//===- ELFObjHandler.cpp --------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===-----------------------------------------------------------------------===/ #include "llvm/InterfaceStub/ELFObjHandler.h" #include "llvm/InterfaceStub/ELFStub.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/Binary.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ELFTypes.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Process.h" using llvm::MemoryBufferRef; using llvm::object::ELFObjectFile; using namespace llvm; using namespace llvm::object; using namespace llvm::ELF; namespace llvm { namespace elfabi { // Simple struct to hold relevant .dynamic entries. struct DynamicEntries { uint64_t StrTabAddr = 0; uint64_t StrSize = 0; Optional SONameOffset; std::vector NeededLibNames; // Symbol table: uint64_t DynSymAddr = 0; // Hash tables: Optional ElfHash; Optional GnuHash; }; /// This initializes an ELF file header with information specific to a binary /// dynamic shared object. /// Offsets, indexes, links, etc. for section and program headers are just /// zero-initialized as they will be updated elsewhere. /// /// @param ElfHeader Target ELFT::Ehdr to populate. /// @param Machine Target architecture (e_machine from ELF specifications). template static void initELFHeader(typename ELFT::Ehdr &ElfHeader, uint16_t Machine) { memset(&ElfHeader, 0, sizeof(ElfHeader)); // ELF identification. ElfHeader.e_ident[EI_MAG0] = ElfMagic[EI_MAG0]; ElfHeader.e_ident[EI_MAG1] = ElfMagic[EI_MAG1]; ElfHeader.e_ident[EI_MAG2] = ElfMagic[EI_MAG2]; ElfHeader.e_ident[EI_MAG3] = ElfMagic[EI_MAG3]; ElfHeader.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; bool IsLittleEndian = ELFT::TargetEndianness == support::little; ElfHeader.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB; ElfHeader.e_ident[EI_VERSION] = EV_CURRENT; ElfHeader.e_ident[EI_OSABI] = ELFOSABI_NONE; // Remainder of ELF header. ElfHeader.e_type = ET_DYN; ElfHeader.e_machine = Machine; ElfHeader.e_version = EV_CURRENT; ElfHeader.e_ehsize = sizeof(typename ELFT::Ehdr); ElfHeader.e_phentsize = sizeof(typename ELFT::Phdr); ElfHeader.e_shentsize = sizeof(typename ELFT::Shdr); } namespace { template struct OutputSection { using Elf_Shdr = typename ELFT::Shdr; std::string Name; Elf_Shdr Shdr; uint64_t Addr; uint64_t Offset; uint64_t Size; uint64_t Align; uint32_t Index; bool NoBits = true; }; template struct ContentSection : public OutputSection { T Content; ContentSection() { this->NoBits = false; } }; // This class just wraps StringTableBuilder for the purpose of adding a // default constructor. class ELFStringTableBuilder : public StringTableBuilder { public: ELFStringTableBuilder() : StringTableBuilder(StringTableBuilder::ELF) {} }; template class ELFSymbolTableBuilder { public: using Elf_Sym = typename ELFT::Sym; ELFSymbolTableBuilder() { Symbols.push_back({}); } void add(size_t StNameOffset, uint64_t StSize, uint8_t StBind, uint8_t StType, uint8_t StOther, uint16_t StShndx) { Elf_Sym S{}; S.st_name = StNameOffset; S.st_size = StSize; S.st_info = (StBind << 4) | (StType & 0xf); S.st_other = StOther; S.st_shndx = StShndx; Symbols.push_back(S); } size_t getSize() const { return Symbols.size() * sizeof(Elf_Sym); } void write(uint8_t *Buf) const { memcpy(Buf, Symbols.data(), sizeof(Elf_Sym) * Symbols.size()); } private: llvm::SmallVector Symbols; }; template