) { if (OpVT == MVT::f128) return FPROUND_F128_F80; } return UNKNOWN_LIBCALL; } /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f16) { if (RetVT == MVT::i32) return FPTOSINT_F16_I32; if (RetVT == MVT::i64) return FPTOSINT_F16_I64; if (RetVT == MVT::i128) return FPTOSINT_F16_I128; } else if (OpVT == MVT::f32) { if (RetVT == MVT::i32) return FPTOSINT_F32_I32; if (RetVT == MVT::i64) return FPTOSINT_F32_I64; if (RetVT == MVT::i128) return FPTOSINT_F32_I128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::i32) return FPTOSINT_F64_I32; if (RetVT == MVT::i64) return FPTOSINT_F64_I64; if (RetVT == MVT::i128) return FPTOSINT_F64_I128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::i32) return FPTOSINT_F80_I32; if (RetVT == MVT::i64) return FPTOSINT_F80_I64; if (RetVT == MVT::i128) return FPTOSINT_F80_I128; } else if (OpVT == MVT::f128) { if (RetVT == MVT::i32) return FPTOSINT_F128_I32; if (RetVT == MVT::i64) return FPTOSINT_F128_I64; if (RetVT == MVT::i128) return FPTOSINT_F128_I128; } else if (OpVT == MVT::ppcf128) { if (RetVT == MVT::i32) return FPTOSINT_PPCF128_I32; if (RetVT == MVT::i64) return FPTOSINT_PPCF128_I64; if (RetVT == MVT::i128) return FPTOSINT_PPCF128_I128; } return UNKNOWN_LIBCALL; } /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { if (OpVT == MVT::f16) { if (RetVT == MVT::i32) return FPTOUINT_F16_I32; if (RetVT == MVT::i64) return FPTOUINT_F16_I64; if (RetVT == MVT::i128) return FPTOUINT_F16_I128; } else if (OpVT == MVT::f32) { if (RetVT == MVT::i32) return FPTOUINT_F32_I32; if (RetVT == MVT::i64) return FPTOUINT_F32_I64; if (RetVT == MVT::i128) return FPTOUINT_F32_I128; } else if (OpVT == MVT::f64) { if (RetVT == MVT::i32) return FPTOUINT_F64_I32; if (RetVT == MVT::i64) return FPTOUINT_F64_I64; if (RetVT == MVT::i128) return FPTOUINT_F64_I128; } else if (OpVT == MVT::f80) { if (RetVT == MVT::i32) return FPTOUINT_F80_I32; if (RetVT == MVT::i64) return FPTOUINT_F80_I64; if (RetVT == MVT::i128) return FPTOUINT_F80_I128; } else if (OpVT == MVT::f128) { if (RetVT == MVT::i32) return FPTOUINT_F128_I32; if (RetVT == MVT::i64) return FPTOUINT_F128_I64; if (RetVT == MVT::i128) return FPTOUINT_F128_I128; } else if (OpVT == MVT::ppcf128) { if (RetVT == MVT::i32) return FPTOUINT_PPCF128_I32; if (RetVT == MVT::i64) return FPTOUINT_PPCF128_I64; if (RetVT == MVT::i128) return FPTOUINT_PPCF128_I128; } return UNKNOWN_LIBCALL; } /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { if (OpVT == MVT::i32) { if (RetVT == MVT::f16) return SINTTOFP_I32_F16; if (RetVT == MVT::f32) return SINTTOFP_I32_F32; if (RetVT == MVT::f64) return SINTTOFP_I32_F64; if (RetVT == MVT::f80) return SINTTOFP_I32_F80; if (RetVT == MVT::f128) return SINTTOFP_I32_F128; if (RetVT == MVT::ppcf128) return SINTTOFP_I32_PPCF128; } else if (OpVT == MVT::i64) { if (RetVT == MVT::f16) return SINTTOFP_I64_F16; if (RetVT == MVT::f32) return SINTTOFP_I64_F32; if (RetVT == MVT::f64) return SINTTOFP_I64_F64; if (RetVT == MVT::f80) return SINTTOFP_I64_F80; if (RetVT == MVT::f128) return SINTTOFP_I64_F128; if (RetVT == MVT::ppcf128) return SINTTOFP_I64_PPCF128; } else if (OpVT == MVT::i128) { if (RetVT == MVT::f16) return SINTTOFP_I128_F16; if (RetVT == MVT::f32) return SINTTOFP_I128_F32; if (RetVT == MVT::f64) return SINTTOFP_I128_F64; if (RetVT == MVT::f80) return SINTTOFP_I128_F80; if (RetVT == MVT::f128) return SINTTOFP_I128_F128; if (RetVT == MVT::ppcf128) return SINTTOFP_I128_PPCF128; } return UNKNOWN_LIBCALL; } /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or /// UNKNOWN_LIBCALL if there is none. RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { if (OpVT == MVT::i32) { if (RetVT == MVT::f16) return UINTTOFP_I32_F16; if (RetVT == MVT::f32) return UINTTOFP_I32_F32; if (RetVT == MVT::f64) return UINTTOFP_I32_F64; if (RetVT == MVT::f80) return UINTTOFP_I32_F80; if (RetVT == MVT::f128) return UINTTOFP_I32_F128; if (RetVT == MVT::ppcf128) return UINTTOFP_I32_PPCF128; } else if (OpVT == MVT::i64) { if (RetVT == MVT::f16) return UINTTOFP_I64_F16; if (RetVT == MVT::f32) return UINTTOFP_I64_F32; if (RetVT == MVT::f64) return UINTTOFP_I64_F64; if (RetVT == MVT::f80) return UINTTOFP_I64_F80; if (RetVT == MVT::f128) return UINTTOFP_I64_F128; if (RetVT == MVT::ppcf128) return UINTTOFP_I64_PPCF128; } else if (OpVT == MVT::i128) { if (RetVT == MVT::f16) return UINTTOFP_I128_F16; if (RetVT == MVT::f32) return UINTTOFP_I128_F32; if (RetVT == MVT::f64) return UINTTOFP_I128_F64; if (RetVT == MVT::f80) return UINTTOFP_I128_F80; if (RetVT == MVT::f128) return UINTTOFP_I128_F128; if (RetVT == MVT::ppcf128) return UINTTOFP_I128_PPCF128; } return UNKNOWN_LIBCALL; } RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT) { unsigned ModeN, ModelN; switch (VT.SimpleTy) { case MVT::i8: ModeN = 0; break; case MVT::i16: ModeN = 1; break; case MVT::i32: ModeN = 2; break; case MVT::i64: ModeN = 3; break; case MVT::i128: ModeN = 4; break; default: return UNKNOWN_LIBCALL; } switch (Order) { case AtomicOrdering::Monotonic: ModelN = 0; break; case AtomicOrdering::Acquire: ModelN = 1; break; case AtomicOrdering::Release: ModelN = 2; break; case AtomicOrdering::AcquireRelease: case AtomicOrdering::SequentiallyConsistent: ModelN = 3; break; default: return UNKNOWN_LIBCALL; } #define LCALLS(A, B) \ { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } #define LCALL5(A) \ LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) switch (Opc) { case ISD::ATOMIC_CMP_SWAP: { const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; return LC[ModeN][ModelN]; } case ISD::ATOMIC_SWAP: { const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; return LC[ModeN][ModelN]; } case ISD::ATOMIC_LOAD_ADD: { const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; return LC[ModeN][ModelN]; } case ISD::ATOMIC_LOAD_OR: { const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; return LC[ModeN][ModelN]; } case ISD::ATOMIC_LOAD_CLR: { const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; return LC[ModeN][ModelN]; } case ISD::ATOMIC_LOAD_XOR: { const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; return LC[ModeN][ModelN]; } default: return UNKNOWN_LIBCALL; } #undef LCALLS #undef LCALL5 } RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { #define OP_TO_LIBCALL(Name, Enum) \ case Name: \ switch (VT.SimpleTy) { \ default: \ return UNKNOWN_LIBCALL; \ case MVT::i8: \ return Enum##_1; \ case MVT::i16: \ return Enum##_2; \ case MVT::i32: \ return Enum##_4; \ case MVT::i64: \ return Enum##_8; \ case MVT::i128: \ return Enum##_16; \ } switch (Opc) { OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) } #undef OP_TO_LIBCALL return UNKNOWN_LIBCALL; } RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { switch (ElementSize) { case 1: return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; case 2: return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; case 4: return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; case 8: return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; case 16: return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; default: return UNKNOWN_LIBCALL; } } RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { switch (ElementSize) { case 1: return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; case 2: return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; case 4: return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; case 8: return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; case 