class ELFDynamicTableBuilder { public: using Elf_Dyn = typename ELFT::Dyn; size_t addAddr(uint64_t Tag, uint64_t Addr) { Elf_Dyn Entry; Entry.d_tag = Tag; Entry.d_un.d_ptr = Addr; Entries.push_back(Entry); return Entries.size() - 1; } void modifyAddr(size_t Index, uint64_t Addr) { Entries[Index].d_un.d_ptr = Addr; } size_t addValue(uint64_t Tag, uint64_t Value) { Elf_Dyn Entry; Entry.d_tag = Tag; Entry.d_un.d_val = Value; Entries.push_back(Entry); return Entries.size() - 1; } void modifyValue(size_t Index, uint64_t Value) { Entries[Index].d_un.d_val = Value; } size_t getSize() const { // Add DT_NULL entry at the end. return (Entries.size() + 1) * sizeof(Elf_Dyn); } void write(uint8_t *Buf) const { memcpy(Buf, Entries.data(), sizeof(Elf_Dyn) * Entries.size()); // Add DT_NULL entry at the end. memset(Buf + sizeof(Elf_Dyn) * Entries.size(), 0, sizeof(Elf_Dyn)); } private: llvm::SmallVector Entries; }; template class ELFStubBuilder { public: using Elf_Ehdr = typename ELFT::Ehdr; using Elf_Shdr = typename ELFT::Shdr; using Elf_Phdr = typename ELFT::Phdr; using Elf_Sym = typename ELFT::Sym; using Elf_Addr = typename ELFT::Addr; using Elf_Dyn = typename ELFT::Dyn; ELFStubBuilder(const ELFStubBuilder &) = delete; ELFStubBuilder(ELFStubBuilder &&) = default; explicit ELFStubBuilder(const ELFStub &Stub) { DynSym.Name = ".dynsym"; DynSym.Align = sizeof(Elf_Addr); DynStr.Name = ".dynstr"; DynStr.Align = 1; DynTab.Name = ".dynamic"; DynTab.Align = sizeof(Elf_Addr); ShStrTab.Name = ".shstrtab"; ShStrTab.Align = 1; // Populate string tables. for (const ELFSymbol &Sym : Stub.Symbols) DynStr.Content.add(Sym.Name); for (const std::string &Lib : Stub.NeededLibs) DynStr.Content.add(Lib); if (Stub.SoName) DynStr.Content.add(Stub.SoName.getValue()); std::vector *> Sections = {&DynSym, &DynStr, &DynTab, &ShStrTab}; const OutputSection *LastSection = Sections.back(); // Now set the Index and put sections names into ".shstrtab". uint64_t Index = 1; for (OutputSection *Sec : Sections) { Sec->Index = Index++; ShStrTab.Content.add(Sec->Name); } ShStrTab.Content.finalize(); ShStrTab.Size = ShStrTab.Content.getSize(); DynStr.Content.finalize(); DynStr.Size = DynStr.Content.getSize(); // Populate dynamic symbol table. for (const ELFSymbol &Sym : Stub.Symbols) { uint8_t Bind = Sym.Weak ? STB_WEAK : STB_GLOBAL; // For non-undefined symbols, value of the shndx is not relevant at link // time as long as it is not SHN_UNDEF. Set shndx to 1, which // points to ".dynsym". uint16_t Shndx = Sym.Undefined ? SHN_UNDEF : 1; DynSym.Content.add(DynStr.Content.getOffset(Sym.Name), Sym.Size, Bind, (uint8_t)Sym.Type, 0, Shndx); } DynSym.Size = DynSym.Content.getSize(); // Poplulate dynamic table. size_t DynSymIndex = DynTab.Content.addAddr(DT_SYMTAB, 0); size_t DynStrIndex = DynTab.Content.addAddr(DT_STRTAB, 0); for (const std::string &Lib : Stub.NeededLibs) DynTab.Content.addValue(DT_NEEDED, DynStr.Content.getOffset(Lib)); if (Stub.SoName) DynTab.Content.addValue(DT_SONAME, DynStr.Content.getOffset(Stub.SoName.getValue())); DynTab.Size = DynTab.Content.getSize(); // Calculate sections' addresses and offsets. uint64_t CurrentOffset = sizeof(Elf_Ehdr); for (OutputSection *Sec : Sections) { Sec->Offset = alignTo(CurrentOffset, Sec->Align); Sec->Addr = Sec->Offset; CurrentOffset = Sec->Offset + Sec->Size; } // Fill Addr back to dynamic