16: return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; default: return UNKNOWN_LIBCALL; } } RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { switch (ElementSize) { case 1: return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; case 2: return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; case 4: return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; case 8: return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; case 16: return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; default: return UNKNOWN_LIBCALL; } } /// InitCmpLibcallCCs - Set default comparison libcall CC. static void InitCmpLibcallCCs(ISD::CondCode *CCs) { memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); CCs[RTLIB::OEQ_F32] = ISD::SETEQ; CCs[RTLIB::OEQ_F64] = ISD::SETEQ; CCs[RTLIB::OEQ_F128] = ISD::SETEQ; CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; CCs[RTLIB::UNE_F32] = ISD::SETNE; CCs[RTLIB::UNE_F64] = ISD::SETNE; CCs[RTLIB::UNE_F128] = ISD::SETNE; CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; CCs[RTLIB::OGE_F32] = ISD::SETGE; CCs[RTLIB::OGE_F64] = ISD::SETGE; CCs[RTLIB::OGE_F128] = ISD::SETGE; CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; CCs[RTLIB::OLT_F32] = ISD::SETLT; CCs[RTLIB::OLT_F64] = ISD::SETLT; CCs[RTLIB::OLT_F128] = ISD::SETLT; CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; CCs[RTLIB::OLE_F32] = ISD::SETLE; CCs[RTLIB::OLE_F64] = ISD::SETLE; CCs[RTLIB::OLE_F128] = ISD::SETLE; CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; CCs[RTLIB::OGT_F32] = ISD::SETGT; CCs[RTLIB::OGT_F64] = ISD::SETGT; CCs[RTLIB::OGT_F128] = ISD::SETGT; CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; CCs[RTLIB::UO_F32] = ISD::SETNE; CCs[RTLIB::UO_F64] = ISD::SETNE; CCs[RTLIB::UO_F128] = ISD::SETNE; CCs[RTLIB::UO_PPCF128] = ISD::SETNE; } /// NOTE: The TargetMachine owns TLOF. TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { initActions(); // Perform these initializations only once. MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = MaxLoadsPerMemcmp = 8; MaxGluedStoresPerMemcpy = 0; MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; HasMultipleConditionRegisters = false; HasExtractBitsInsn = false; JumpIsExpensive = JumpIsExpensiveOverride; PredictableSelectIsExpensive = false; EnableExtLdPromotion = false; StackPointerRegisterToSaveRestore = 0; BooleanContents = UndefinedBooleanContent; BooleanFloatContents = UndefinedBooleanContent; BooleanVectorContents = UndefinedBooleanContent; SchedPreferenceInfo = Sched::ILP; GatherAllAliasesMaxDepth = 18; IsStrictFPEnabled = DisableStrictNodeMutation; // TODO: the default will be switched to 0 in the next commit, along // with the Target-specific changes necessary. MaxAtomicSizeInBitsSupported = 1024; MinCmpXchgSizeInBits = 0; SupportsUnalignedAtomics = false; std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); InitLibcalls(TM.getTargetTriple()); InitCmpLibcallCCs(CmpLibcallCCs); } void TargetLoweringBase::initActions() { // All operations default to being supported. memset(OpActions, 0, sizeof(OpActions)); memset(LoadExtActions, 0, sizeof(LoadExtActions)); memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); memset(CondCodeActions, 0, sizeof(CondCodeActions)); std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); std::fill(std::begin(TargetDAGCombineArray), std::end(TargetDAGCombineArray), 0); for (MVT VT : MVT::fp_valuetypes()) { MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); if (IntVT.isValid()) { setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); } } // Set default actions for various operations. for (MVT VT : MVT::all_valuetypes()) { // Default all indexed load / store to expand. for (unsigned IM = (unsigned)ISD::PRE_INC; IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { setIndexedLoadAction(IM, VT, Expand); setIndexedStoreAction(IM, VT, Expand); setIndexedMaskedLoadAction(IM, VT, Expand); setIndexedMaskedStoreAction(IM, VT, Expand); } // Most backends expect to see the node which just returns the value loaded. setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); // These operations default to expand. setOperationAction(ISD::FGETSIGN, VT, Expand); setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); setOperationAction(ISD::FMINNUM, VT, Expand); setOperationAction(ISD::FMAXNUM, VT, Expand); setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); setOperationAction(ISD::FMINIMUM, VT, Expand); setOperationAction(ISD::FMAXIMUM, VT, Expand); setOperationAction(ISD::FMAD, VT, Expand); setOperationAction(ISD::SMIN, VT, Expand); setOperationAction(ISD::SMAX, VT, Expand); setOperationAction(ISD::UMIN, VT, Expand); setOperationAction(ISD::UMAX, VT, Expand); setOperationAction(ISD::ABS, VT, Expand); setOperationAction(ISD::FSHL, VT, Expand); setOperationAction(ISD::FSHR, VT, Expand); setOperationAction(ISD::SADDSAT, VT, Expand); setOperationAction(ISD::UADDSAT, VT, Expand); setOperationAction(ISD::SSUBSAT, VT, Expand); setOperationAction(ISD::USUBSAT, VT, Expand); setOperationAction(ISD::SSHLSAT, VT, Expand); setOperationAction(ISD::USHLSAT, VT, Expand); setOperationAction(ISD::SMULFIX, VT, Expand); setOperationAction(ISD::SMULFIXSAT, VT, Expand); setOperationAction(ISD::UMULFIX, VT, Expand); setOperationAction(ISD::UMULFIXSAT, VT, Expand); setOperationAction(ISD::SDIVFIX, VT, Expand); setOperationAction(ISD::SDIVFIXSAT, VT, Expand); setOperationAction(ISD::UDIVFIX, VT, Expand); setOperationAction(ISD::UDIVFIXSAT, VT, Expand); setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand); setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand); // Overflow operations default to expand setOperationAction(ISD::SADDO, VT, Expand); setOperationAction(ISD::SSUBO, VT, Expand); setOperationAction(ISD::UADDO, VT, Expand); setOperationAction(ISD::USUBO, VT, Expand); setOperationAction(ISD::SMULO, VT, Expand); setOperationAction(ISD::UMULO, VT, Expand); // ADDCARRY operations default to expand setOperationAction(ISD::ADDCARRY, VT, Expand); setOperationAction(ISD::SUBCARRY, VT, Expand); setOperationAction(ISD::SETCCCARRY, VT, Expand); setOperationAction(ISD::SADDO_CARRY, VT, Expand); setOperationAction(ISD::SSUBO_CARRY, VT, Expand); // ADDC/ADDE/SUBC/SUBE default to expand. setOperationAction(ISD::ADDC, VT, Expand); setOperationAction(ISD::ADDE, VT, Expand); setOperationAction(ISD::SUBC, VT, Expand); setOperationAction(ISD::SUBE, VT, Expand); // These default to Expand so they will be expanded to CTLZ/CTTZ by default. setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); setOperationAction(ISD::BITREVERSE, VT, Expand); setOperationAction(ISD::PARITY, VT, Expand); // These library functions default to expand. setOperationAction(ISD::FROUND, VT, Expand); setOperationAction(ISD::FROUNDEVEN, VT, Expand); setOperationAction(ISD::FPOWI, VT, Expand); // These operations default to expand for vector types. if (VT.isVector()) { setOperationAction(ISD::FCOPYSIGN, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); } // Constrained floating-point operations default to expand. #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ setOperationAction(ISD::STRICT_##DAGN, VT, Expand); #include "llvm/IR/ConstrainedOps.def" // For most targets @llvm.get.dynamic.area.offset just returns 0. setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); // Vector reduction default to expand. setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); setOperationAction(ISD::VECREDUCE_AND, VT, Expand); setOperationAction(ISD::VECREDUCE_OR, VT, Expand); setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand); setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand); } // Most targets ignore the @llvm.prefetch intrinsic. setOperationAction(ISD::PREFETCH, MVT::Other, Expand); // Most targets also ignore the @llvm.readcyclecounter intrinsic. setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); // ConstantFP nodes default to expand. Targets can either change this to // Legal, in which case all fp constants are legal, or use isFPImmLegal() // to optimize expansions for certain constants. setOperationAction(ISD::ConstantFP, MVT::f16, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f80, Expand); setOperationAction(ISD::ConstantFP, MVT::f128, Expand); // These library functions default to expand. for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { setOperationAction(ISD::FCBRT, VT, Expand); setOperationAction(ISD::FLOG , VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FEXP , VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FROUND, VT, Expand); setOperationAction(ISD::FROUNDEVEN, VT, Expand); setOperationAction(ISD::LROUND, VT, Expand); setOperationAction(ISD::LLROUND, VT, Expand); setOperationAction(ISD::LRINT, VT, Expand); setOperationAction(ISD::LLRINT, VT, Expand); } // Default ISD::TRAP to expand (which turns it into abort). setOperationAction(ISD::TRAP, MVT::Other, Expand); // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); } MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, EVT) const { return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); } EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, bool LegalTypes) const { assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); if (LHSTy.isVector()) return LHSTy; return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); } bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { assert(isTypeLegal(VT)); switch (Op) { default: return false; case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: return true; } } bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return TM.isNoopAddrSpaceCast(SrcAS, DestAS); } void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { // If the command-line option was specified, ignore this request. if (!JumpIsExpensiveOverride.getNumOccurrences()) JumpIsExpensive = isExpensive; } TargetLoweringBase::LegalizeKind TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { // If this is a simple type, use the ComputeRegisterProp mechanism. if (VT.isSimple()) { MVT SVT = VT.getSimpleVT(); assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); MVT NVT = TransformToType[SVT.SimpleTy]; LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); assert((LA == TypeLegal || LA == TypeSoftenFloat || LA == TypeSoftPromoteHalf || (NVT.isVector() || ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && "Promote may not follow Expand or Promote"); if (LA == TypeSplitVector) return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); if (LA == TypeScalarizeVector) return LegalizeKind(LA, SVT.getVectorElementType()); return LegalizeKind(LA, NVT); } // Handle Extended Scalar Types. if (!VT.isVector()) { assert(VT.isInteger() && "Float types must be simple"); unsigned BitSize = VT.getSizeInBits(); // First promote to a power-of-two size, then expand if necessary. if (BitSize < 8 || !isPowerOf2_32(BitSize)) { EVT NVT = VT.getRoundIntegerType(Context); assert(NVT != VT && "Unable to round integer VT"); LegalizeKind NextStep = getTypeConversion(Context, NVT); // Avoid multi-step promotion. if (NextStep.first == TypePromoteInteger) return NextStep; // Return rounded integer type. return LegalizeKind(TypePromoteInteger, NVT); } return LegalizeKind(TypeExpandInteger, EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); } // Handle vector types. ElementCount NumElts = VT.getVectorElementCount(); EVT EltVT = VT.getVectorElementType(); // Vectors with only one element are always scalarized. if (NumElts.isScalar()) return LegalizeKind(TypeScalarizeVector, EltVT); if (VT.getVectorElementCount() == ElementCount::getScalable(1)) report_fatal_error("Cannot legalize this vector"); // Try to widen vector elements until the element type is a power of two and // promote it to a legal type later on, for example: // <3 x i8> -> <4 x i8> -> <4 x i32> if (EltVT.isInteger()) { // Vectors with a number of elements that is not a power of two are always // widened, for example <3 x i8> -> <4 x i8>. if (!VT.isPow2VectorType()) { NumElts = NumElts.coefficientNextPowerOf2(); EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); return LegalizeKind(TypeWidenVector, NVT); } // Examine the element type. LegalizeKind LK = getTypeConversion(Context, EltVT); // If type is to be expanded, split the vector. // <4 x i140> -> <2 x i140> if (LK.first == TypeExpandInteger) return LegalizeKind(TypeSplitVector, VT.getHalfNumVectorElementsVT(Context)); // Promote the integer element types until a legal vector type is found // or until the element integer type is too big. If a legal type was not // found, fallback to the usual mechanism of widening/splitting the // vector. EVT OldEltVT = EltVT; while (true) { // Increase the bitwidth of the element to the next pow-of-two // (which is greater than 8 bits). EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) .getRoundIntegerType(Context); // Stop trying when getting a non-simple element type. // Note that vector elements may be greater than legal vector element // types. Example: X86 XMM registers hold 64bit element on 32bit // systems. if (!EltVT.isSimple()) break; // Build a new vector type and check if it is legal. MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); // Found a legal promoted vector type. if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) return LegalizeKind(TypePromoteInteger, EVT::getVectorVT(Context, EltVT, NumElts)); } // Reset the type to the unexpanded type if we did not find a legal vector // type with a promoted vector element type. EltVT = OldEltVT; } // Try to widen the vector until a legal type is found. // If there is no wider legal type, split the vector. while (true) { // Round up to the next power of 2. NumElts = NumElts.coefficientNextPowerOf2(); // If there is no simple vector type with this many elements then there // cannot be a larger legal vector type. Note that this assumes that // there are no skipped intermediate vector types in the simple types. if (!EltVT.isSimple()) break; MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); if (LargerVector == MVT()) break; // If this type is legal then widen the vector. if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) return LegalizeKind(TypeWidenVector, LargerVector); } // Widen odd vectors to next power of two. if (!VT.isPow2VectorType()) { EVT NVT = VT.getPow2VectorType(Context); return LegalizeKind(TypeWidenVector, NVT); } // Vectors with illegal element types are expanded. EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorElementCount().divideCoefficientBy(2)); return LegalizeKind(TypeSplitVector, NVT); } static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI) { // Figure out the right, legal destination reg to copy into. ElementCount EC = VT.getVectorElementCount(); MVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; // Scalable vectors cannot be scalarized, so splitting or widening is // required. if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) llvm_unreachable( "Splitting or widening of non-power-of-2 MVTs is not implemented."); // FIXME: We don't support non-power-of-2-sized vectors for now. // Ideally we could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(EC.getKnownMinValue())) { // Split EC to unit size (scalable property is preserved). NumVectorRegs = EC.getKnownMinValue(); EC = ElementCount::getFixed(1); } // Divide the input until we get to a supported size. This will // always end up with an EC that represent a scalar or a scalable // scalar. while (EC.getKnownMinValue() > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { EC = EC.divideCoefficientBy(2); NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; MVT NewVT = MVT::getVectorVT(EltTy, EC); if (!TLI->isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); // Convert sizes such as i33 to i64. if (!isPowerOf2_32(LaneSizeInBits)) LaneSizeInBits = NextPowerOf2(LaneSizeInBits); MVT DestVT = TLI->getRegisterType(NewVT); RegisterVT = DestVT; if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } /// isLegalRC - Return true if the value types that can be represented by the /// specified register class are all legal. bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const { for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) if (isTypeLegal(*I)) return true; return false; } /// Replace/modify any TargetFrameIndex operands with a targte-dependent /// sequence of memory operands that is recognized by PrologEpilogInserter. MachineBasicBlock * TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, MachineBasicBlock *MBB) const { MachineInstr *MI = &InitialMI; MachineFunction &MF = *MI->getMF(); MachineFrameInfo &MFI = MF.getFrameInfo(); // We're handling multiple types of operands here: // PATCHPOINT MetaArgs - live-in, read only, direct // STATEPOINT Deopt Spill - live-through, read only, indirect // STATEPOINT Deopt Alloca - live-through, read only, direct // (We're currently conservative and mark the deopt slots read/write in // practice.) // STATEPOINT GC Spill - live-through, read/write, indirect // STATEPOINT GC Alloca - live-through, read/write, direct // The live-in vs live-through is handled already (the live through ones are // all stack slots), but we need to handle the different type of stackmap // operands and memory effects here. if (!llvm::any_of(MI->operands(), [](MachineOperand &Operand) { return Operand.isFI(); })) return MBB; MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); // Inherit previous memory operands. MIB.cloneMemRefs(*MI); for (unsigned i = 0; i < MI->getNumOperands(); ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isFI()) { // Index of Def operand this Use it tied to. // Since Defs are coming before Uses, if Use is tied, then // index of Def must be smaller that index of that Use. // Also, Defs preserve their position in new MI. unsigned TiedTo = i; if (MO.isReg() && MO.isTied()) TiedTo = MI->findTiedOperandIdx(i); MIB.add(MO); if (TiedTo < i) MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); continue; } // foldMemoryOperand builds a new MI after replacing a single FI operand // with the canonical set of five x86 addressing-mode operands. int FI = MO.getIndex(); // Add frame index operands recognized by stackmaps.cpp if (MFI.isStatepointSpillSlotObjectIndex(FI)) { // indirect-mem-ref tag, size, #FI, offset. // Used for spills inserted by StatepointLowering. This codepath is not // used for patchpoints/stackmaps at all, for these spilling is done via // foldMemoryOperand callback only. assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); MIB.addImm(StackMaps::IndirectMemRefOp); MIB.addImm(MFI.getObjectSize(FI)); MIB.add(MO); MIB.addImm(0); } else { // direct-mem-ref tag, #FI, offset. // Used by patchpoint, and direct alloca arguments to statepoints MIB.addImm(StackMaps::DirectMemRefOp); MIB.add(MO); MIB.addImm(0); } assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); // Add a new memory operand for this FI. assert(MFI.getObjectOffset(FI) != -1); // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and // PATCHPOINT should be updated to do the same. (TODO) if (MI->getOpcode() != TargetOpcode::STATEPOINT) { auto Flags = MachineMemOperand::MOLoad; MachineMemOperand *MMO = MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FI), Flags, MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); MIB->addMemOperand(MF, MMO); } } MBB->insert(MachineBasicBlock::iterator(MI), MIB); MI->eraseFromParent(); return MBB; } /// findRepresentativeClass - Return the largest legal super-reg register class /// of the register class for the specified type and its associated "cost". // This function is in TargetLowering because it uses RegClassForVT which would // need to be moved to TargetRegisterInfo and would necessitate moving // isTypeLegal over as well - a massive change that would just require // TargetLowering having a TargetRegisterInfo class member that it would use. std::pair TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; if (!RC) return std::make_pair(RC, 0); // Compute the set of all super-register classes. BitVector SuperRegRC(TRI->getNumRegClasses()); for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) SuperRegRC.setBitsInMask(RCI.getMask()); // Find the first legal register class with the largest spill size. const TargetRegisterClass *BestRC = RC; for (unsigned i : SuperRegRC.set_bits()) { const TargetRegisterClass *SuperRC = TRI->getRegClass(i); // We want the largest possible spill size. if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) continue; if (!isLegalRC(*TRI, *SuperRC)) continue; BestRC = SuperRC; } return std::make_pair(BestRC, 1); } /// computeRegisterProperties - Once all of the register classes are added, /// this allows us to compute derived properties we expose. void TargetLoweringBase::computeRegisterProperties( const TargetRegisterInfo *TRI) { static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, "Too many value types for ValueTypeActions to hold!"); // Everything defaults to needing one register. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { NumRegistersForVT[i] = 1; RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; } // ...except isVoid, which doesn't need any registers. NumRegistersForVT[MVT::isVoid] = 0; // Find the largest integer register class. unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); // Every integer value type larger than this largest register takes twice as // many registers to represent as the previous ValueType. for (unsigned ExpandedReg = LargestIntReg + 1; ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, TypeExpandInteger); } // Inspect all of the ValueType's smaller than the largest integer // register to see which ones need promotion. unsigned LegalIntReg = LargestIntReg; for (unsigned IntReg = LargestIntReg - 1; IntReg >= (unsigned)MVT::i1; --IntReg) { MVT IVT = (MVT::SimpleValueType)IntReg; if (isTypeLegal(IVT)) { LegalIntReg = IntReg; } else { RegisterTypeForVT[IntReg] = TransformToType[IntReg] = (MVT::SimpleValueType)LegalIntReg; ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); } } // ppcf128 type is really two f64's. if (!isTypeLegal(MVT::ppcf128)) { if (isTypeLegal(MVT::f64)) { NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; RegisterTypeForVT[MVT::ppcf128] = MVT::f64; TransformToType[MVT::ppcf128] = MVT::f64; ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); } else { NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; TransformToType[MVT::ppcf128] = MVT::i128; ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); } } // Decide how to handle f128. If the target does not have native f128 support, // expand it to i128 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f128)) { NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; TransformToType[MVT::f128] = MVT::i128; ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); } // Decide how to handle f64. If the target does not have native f64 support, // expand it to i64 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f64)) { NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; TransformToType[MVT::f64] = MVT::i64; ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); } // Decide how to handle f32. If the target does not have native f32 support, // expand it to i32 and we will be generating soft float library calls. if (!isTypeLegal(MVT::f32)) { NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; TransformToType[MVT::f32] = MVT::i32; ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); } // Decide how to handle f16. If the target does not have native f16 support, // promote it to f32, because there are no f16 library calls (except for // conversions). if (!isTypeLegal(MVT::f16)) { // Allow targets to control how we legalize half. if (softPromoteHalfType()) { NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; TransformToType[MVT::f16] = MVT::f32; ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); } else { NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; TransformToType[MVT::f16] = MVT::f32; ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); } } // Loop over all of the vector value types to see which need transformations. for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { MVT VT = (MVT::SimpleValueType) i; if (isTypeLegal(VT)) continue; MVT EltVT = VT.getVectorElementType(); ElementCount EC = VT.getVectorElementCount(); bool IsLegalWiderType = false; bool IsScalable = VT.isScalableVector(); LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); switch (PreferredAction) { case TypePromoteInteger: { MVT::SimpleValueType EndVT = IsScalable ? MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; // Try to promote the elements of integer vectors. If no legal // promotion was found, fall through to the widen-vector method. for (unsigned nVT = i + 1; (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { MVT SVT = (MVT::SimpleValueType) nVT; // Promote vectors of integers to vectors with the same number // of elements, with a wider element type. if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { TransformToType[i] = SVT; RegisterTypeForVT[i] = SVT; NumRegistersForVT[i] = 1; ValueTypeActions.setTypeAction(VT, TypePromoteInteger); IsLegalWiderType = true; break; } } if (IsLegalWiderType) break; LLVM_FALLTHROUGH; } case TypeWidenVector: if (isPowerOf2_32(EC.getKnownMinValue())) { // Try to widen the vector. for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { MVT SVT = (MVT::SimpleValueType) nVT; if (SVT.getVectorElementType() == EltVT && SVT.isScalableVector() == IsScalable && SVT.getVectorElementCount().getKnownMinValue() > EC.getKnownMinValue() && isTypeLegal(SVT)) { TransformToType[i] = SVT; RegisterTypeForVT[i] = SVT; NumRegistersForVT[i] = 1; ValueTypeActions.setTypeAction(VT, TypeWidenVector); IsLegalWiderType = true; break; } } if (IsLegalWiderType) break; } else { // Only widen to the next power of 2 to keep consistency with EVT. MVT NVT = VT.getPow2VectorType(); if (isTypeLegal(NVT)) { TransformToType[i] = NVT; ValueTypeActions.setTypeAction(VT, TypeWidenVector); RegisterTypeForVT[i] = NVT; NumRegistersForVT[i] = 1; break; } } LLVM_FALLTHROUGH; case TypeSplitVector: case TypeScalarizeVector: { MVT IntermediateVT; MVT RegisterVT; unsigned NumIntermediates; unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, RegisterVT, this); NumRegistersForVT[i] = NumRegisters; assert(NumRegistersForVT[i] == NumRegisters && "NumRegistersForVT size cannot represent NumRegisters!"); RegisterTypeForVT[i] = RegisterVT; MVT NVT = VT.getPow2VectorType(); if (NVT == VT) { // Type is already a power of 2. The default action is to split. TransformToType[i] = MVT::Other; if (PreferredAction == TypeScalarizeVector) ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); else if (PreferredAction == TypeSplitVector) ValueTypeActions.setTypeAction(VT, TypeSplitVector); else if (EC.getKnownMinValue() > 1) ValueTypeActions.setTypeAction(VT, TypeSplitVector); else ValueTypeActions.setTypeAction(VT, EC.isScalable() ? TypeScalarizeScalableVector : TypeScalarizeVector); } else { TransformToType[i] = NVT; ValueTypeActions.setTypeAction(VT, TypeWidenVector); } break; } default: llvm_unreachable("Unknown vector legalization action!"); } } // Determine the 'representative' register class for each value type. // An representative register class is the largest (meaning one which is // not a sub-register class / subreg register class) legal register class for // a group of value types. For example, on i386, i8, i16, and i32 // representative would be GR32; while on x86_64 it's GR64. for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { const TargetRegisterClass* RRC; uint8_t Cost; std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); RepRegClassForVT[i] = RRC; RepRegClassCostForVT[i] = Cost; } } EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, EVT VT) const { assert(!VT.isVector() && "No default SetCC type for vectors!"); return getPointerTy(DL).SimpleTy; } MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { return MVT::i32; // return the default value } /// getVectorTypeBreakdown - Vector types are broken down into some number of /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { ElementCount EltCnt = VT.getVectorElementCount(); // If there is a wider vector type with the same element type as this one, // or a promoted vector type that has the same number of elements which // are wider, then we should convert to that legal vector type. // This handles things like <2 x float> -> <4 x float> and // <4 x i1> -> <4 x i32>. LegalizeTypeAction TA = getTypeAction(Context, VT); if (EltCnt.getKnownMinValue() != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { EVT RegisterEVT = getTypeToTransformTo(Context, VT); if (isTypeLegal(RegisterEVT)) { IntermediateVT = RegisterEVT; RegisterVT = RegisterEVT.getSimpleVT(); NumIntermediates = 1; return 1; } } // Figure out the right, legal destination reg to copy into. EVT EltTy = VT.getVectorElementType(); unsigned NumVectorRegs = 1; // Scalable vectors cannot be scalarized, so handle the legalisation of the // types like done elsewhere in SelectionDAG. if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) { LegalizeKind LK; EVT PartVT = VT; do { // Iterate until we've found a legal (part) type to hold VT. LK = getTypeConversion(Context, PartVT); PartVT = LK.second; } while (LK.first != TypeLegal); NumIntermediates = VT.getVectorElementCount().getKnownMinValue() / PartVT.getVectorElementCount().getKnownMinValue(); // FIXME: This code needs to be extended to handle more complex vector // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only // supported cases are vectors that are broken down into equal parts // such as nxv6i64 -> 3 x nxv2i64. assert((PartVT.getVectorElementCount() * NumIntermediates) == VT.getVectorElementCount() && "Expected an integer multiple of PartVT"); IntermediateVT = PartVT; RegisterVT = getRegisterType(Context, IntermediateVT); return NumIntermediates; } // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally // we could break down into LHS/RHS like LegalizeDAG does. if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { NumVectorRegs = EltCnt.getKnownMinValue(); EltCnt = ElementCount::getFixed(1); } // Divide the input until we get to a supported size. This will always // end with a scalar if the target doesn't support vectors. while (EltCnt.getKnownMinValue() > 1 && !