table. DynTab.Content.modifyAddr(DynSymIndex, DynSym.Addr); DynTab.Content.modifyAddr(DynStrIndex, DynStr.Addr); // Write section headers of string tables. fillSymTabShdr(DynSym, SHT_DYNSYM); fillStrTabShdr(DynStr, SHF_ALLOC); fillDynTabShdr(DynTab); fillStrTabShdr(ShStrTab); // Finish initializing the ELF header. initELFHeader(ElfHeader, Stub.Arch); ElfHeader.e_shstrndx = ShStrTab.Index; ElfHeader.e_shnum = LastSection->Index + 1; ElfHeader.e_shoff = alignTo(LastSection->Offset + LastSection->Size, sizeof(Elf_Addr)); } size_t getSize() const { return ElfHeader.e_shoff + ElfHeader.e_shnum * sizeof(Elf_Shdr); } void write(uint8_t *Data) const { write(Data, ElfHeader); DynSym.Content.write(Data + DynSym.Shdr.sh_offset); DynStr.Content.write(Data + DynStr.Shdr.sh_offset); DynTab.Content.write(Data + DynTab.Shdr.sh_offset); ShStrTab.Content.write(Data + ShStrTab.Shdr.sh_offset); writeShdr(Data, DynSym); writeShdr(Data, DynStr); writeShdr(Data, DynTab); writeShdr(Data, ShStrTab); } private: Elf_Ehdr ElfHeader; ContentSection DynStr; ContentSection ShStrTab; ContentSection, ELFT> DynSym; ContentSection, ELFT> DynTab; template static void write(uint8_t *Data, const T &Value) { *reinterpret_cast(Data) = Value; } void fillStrTabShdr(ContentSection &StrTab, uint32_t ShFlags = 0) const { StrTab.Shdr.sh_type = SHT_STRTAB; StrTab.Shdr.sh_flags = ShFlags; StrTab.Shdr.sh_addr = StrTab.Addr; StrTab.Shdr.sh_offset = StrTab.Offset; StrTab.Shdr.sh_info = 0; StrTab.Shdr.sh_size = StrTab.Size; StrTab.Shdr.sh_name = ShStrTab.Content.getOffset(StrTab.Name); StrTab.Shdr.sh_addralign = StrTab.Align; StrTab.Shdr.sh_entsize = 0; StrTab.Shdr.sh_link = 0; } void fillSymTabShdr(ContentSection, ELFT> &SymTab, uint32_t ShType) const { SymTab.Shdr.sh_type = ShType; SymTab.Shdr.sh_flags = SHF_ALLOC; SymTab.Shdr.sh_addr = SymTab.Addr; SymTab.Shdr.sh_offset = SymTab.Offset; SymTab.Shdr.sh_info = SymTab.Size / sizeof(Elf_Sym) > 1 ? 1 : 0; SymTab.Shdr.sh_size = SymTab.Size; SymTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(SymTab.Name); SymTab.Shdr.sh_addralign = SymTab.Align; SymTab.Shdr.sh_entsize = sizeof(Elf_Sym); SymTab.Shdr.sh_link = this->DynStr.Index; } void fillDynTabShdr( ContentSection, ELFT> &DynTab) const { DynTab.Shdr.sh_type = SHT_DYNAMIC; DynTab.Shdr.sh_flags = SHF_ALLOC; DynTab.Shdr.sh_addr = DynTab.Addr; DynTab.Shdr.sh_offset = DynTab.Offset; DynTab.Shdr.sh_info = 0; DynTab.Shdr.sh_size = DynTab.Size; DynTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(DynTab.Name); DynTab.Shdr.sh_addralign = DynTab.Align; DynTab.Shdr.sh_entsize = sizeof(Elf_Dyn); DynTab.Shdr.sh_link = this->DynStr.Index; } uint64_t shdrOffset(const OutputSection &Sec) const { return ElfHeader.e_shoff + Sec.Index * sizeof(Elf_Shdr); } void writeShdr(uint8_t *Data, const OutputSection &Sec) const { write(Data + shdrOffset(Sec), Sec.Shdr); } }; } // end anonymous namespace /// This function behaves similarly to StringRef::substr(), but attempts to /// terminate the returned StringRef at the first null terminator. If no null /// terminator is found, an error is returned. /// /// @param Str Source string to create a substring from. /// @param Offset The start index of the desired substring. static Expected terminatedSubstr(StringRef Str, size_t Offset) { size_t StrEnd = Str.find('\0', Offset); if (StrEnd == StringLiteral::npos) { return createError( "String