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { EltCnt = EltCnt.divideCoefficientBy(2); NumVectorRegs <<= 1; } NumIntermediates = NumVectorRegs; EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); if (!isTypeLegal(NewVT)) NewVT = EltTy; IntermediateVT = NewVT; MVT DestVT = getRegisterType(Context, NewVT); RegisterVT = DestVT; if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. TypeSize NewVTSize = NewVT.getSizeInBits(); // Convert sizes such as i33 to i64. if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) NewVTSize = NewVTSize.coefficientNextPowerOf2(); return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); } // Otherwise, promotion or legal types use the same number of registers as // the vector decimated to the appropriate level. return NumVectorRegs; } bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const { // FIXME: This function check the maximum table size and density, but the // minimum size is not checked. It would be nice if the minimum size is // also combined within this function. Currently, the minimum size check is // performed in findJumpTable() in SelectionDAGBuiler and // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. const bool OptForSize = SI->getParent()->getParent()->hasOptSize() || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); // Check whether the number of cases is small enough and // the range is dense enough for a jump table. return (OptForSize || Range <= MaxJumpTableSize) && (NumCases * 100 >= Range * MinDensity); } /// Get the EVTs and ArgFlags collections that represent the legalized return /// type of the given function. This does not require a DAG or a return value, /// and is suitable for use before any DAGs for the function are constructed. /// TODO: Move this out of TargetLowering.cpp. void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl &Outs, const TargetLowering &TLI, const DataLayout &DL) { SmallVector ValueVTs; ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); unsigned NumValues = ValueVTs.size(); if (NumValues == 0) return; for (unsigned j = 0, f = NumValues; j != f; ++j) { EVT VT = ValueVTs[j]; ISD::NodeType ExtendKind = ISD::ANY_EXTEND; if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) ExtendKind = ISD::SIGN_EXTEND; else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) ExtendKind = ISD::ZERO_EXTEND; // FIXME: C calling convention requires the return type to be promoted to // at least 32-bit. But this is not necessary for non-C calling // conventions. The frontend should mark functions whose return values // require promoting with signext or zeroext attributes. if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); if (VT.bitsLT(MinVT)) VT = MinVT; } unsigned NumParts = TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); MVT PartVT = TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); // 'inreg' on function refers to return value ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) Flags.setInReg(); // Propagate extension type if any if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) Flags.setSExt(); else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) Flags.setZExt(); for (unsigned i = 0; i < NumParts; ++i) Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); } } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. This is the actual /// alignment, not its logarithm. unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, const DataLayout &DL) const { return DL.getABITypeAlign(Ty).value(); } bool TargetLoweringBase::allowsMemoryAccessForAlignment( LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { // Check if the specified alignment is sufficient based on the data layout. // TODO: While using the data layout works in practice, a better solution // would be to implement this check directly (make this a virtual function). // For example, the ABI alignment may change based on software platform while // this function should only be affected by hardware implementation. Type *Ty = VT.getTypeForEVT(Context); if (Alignment >= DL.getABITypeAlign(Ty)) { // Assume that an access that meets the ABI-specified alignment is fast. if (Fast != nullptr) *Fast = true; return true; } // This is a misaligned access. return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags, Fast); } bool TargetLoweringBase::allowsMemoryAccessForAlignment( LLVMContext &Context, const DataLayout &DL, EVT VT, const MachineMemOperand &MMO, bool *Fast) const { return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), MMO.getFlags(), Fast); } bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, Flags, Fast); } bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, const MachineMemOperand &MMO, bool *Fast) const { return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), MMO.getFlags(), Fast); } bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty, const MachineMemOperand &MMO, bool *Fast) const { return allowsMemoryAccess(Context, DL, getMVTForLLT(Ty), MMO.getAddrSpace(), MMO.getAlign(), MMO.getFlags(), Fast); } BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { return BranchProbability(MinPercentageForPredictableBranch, 100); } //===----------------------------------------------------------------------===// // TargetTransformInfo Helpers //===----------------------------------------------------------------------===// int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { enum InstructionOpcodes { #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM #include "llvm/IR/Instruction.def" }; switch (static_cast(Opcode)) { case Ret: return 0; case Br: return 0; case Switch: return 0; case IndirectBr: return 0; case Invoke: return 0; case CallBr: return 0; case Resume: return 0; case Unreachable: return 0; case CleanupRet: return 0; case CatchRet: return 0; case CatchPad: return 0; case CatchSwitch: return 0; case CleanupPad: return 0; case FNeg: return ISD::FNEG; case Add: return ISD::ADD; case FAdd: return ISD::FADD; case Sub: return ISD::SUB; case FSub: return ISD::FSUB; case Mul: return ISD::MUL; case FMul: return ISD::FMUL; case UDiv: return ISD::UDIV; case SDiv: return ISD::SDIV; case FDiv: return ISD::FDIV; case URem: return ISD::UREM; case SRem: return ISD::SREM; case FRem: return ISD::FREM; case Shl: return ISD::SHL; case LShr: return ISD::SRL; case AShr: return ISD::SRA; case And: return ISD::AND; case Or: return ISD::OR; case Xor: return ISD::XOR; case Alloca: return 0; case Load: return ISD::LOAD; case Store: return ISD::STORE; case GetElementPtr: return 0; case Fence: return 0; case AtomicCmpXchg: return 0; case AtomicRMW: return 0; case Trunc: return ISD::TRUNCATE; case ZExt: return ISD::ZERO_EXTEND; case SExt: return ISD::SIGN_EXTEND; case FPToUI: return ISD::FP_TO_UINT; case FPToSI: return ISD::FP_TO_SINT; case UIToFP: return ISD::UINT_TO_FP; case SIToFP: return ISD::SINT_TO_FP; case FPTrunc: return ISD::FP_ROUND; case FPExt: return ISD::FP_EXTEND; case PtrToInt: return ISD::BITCAST; case IntToPtr: return ISD::BITCAST; case BitCast: return ISD::BITCAST; case AddrSpaceCast: return ISD::ADDRSPACECAST; case ICmp: return ISD::SETCC; case FCmp: return ISD::SETCC; case PHI: return 0; case Call: return 0; case Select: return ISD::SELECT; case UserOp1: return 0; case UserOp2: return 0; case VAArg: return 0; case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; case InsertElement: return ISD::INSERT_VECTOR_ELT; case ShuffleVector: return ISD::VECTOR_SHUFFLE; case ExtractValue: return ISD::MERGE_VALUES; case InsertValue: return ISD::MERGE_VALUES; case LandingPad: return 0; case Freeze: return ISD::FREEZE; } llvm_unreachable("Unknown instruction type encountered!"); } std::pair TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, Type *Ty) const { LLVMContext &C = Ty->getContext(); EVT MTy = getValueType(DL, Ty); int Cost = 1; // We keep legalizing the type until we find a legal kind. We assume that // the only operation that costs anything is the split. After splitting // we need to handle two types. while (true) { LegalizeKind LK = getTypeConversion(C, MTy); if (LK.first == TypeLegal) return std::make_pair(Cost, MTy.getSimpleVT()); if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) Cost *= 2; // Do not loop with f128 type. if (MTy == LK.second) return std::make_pair(Cost, MTy.getSimpleVT()); // Keep legalizing the type. MTy = LK.second; } } Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, bool UseTLS) const { // compiler-rt provides a variable with a magic name. Targets that do not // link with compiler-rt may also provide such a variable. Module *M = IRB.GetInsertBlock()->getParent()->getParent(); const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; auto UnsafeStackPtr = dyn_cast_or_null(M->getNamedValue(UnsafeStackPtrVar)); Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); if (!UnsafeStackPtr) { auto TLSModel = UseTLS ? GlobalValue::InitialExecTLSModel : GlobalValue::NotThreadLocal; // The global variable is not defined yet, define it ourselves. // We use the initial-exec TLS model because we do not support the // variable living anywhere other than in the main executable. UnsafeStackPtr = new GlobalVariable( *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, UnsafeStackPtrVar, nullptr, TLSModel); } else { // The variable exists, check its type and attributes. if (UnsafeStackPtr->getValueType() != StackPtrTy) report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); if (UseTLS != UnsafeStackPtr->isThreadLocal()) report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + (UseTLS ? "" : "not ") + "be thread-local"); } return UnsafeStackPtr; } Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { if (!TM.getTargetTriple().isAndroid()) return getDefaultSafeStackPointerLocation(IRB, true); // Android provides a libc function to retrieve the address of the current // thread's unsafe stack pointer. Module *M = IRB.GetInsertBlock()->getParent()->getParent(); Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", StackPtrTy->getPointerTo(0)); return IRB.CreateCall(Fn); } //===----------------------------------------------------------------------===// // Loop Strength Reduction hooks //===----------------------------------------------------------------------===// /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // The default implementation of this implements a conservative RISCy, r+r and // r+i addr mode. // Allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // Only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // Don't allow n * r return false; } return true; } //===----------------------------------------------------------------------===// // Stack Protector //===----------------------------------------------------------------------===// // For OpenBSD return its special guard variable. Otherwise return nullptr, // so that SelectionDAG handle SSP. Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); if (GlobalVariable *G = dyn_cast_or_null(C)) G->setVisibility(GlobalValue::HiddenVisibility); return C; } return nullptr; } // Currently only support "standard" __stack_chk_guard. // TODO: add LOAD_STACK_GUARD support. void TargetLoweringBase::insertSSPDeclarations(Module &M) const { if (!M.getNamedValue("__stack_chk_guard")) { auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, GlobalVariable::ExternalLinkage, nullptr, "__stack_chk_guard"); if (TM.getRelocationModel() == Reloc::Static && !TM.getTargetTriple().isWindowsGNUEnvironment()) GV->setDSOLocal(true); } } // Currently only support "standard" __stack_chk_guard. // TODO: add LOAD_STACK_GUARD support. Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { return M.getNamedValue("__stack_chk_guard"); } Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { return nullptr; } unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { return MinimumJumpTableEntries; } void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { MinimumJumpTableEntries = Val; } unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; } unsigned TargetLoweringBase::getMaximumJumpTableSize() const { return MaximumJumpTableSize; } void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { MaximumJumpTableSize = Val; } bool TargetLoweringBase::isJumpTableRelative() const { return getTargetMachine().isPositionIndependent(); } //===----------------------------------------------------------------------===// // Reciprocal Estimates //===----------------------------------------------------------------------===// /// Get the reciprocal estimate attribute string for a function that will /// override the target defaults. static StringRef getRecipEstimateForFunc(MachineFunction &MF) { const Function &F = MF.getFunction(); return F.getFnAttribute("reciprocal-estimates").getValueAsString(); } /// Construct a string for the given reciprocal operation of the given type. /// This string should match the corresponding option to the front-end's /// "-mrecip" flag assuming those strings have been passed through in an /// attribute string. For example, "vec-divf" for a division of a vXf32. static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { std::string Name = VT.isVector() ? "vec-" : ""; Name += IsSqrt ? "sqrt" : "div"; // TODO: Handle "half" or other float types? if (VT.getScalarType() == MVT::f64) { Name += "d"; } else { assert(VT.getScalarType() == MVT::f32 && "Unexpected FP type for reciprocal estimate"); Name += "f"; } return Name; } /// Return the character position and value (a single numeric character) of a /// customized refinement operation in the input string if it exists. Return /// false if there is no customized refinement step count. static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value) { const char RefStepToken = ':'; Position = In.find(RefStepToken); if (Position == StringRef::npos) return false; StringRef RefStepString = In.substr(Position + 1); // Allow exactly one numeric character for the additional refinement // step parameter. if (RefStepString.size() == 1) { char RefStepChar = RefStepString[0]; if (isDigit(RefStepChar)) { Value = RefStepChar - '0'; return true; } } report_fatal_error("Invalid refinement step for -recip."); } /// For the input attribute string, return one of the ReciprocalEstimate enum /// status values (enabled, disabled, or not specified) for this operation on /// the specified