overran bounds of string table (no null terminator)"); } size_t StrLen = StrEnd - Offset; return Str.substr(Offset, StrLen); } /// This function takes an error, and appends a string of text to the end of /// that error. Since "appending" to an Error isn't supported behavior of an /// Error, this function technically creates a new error with the combined /// message and consumes the old error. /// /// @param Err Source error. /// @param After Text to append at the end of Err's error message. Error appendToError(Error Err, StringRef After) { std::string Message; raw_string_ostream Stream(Message); Stream << Err; Stream << " " << After; consumeError(std::move(Err)); return createError(Stream.str().c_str()); } /// This function populates a DynamicEntries struct using an ELFT::DynRange. /// After populating the struct, the members are validated with /// some basic sanity checks. /// /// @param Dyn Target DynamicEntries struct to populate. /// @param DynTable Source dynamic table. template static Error populateDynamic(DynamicEntries &Dyn, typename ELFT::DynRange DynTable) { if (DynTable.empty()) return createError("No .dynamic section found"); // Search .dynamic for relevant entries. bool FoundDynStr = false; bool FoundDynStrSz = false; bool FoundDynSym = false; for (auto &Entry : DynTable) { switch (Entry.d_tag) { case DT_SONAME: Dyn.SONameOffset = Entry.d_un.d_val; break; case DT_STRTAB: Dyn.StrTabAddr = Entry.d_un.d_ptr; FoundDynStr = true; break; case DT_STRSZ: Dyn.StrSize = Entry.d_un.d_val; FoundDynStrSz = true; break; case DT_NEEDED: Dyn.NeededLibNames.push_back(Entry.d_un.d_val); break; case DT_SYMTAB: Dyn.DynSymAddr = Entry.d_un.d_ptr; FoundDynSym = true; break; case DT_HASH: Dyn.ElfHash = Entry.d_un.d_ptr; break; case DT_GNU_HASH: Dyn.GnuHash = Entry.d_un.d_ptr; } } if (!FoundDynStr) { return createError( "Couldn't locate dynamic string table (no DT_STRTAB entry)"); } if (!FoundDynStrSz) { return createError( "Couldn't determine dynamic string table size (no DT_STRSZ entry)"); } if (!FoundDynSym) { return createError( "Couldn't locate dynamic symbol table (no DT_SYMTAB entry)"); } if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) { return createStringError(object_error::parse_failed, "DT_SONAME string offset (0x%016" PRIx64 ") outside of dynamic string table", *Dyn.SONameOffset); } for (uint64_t Offset : Dyn.NeededLibNames) { if (Offset >= Dyn.StrSize) { return createStringError(object_error::parse_failed, "DT_NEEDED string offset (0x%016" PRIx64 ") outside of dynamic string table", Offset); } } return Error::success(); } /// This function extracts symbol type from a symbol's st_info member and /// maps it to an ELFSymbolType enum. /// Currently, STT_NOTYPE, STT_OBJECT, STT_FUNC, and STT_TLS are supported. /// Other symbol types are mapped to ELFSymbolType::Unknown. /// /// @param Info Binary symbol st_info to extract symbol type from. static ELFSymbolType convertInfoToType(uint8_t Info) { Info = Info & 0xf; switch (Info) { case ELF::STT_NOTYPE: return ELFSymbolType::NoType; case ELF::STT_OBJECT: return ELFSymbolType::Object; case ELF::STT_FUNC: return ELFSymbolType::Func; case ELF::STT_TLS: return ELFSymbolType::TLS; default: return ELFSymbolType::Unknown; } } /// This function creates an ELFSymbol and populates all members using /// information from a binary ELFT::Sym. /// /// @param SymName The desired name of the ELFSymbol. /// @param RawSym ELFT::Sym to extract symbol information from. template static ELFSymbol createELFSym(StringRef SymName, const typename ELFT::Sym &RawSym) { ELFSymbol TargetSym{std::string(SymName)}; uint8_t Binding = RawSym.getBinding(); if (Binding == STB_WEAK) TargetSym.Weak = true; else TargetSym.Weak = false; TargetSym.Undefined = RawSym.isUndefined(); TargetSym.Type = convertInfoToType(RawSym.st_info); if (TargetSym.Type == ELFSymbolType::Func) { TargetSym.Size = 0; } else { TargetSym.Size = RawSym.st_size; } return TargetSym; } /// This function populates an ELFStub with symbols using information read /// from an ELF binary. /// /// @param TargetStub ELFStub to add symbols to. /// @param DynSym Range of dynamic symbols to add to TargetStub. /// @param DynStr StringRef to the dynamic string table. template static Error populateSymbols(ELFStub &TargetStub, const typename ELFT::SymRange DynSym, StringRef DynStr) { // Skips the first symbol since it's the NULL symbol. for (auto RawSym : DynSym.drop_front(1)) { // If a symbol does not have global or weak binding, ignore it. uint8_t Binding = RawSym.getBinding(); if (!(Binding == STB_GLOBAL || Binding == STB_WEAK)) continue; // If a symbol doesn't have default or protected visibility, ignore it. uint8_t Visibility = RawSym.getVisibility(); if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED)) continue; // Create an ELFSymbol and populate it with information from the symbol // table entry. Expected SymName = terminatedSubstr(DynStr, RawSym.st_name); if (!SymName) return SymName.takeError(); ELFSymbol Sym = createELFSym(*SymName, RawSym); TargetStub.Symbols.insert(std::move(Sym)); // TODO: Populate symbol warning. } return Error::success(); } /// Returns a new ELFStub with all members populated from an ELFObjectFile. /// @param ElfObj Source ELFObjectFile. template static Expected> buildStub(const ELFObjectFile &ElfObj) { using Elf_Dyn_Range = typename ELFT::DynRange; using Elf_Phdr_Range = typename ELFT::PhdrRange; using Elf_Sym_Range = typename ELFT::SymRange; using Elf_Sym = typename ELFT::Sym; std::unique_ptr DestStub = std::make_unique(); const ELFFile &ElfFile = ElfObj.getELFFile(); // Fetch .dynamic table. Expected DynTable = ElfFile.dynamicEntries(); if (!DynTable) { return DynTable.takeError(); } // Fetch program headers. Expected PHdrs = ElfFile.program_headers(); if (!PHdrs) { return PHdrs.takeError(); } // Collect relevant .dynamic entries. DynamicEntries DynEnt; if (Error Err = populateDynamic(DynEnt, *DynTable)) return std::move(Err); // Get pointer to in-memory location of .dynstr section. Expected DynStrPtr = ElfFile.toMappedAddr(DynEnt.StrTabAddr); if (!DynStrPtr) return appendToError(DynStrPtr.takeError(), "when locating .dynstr section contents"); StringRef DynStr(reinterpret_cast(DynStrPtr.get()), DynEnt.StrSize); // Populate Arch from ELF header. DestStub->Arch = ElfFile.getHeader().e_machine; // Populate SoName from .dynamic entries and dynamic string table. if (DynEnt.SONameOffset.hasValue()) { Expected NameOrErr = terminatedSubstr(DynStr, *DynEnt.SONameOffset); if (!NameOrErr) { return appendToError(NameOrErr.takeError(), "when reading DT_SONAME"); } DestStub->SoName = std::string(*NameOrErr); } // Populate NeededLibs from .dynamic entries and dynamic string