data type. static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { if (Override.empty()) return TargetLoweringBase::ReciprocalEstimate::Unspecified; SmallVector OverrideVector; Override.split(OverrideVector, ','); unsigned NumArgs = OverrideVector.size(); // Check if "all", "none", or "default" was specified. if (NumArgs == 1) { // Look for an optional setting of the number of refinement steps needed // for this type of reciprocal operation. size_t RefPos; uint8_t RefSteps; if (parseRefinementStep(Override, RefPos, RefSteps)) { // Split the string for further processing. Override = Override.substr(0, RefPos); } // All reciprocal types are enabled. if (Override == "all") return TargetLoweringBase::ReciprocalEstimate::Enabled; // All reciprocal types are disabled. if (Override == "none") return TargetLoweringBase::ReciprocalEstimate::Disabled; // Target defaults for enablement are used. if (Override == "default") return TargetLoweringBase::ReciprocalEstimate::Unspecified; } // The attribute string may omit the size suffix ('f'/'d'). std::string VTName = getReciprocalOpName(IsSqrt, VT); std::string VTNameNoSize = VTName; VTNameNoSize.pop_back(); static const char DisabledPrefix = '!'; for (StringRef RecipType : OverrideVector) { size_t RefPos; uint8_t RefSteps; if (parseRefinementStep(RecipType, RefPos, RefSteps)) RecipType = RecipType.substr(0, RefPos); // Ignore the disablement token for string matching. bool IsDisabled = RecipType[0] == DisabledPrefix; if (IsDisabled) RecipType = RecipType.substr(1); if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled : TargetLoweringBase::ReciprocalEstimate::Enabled; } return TargetLoweringBase::ReciprocalEstimate::Unspecified; } /// For the input attribute string, return the customized refinement step count /// for this operation on the specified data type. If the step count does not /// exist, return the ReciprocalEstimate enum value for unspecified. static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { if (Override.empty()) return TargetLoweringBase::ReciprocalEstimate::Unspecified; SmallVector OverrideVector; Override.split(OverrideVector, ','); unsigned NumArgs = OverrideVector.size(); // Check if "all", "default", or "none" was specified. if (NumArgs == 1) { // Look for an optional setting of the number of refinement steps needed // for this type of reciprocal operation. size_t RefPos; uint8_t RefSteps; if (!parseRefinementStep(Override, RefPos, RefSteps)) return TargetLoweringBase::ReciprocalEstimate::Unspecified; // Split the string for further processing. Override = Override.substr(0, RefPos); assert(Override != "none" && "Disabled reciprocals, but specifed refinement steps?"); // If this is a general override, return the specified number of steps. if (Override == "all" || Override == "default") return RefSteps; } // The attribute string may omit the size suffix ('f'/'d'). std::string VTName = getReciprocalOpName(IsSqrt, VT); std::string VTNameNoSize = VTName; VTNameNoSize.pop_back(); for (StringRef RecipType : OverrideVector) { size_t RefPos; uint8_t RefSteps; if (!parseRefinementStep(RecipType, RefPos, RefSteps)) continue; RecipType = RecipType.substr(0, RefPos); if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) return RefSteps; } return TargetLoweringBase::ReciprocalEstimate::Unspecified; } int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const { return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); } int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const { return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); } int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const { return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); } int TargetLoweringBase::getDivRefinementSteps(EVT VT, MachineFunction &MF) const { return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); } void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { MF.getRegInfo().freezeReservedRegs(MF); } MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL) const { MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; if (LI.isVolatile()) Flags |= MachineMemOperand::MOVolatile; if (LI.hasMetadata(LLVMContext::MD_nontemporal)) Flags |= MachineMemOperand::MONonTemporal; if (LI.hasMetadata(LLVMContext::MD_invariant_load)) Flags |= MachineMemOperand::MOInvariant; if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) Flags |= MachineMemOperand::MODereferenceable; Flags |= getTargetMMOFlags(LI); return Flags; } MachineMemOperand::Flags TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const { MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; if (SI.isVolatile()) Flags |= MachineMemOperand::MOVolatile; if (SI.hasMetadata(LLVMContext::MD_nontemporal)) Flags |= MachineMemOperand::MONonTemporal; // FIXME: Not preserving dereferenceable Flags |= getTargetMMOFlags(SI); return Flags; } MachineMemOperand::Flags TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const { auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; if (const AtomicRMWInst *RMW = dyn_cast(&AI)) { if (RMW->isVolatile()) Flags |= MachineMemOperand::MOVolatile; } else if (const AtomicCmpXchgInst *CmpX = dyn_cast(&AI)) { if (CmpX->isVolatile()) Flags |= MachineMemOperand::MOVolatile; } else llvm_unreachable("not an atomic instruction"); // FIXME: Not preserving dereferenceable Flags |= getTargetMMOFlags(AI); return Flags; } //===----------------------------------------------------------------------===// // GlobalISel Hooks //===----------------------------------------------------------------------===// bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const { auto &MF = *MI.getMF(); auto &MRI = MF.getRegInfo(); // Assuming a spill and reload of a value has a cost of 1 instruction each, // this helper function computes the maximum number of uses we should consider // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We // break even in terms of code size when the original MI has 2 users vs // choosing to potentially spill. Any more than 2 users we we have a net code // size increase. This doesn't take into account register pressure though. auto maxUses = [](unsigned RematCost) { // A cost of 1 means remats are basically free. if (RematCost == 1) return UINT_MAX; if (RematCost == 2) return 2U; // Remat is too expensive, only sink if there's one user. if (RematCost > 2) return 1U; llvm_unreachable("Unexpected remat cost"); }; // Helper to walk through uses and terminate if we've reached a limit. Saves // us spending time traversing uses if all we want to know is if it's >= min. auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { unsigned NumUses = 0; auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); for (; UI != UE && NumUses < MaxUses; ++UI) { NumUses++; } // If we haven't reached the end yet then there are more than MaxUses users. return UI == UE; }; switch (MI.getOpcode()) { default: return false; // Constants-like instructions should be close to their users. // We don't want long live-ranges for them. case TargetOpcode::G_CONSTANT: case TargetOpcode::G_FCONSTANT: case TargetOpcode::G_FRAME_INDEX: case TargetOpcode::G_INTTOPTR: return true; case TargetOpcode::G_GLOBAL_VALUE: { unsigned RematCost = TTI->getGISelRematGlobalCost(); Register Reg = MI.getOperand(0).getReg(); unsigned MaxUses = maxUses(RematCost); if (MaxUses == UINT_MAX) return true; // Remats are "free" so always localize. bool B = isUsesAtMost(Reg, MaxUses); return B; } } }