table. for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) { Expected LibNameOrErr = terminatedSubstr(DynStr, NeededStrOffset); if (!LibNameOrErr) { return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED"); } DestStub->NeededLibs.push_back(std::string(*LibNameOrErr)); } // Populate Symbols from .dynsym table and dynamic string table. Expected SymCount = ElfFile.getDynSymtabSize(); if (!SymCount) return SymCount.takeError(); if (*SymCount > 0) { // Get pointer to in-memory location of .dynsym section. Expected DynSymPtr = ElfFile.toMappedAddr(DynEnt.DynSymAddr); if (!DynSymPtr) return appendToError(DynSymPtr.takeError(), "when locating .dynsym section contents"); Elf_Sym_Range DynSyms = ArrayRef( reinterpret_cast(*DynSymPtr), *SymCount); Error SymReadError = populateSymbols(*DestStub, DynSyms, DynStr); if (SymReadError) return appendToError(std::move(SymReadError), "when reading dynamic symbols"); } return std::move(DestStub); } /// This function opens a file for writing and then writes a binary ELF stub to /// the file. /// /// @param FilePath File path for writing the ELF binary. /// @param Stub Source ELFStub to generate a binary ELF stub from. template static Error writeELFBinaryToFile(StringRef FilePath, const ELFStub &Stub, bool WriteIfChanged) { ELFStubBuilder Builder{Stub}; // Write Stub to memory first. std::vector Buf(Builder.getSize()); Builder.write(Buf.data()); if (WriteIfChanged) { if (ErrorOr> BufOrError = MemoryBuffer::getFile(FilePath)) { // Compare Stub output with existing Stub file. // If Stub file unchanged, abort updating. if ((*BufOrError)->getBufferSize() == Builder.getSize() && !memcmp((*BufOrError)->getBufferStart(), Buf.data(), Builder.getSize())) return Error::success(); } } Expected> BufOrError = FileOutputBuffer::create(FilePath, Builder.getSize()); if (!BufOrError) return createStringError(errc::invalid_argument, toString(BufOrError.takeError()) + " when trying to open `" + FilePath + "` for writing"); // Write binary to file. std::unique_ptr FileBuf = std::move(*BufOrError); memcpy(FileBuf->getBufferStart(), Buf.data(), Buf.size()); return FileBuf->commit(); } Expected> readELFFile(MemoryBufferRef Buf) { Expected> BinOrErr = createBinary(Buf); if (!BinOrErr) { return BinOrErr.takeError(); } Binary *Bin = BinOrErr->get(); if (auto Obj = dyn_cast>(Bin)) { return buildStub(*Obj); } else if (auto Obj = dyn_cast>(Bin)) { return buildStub(*Obj); } else if (auto Obj = dyn_cast>(Bin)) { return buildStub(*Obj); } else if (auto Obj = dyn_cast>(Bin)) { return buildStub(*Obj); } return createStringError(errc::not_supported, "unsupported binary format"); } // This function wraps the ELFT writeELFBinaryToFile() so writeBinaryStub() // can be called without having to use ELFType templates directly. Error writeBinaryStub(StringRef FilePath, const ELFStub &Stub, ELFTarget OutputFormat, bool WriteIfChanged) { if (OutputFormat == ELFTarget::ELF32LE) return writeELFBinaryToFile(FilePath, Stub, WriteIfChanged); if (OutputFormat == ELFTarget::ELF32BE) return writeELFBinaryToFile(FilePath, Stub, WriteIfChanged); if (OutputFormat == ELFTarget::ELF64LE) return writeELFBinaryToFile(FilePath, Stub, WriteIfChanged); if (OutputFormat == ELFTarget::ELF64BE) return writeELFBinaryToFile(FilePath, Stub, WriteIfChanged); llvm_unreachable("invalid binary output target"); } } // end namespace elfabi } // end namespace llvm